ACS Publications. Most Trusted. Most Cited. Most Read
Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein–Ligand Binding
My Activity

Figure 1Loading Img
    Structure Prediction

    Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein–Ligand Binding
    Click to copy article linkArticle link copied!

    • Edward B. Miller
      Edward B. Miller
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
    • Robert B. Murphy
      Robert B. Murphy
      Schrödinger, Inc., 10201 Wateridge Circle, San Diego, California 92121, United States
    • Daniel Sindhikara
      Daniel Sindhikara
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
    • Kenneth W. Borrelli
      Kenneth W. Borrelli
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
    • Matthew J. Grisewood
      Matthew J. Grisewood
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
    • Fabio Ranalli
      Fabio Ranalli
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
    • Steven L. Dixon
      Steven L. Dixon
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
    • Steven Jerome
      Steven Jerome
      Schrödinger, Inc., 10201 Wateridge Circle, San Diego, California 92121, United States
    • Nicholas A. Boyles
      Nicholas A. Boyles
      Schrödinger, Inc., 101 SW Main Street, Portland, Oregon 97204, United States
    • Tyler Day
      Tyler Day
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
      More by Tyler Day
    • Phani Ghanakota
      Phani Ghanakota
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
    • Sayan Mondal
      Sayan Mondal
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
      More by Sayan Mondal
    • Salma B. Rafi
      Salma B. Rafi
      Schrödinger, Inc., 101 SW Main Street, Portland, Oregon 97204, United States
    • Dawn M. Troast
      Dawn M. Troast
      Morphic Therapeutic, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
    • Robert Abel
      Robert Abel
      Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
      More by Robert Abel
    • Richard A. Friesner*
      Richard A. Friesner
      Department of Chemistry, Columbia University, 3000 Broadway, MC 3110, New York, New York 10036, United States
      *Phone: 212-854-7606. Fax: 212-854-7454. Email: [email protected]
    Other Access OptionsSupporting Information (2)

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2021, 17, 4, 2630–2639
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.1c00136
    Published March 29, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present a reliable and accurate solution to the induced fit docking problem for protein–ligand binding by combining ligand-based pharmacophore docking, rigid receptor docking, and protein structure prediction with explicit solvent molecular dynamics simulations. This novel methodology in detailed retrospective and prospective testing succeeded to determine protein–ligand binding modes with a root-mean-square deviation within 2.5 Å in over 90% of cross-docking cases. We further demonstrate these predicted ligand–receptor structures were sufficiently accurate to prospectively enable predictive structure-based drug discovery for challenging targets, substantially expanding the domain of applicability for such methods.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jctc.1c00136.

    • Detailed methodology as well as performance of individual components of algorithm and scoring function, additional tables listing complete composition of data sets, and parameter values for composite scoring function (PDF)

    • Coordinates of public retrospective predictions (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 79 publications.

    1. Tanmoy Kanp, Anish Dhuri, Mayur Aalhate, Bharath Manoharan, Khushi Rode, Sharon Munagalasetty, Akella V S Sarma, Prasad Kshirsagar, Nagula Shankaraiah, Vasundhara Bhandari, Bhagwati Sharma, Pankaj Kumar Singh. Investigation of a Palbociclib and Naringin Co-Amorphous System to Ameliorate Anticancer Potential: Insights on In Silico Modeling, Physicochemical Characterization, Ex Vivo Permeation, and In Vitro Efficacy. Molecular Pharmaceutics 2025, Article ASAP.
    2. Ding Luo, Xiaoyang Qu, Dexin Lu, Yiqiu Wang, Lina Dong, Binju Wang. Ligand-Conditioned Side Chain Packing for Flexible Molecular Docking. Journal of Chemical Theory and Computation 2025, 21 (3) , 1494-1505. https://doi.org/10.1021/acs.jctc.4c01636
    3. Yonglan Liu, Wengang Zhang, Hyunbum Jang, Ruth Nussinov. mTOR Variants Activation Discovers PI3K-like Cryptic Pocket, Expanding Allosteric, Mutant-Selective Inhibitor Designs. Journal of Chemical Information and Modeling 2025, 65 (2) , 966-980. https://doi.org/10.1021/acs.jcim.4c02022
    4. Marialuisa Piccolo, Camilla Russo, Valentina Arciuolo, Maria Grazia Ferraro, Vincenzo Abbate, Anna Di Porzio, Elpidio Cinquegrana, Francesco Saverio Di Leva, Bruno Pagano, Antonio Randazzo, Robert Charles Hider, Carlo Irace, Jussara Amato, Mariateresa Giustiniano. Design, Synthesis, and Anticancer Activity of Drug-like Iron Chelators/G-Quadruplex Binders as Synergic Dual Targeting Agents. Journal of Medicinal Chemistry 2025, 68 (2) , 1245-1259. https://doi.org/10.1021/acs.jmedchem.4c01665
    5. Chao Shen, Xiaoqi Han, Heng Cai, Tong Chen, Yu Kang, Peichen Pan, Xiangyang Ji, Chang-Yu Hsieh, Yafeng Deng, Tingjun Hou. Improving the Reliability of Language Model-Predicted Structures as Docking Targets through Geometric Graph Learning. Journal of Medicinal Chemistry 2025, 68 (2) , 1956-1969. https://doi.org/10.1021/acs.jmedchem.4c02740
    6. Dexin Lu, Ding Luo, Yuwei Zhang, Binju Wang. A Robust Induced Fit Docking Approach with the Combination of the Hybrid All-Atom/United-Atom/Coarse-Grained Model and Simulated Annealing. Journal of Chemical Theory and Computation 2024, 20 (14) , 6414-6423. https://doi.org/10.1021/acs.jctc.4c00653
    7. Francesca Intranuovo, Maria Majellaro, Francesco Mastropasqua, Pietro Delre, Francesca Serena Abatematteo, Giuseppe Felice Mangiatordi, Angela Stefanachi, Josè Brea, Maria Isabel Loza, Chiara Riganti, Alessia Ligresti, Poulami Kumar, Daniela Esposito, Luigia Cristino, Alessandro Nicois, Lucía González, Maria Grazia Perrone, Nicola Antonio Colabufo, Eddy Sotelo, Carmen Abate, Marialessandra Contino. N-Adamantyl-1-alkyl-4-oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as Fluorescent Probes to Detect Microglia Activation through the Imaging of Cannabinoid Receptor Subtype 2 (CB2R). Journal of Medicinal Chemistry 2024, 67 (13) , 11003-11023. https://doi.org/10.1021/acs.jmedchem.4c00564
    8. John A. Gilleran, Kutub Ashraf, Melvin Delvillar, Tyler Eck, Raheel Fondekar, Edward B. Miller, Ashley Hutchinson, Aiping Dong, Alma Seitova, Mariana Laureano De Souza, David Augeri, Levon Halabelian, John Siekierka, David P. Rotella, John Gordon, Wayne E. Childers, Mark C. Grier, Bart L. Staker, Jacques Y. Roberge, Purnima Bhanot. Structure–Activity Relationship of a Pyrrole Based Series of PfPKG Inhibitors as Anti-Malarials. Journal of Medicinal Chemistry 2024, 67 (5) , 3467-3503. https://doi.org/10.1021/acs.jmedchem.3c01795
    9. Dilek Coskun, Muyun Lihan, João P. G. L. M. Rodrigues, Márton Vass, Daniel Robinson, Richard A. Friesner, Edward B. Miller. Using AlphaFold and Experimental Structures for the Prediction of the Structure and Binding Affinities of GPCR Complexes via Induced Fit Docking and Free Energy Perturbation. Journal of Chemical Theory and Computation 2024, 20 (1) , 477-489. https://doi.org/10.1021/acs.jctc.3c00839
    10. Martin Vögele, Bin W. Zhang, Jonas Kaindl, Lingle Wang. Is the Functional Response of a Receptor Determined by the Thermodynamics of Ligand Binding?. Journal of Chemical Theory and Computation 2023, 19 (22) , 8414-8422. https://doi.org/10.1021/acs.jctc.3c00899
    11. Hugo Guterres, Wonpil Im. CHARMM-GUI-Based Induced Fit Docking Workflow to Generate Reliable Protein–Ligand Binding Modes. Journal of Chemical Information and Modeling 2023, 63 (15) , 4772-4779. https://doi.org/10.1021/acs.jcim.3c00416
    12. Darren J. Hsu, Russell B. Davidson, Ada Sedova, Jens Glaser. tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking. Journal of Chemical Information and Modeling 2023, 63 (11) , 3438-3447. https://doi.org/10.1021/acs.jcim.2c01530
    13. João Morado, Paul N. Mortenson, J. Willem M. Nissink, Jonathan W. Essex, Chris-Kriton Skylaris. Does a Machine-Learned Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins. Journal of Chemical Information and Modeling 2023, 63 (9) , 2810-2827. https://doi.org/10.1021/acs.jcim.2c01510
    14. Yuqi Zhang, Marton Vass, Da Shi, Esam Abualrous, Jennifer M. Chambers, Nikita Chopra, Christopher Higgs, Koushik Kasavajhala, Hubert Li, Prajwal Nandekar, Hideyuki Sato, Edward B. Miller, Matthew P. Repasky, Steven V. Jerome. Benchmarking Refined and Unrefined AlphaFold2 Structures for Hit Discovery. Journal of Chemical Information and Modeling 2023, 63 (6) , 1656-1667. https://doi.org/10.1021/acs.jcim.2c01219
    15. Dominykas Lukauskis, Marley L. Samways, Simone Aureli, Benjamin P. Cossins, Richard D. Taylor, Francesco Luigi Gervasio. Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses. Journal of Chemical Information and Modeling 2022, 62 (23) , 6209-6216. https://doi.org/10.1021/acs.jcim.2c01142
    16. Lucas B. Fallot, R. Rama Suresh, Courtney L. Fisher, Veronica Salmaso, Robert D. O’Connor, Noy Kaufman, Zhan-Guo Gao, John A. Auchampach, Kenneth A. Jacobson. Structure–Activity Studies of 1H-Imidazo[4,5-c]quinolin-4-amine Derivatives as A3 Adenosine Receptor Positive Allosteric Modulators. Journal of Medicinal Chemistry 2022, 65 (22) , 15238-15262. https://doi.org/10.1021/acs.jmedchem.2c01170
    17. Thijs Beuming, Helena Martín, Anna M. Díaz-Rovira, Lucía Díaz, Victor Guallar, Soumya S. Ray. Are Deep Learning Structural Models Sufficiently Accurate for Free-Energy Calculations? Application of FEP+ to AlphaFold2-Predicted Structures. Journal of Chemical Information and Modeling 2022, 62 (18) , 4351-4360. https://doi.org/10.1021/acs.jcim.2c00796
    18. Tianchuan Xu, Kai Zhu, Alexandre Beautrait, Jeremie Vendome, Kenneth W. Borrelli, Robert Abel, Richard A. Friesner, Edward B. Miller. Induced-Fit Docking Enables Accurate Free Energy Perturbation Calculations in Homology Models. Journal of Chemical Theory and Computation 2022, 18 (9) , 5710-5724. https://doi.org/10.1021/acs.jctc.2c00371
    19. Kate A. Stafford, Brandon M. Anderson, Jon Sorenson, Henry van den Bedem. AtomNet PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in Virtual High-Throughput Screens. Journal of Chemical Information and Modeling 2022, 62 (5) , 1178-1189. https://doi.org/10.1021/acs.jcim.1c01250
    20. Botian Ding, Yuandong Yu, Sheng Geng, Benguo Liu, Youjin Hao, Guizhao Liang. Computational Methods for the Interaction between Cyclodextrins and Natural Compounds: Technology, Benefits, Limitations, and Trends. Journal of Agricultural and Food Chemistry 2022, 70 (8) , 2466-2482. https://doi.org/10.1021/acs.jafc.1c07018
    21. Qianqian Zhao, Riccardo Capelli, Paolo Carloni, Bernhard Lüscher, Jinyu Li, Giulia Rossetti. Enhanced Sampling Approach to the Induced-Fit Docking Problem in Protein–Ligand Binding: The Case of Mono-ADP-Ribosylation Hydrolase Inhibitors. Journal of Chemical Theory and Computation 2021, 17 (12) , 7899-7911. https://doi.org/10.1021/acs.jctc.1c00649
    22. Yujin Wu, Charles L. Brooks III. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy. Journal of Chemical Information and Modeling 2021, 61 (11) , 5535-5549. https://doi.org/10.1021/acs.jcim.1c01078
    23. SahaIshikaGraduate Student ResearcherHarranPatrick G.D.J. & J.M. Cram Chair in Organic ChemistryDr. Jonathan Bohmann, Department of Pharmaceuticals and Bioengineering, Southwest Research Institute, Ryan Gumpper, Postdoctoral Researcher, University of North Carolina at Chapel Hill. Virtual Screening for Chemists. 2021https://doi.org/10.1021/acsinfocus.7e5001
    24. Dehui Zhang, David A. Perrey, Ann M. Decker, Tiffany L. Langston, Vijayakumar Mavanji, Danni L. Harris, Catherine M. Kotz, Yanan Zhang. Discovery of Arylsulfonamides as Dual Orexin Receptor Agonists. Journal of Medicinal Chemistry 2021, 64 (12) , 8806-8825. https://doi.org/10.1021/acs.jmedchem.1c00841
    25. Maheswata Sahoo, Dibyajyoti Uttameswar Behera, Mahendra Gaur, Enketeswara Subudhi. Molecular docking, molecular dynamics simulation, and MM/PBSA analysis of ginger phytocompounds as a potential inhibitor of AcrB for treating multidrug-resistant Klebsiella pneumoniae infections. Journal of Biomolecular Structure and Dynamics 2025, 43 (7) , 3585-3601. https://doi.org/10.1080/07391102.2023.2299741
    26. Damilola S. Bodun, Damilola A. Omoboyowa, Victor F. Olofinlade, Adeyemi O. Ayodeji, Andrea Mauri, Uchechukwu C. Ogbodo, Toheeb A. Balogun. In-silico-based lead optimization of hit compounds targeting mitotic kinesin Eg5 for cancer management. In Silico Pharmacology 2025, 13 (1) https://doi.org/10.1007/s40203-024-00300-6
    27. Peng He, Haiyan Li, Zhenyu Yang, Rui Zhang, Qijun Ye, Ta Deng, Wenwen Li, Shucheng He, Guangxin Dong, Zhou Yu, Yi Li. Discovery and preclinical evaluations of drug candidate DA-0157 capable of overcoming EGFR drug-resistant mutation C797S and EGFR/ALK co-mutations. European Journal of Medicinal Chemistry 2025, 287 , 117323. https://doi.org/10.1016/j.ejmech.2025.117323
    28. Pavel Spirin, Valeria Vedernikova, Tatsiana Volkava, Alexey Morozov, Alla Kleymenova, Anastasia Zemskaya, Lena Shyrokova, Yuri Porozov, Ksenia Glumakova, Timofey Lebedev, Maxim Kozlov, Vladimir Prassolov. New and Effective Inhibitor of Class I HDACs, Eimbinostat, Reduces the Growth of Hematologic Cancer Cells and Triggers Apoptosis. Pharmaceutics 2025, 17 (4) , 416. https://doi.org/10.3390/pharmaceutics17040416
    29. Clement Agoni, Raúl Fernández-Díaz, Patrick Brendan Timmons, Alessandro Adelfio, Hansel Gómez, Denis C. Shields. Molecular Modelling in Bioactive Peptide Discovery and Characterisation. Biomolecules 2025, 15 (4) , 524. https://doi.org/10.3390/biom15040524
    30. Husam Nassar, Anne‐Christin Sarnow, Ismail Celik, Mohamed Abdelsalam, Dina Robaa, Wolfgang Sippl. Ternary Complex Modeling, Induced Fit Docking and Molecular Dynamics Simulations as a Successful Approach for the Design of VHL‐Mediated PROTACs Targeting the Kinase FLT3. Archiv der Pharmazie 2025, 358 (4) https://doi.org/10.1002/ardp.202500102
    31. Hengyi Xie, Harel Weinstein. Recognition of specific PIP2-subtype composition triggers the allosteric control mechanism for selective membrane targeting of cargo loading and release functions of the intracellular sterol transporter StarD4. Journal of Molecular Biology 2025, 277 , 169157. https://doi.org/10.1016/j.jmb.2025.169157
    32. Cong Lei, Xilong Li, Wenjia Li, Zihan Chen, Simiao Liu, Bo Cheng, Yili Hu, Qitao Song, Yahong Qiu, Yilan Zhou, Xiangbing Meng, Hong Yu, Wen Zhou, Xing Chen, Jiayang Li. Chemical Glycoproteomic Profiling in Rice Seedlings Reveals N-glycosylation in the ERAD-L Machinery. Molecular & Cellular Proteomics 2025, 24 (2) , 100883. https://doi.org/10.1016/j.mcpro.2024.100883
    33. J. Irshad Ahamed, S.I. Davis Presley, Jothi Ramalingam Rajabathar, V.O. Sangeetha, Venkatadri Babu, Manickam Rajkumar, Manjunath S. Kamath. Analyze and assess the spectral, DFT, and medicinal characteristics through targeted pharmacological investigation of 2-(3-(5-(4-chlorophenyl)furan-2-yl)acryloyl)-3,4-dihydro-2H-naphthalen-1-one (CHFADN). Journal of Molecular Structure 2025, 1321 , 139659. https://doi.org/10.1016/j.molstruc.2024.139659
    34. Misgana Aragaw, Sileshi Degu, Abiy Abebe, Mekonnen Abebayehu, Kibrom Gebreheiwot Bedane, Daniel Bisrat, Solomon Tadesse. Synthesis, Antibacterial Activity and In Silico Study of 1-(2-ethyl acetate)-2-styryl 5-nitroimidazole Derivatives. Anti-Infective Agents 2025, 23 (1) https://doi.org/10.2174/0122113525297723240513114228
    35. Vijayakumar Rajendran, Saravanan Kandasamy, Seshan Gunalan, Sekar Kanagaraj, Gugan Kothandan. Deciphering Saquinavir–Bovine Serum Albumin Interactions: Spectroscopic and Computational Insights. Journal of Molecular Recognition 2025, 38 (1) https://doi.org/10.1002/jmr.3112
    36. Fatih Tok, Burçin İrem Abas, Faika Başoğlu, Özge Çevik, Sevgi Karakuş, Abdulilah Ece. Synthesis, Biological Evaluation and in Silico Studies of Novel Urea/Thiourea Derivatives of Lenalidomide. Journal of Biochemical and Molecular Toxicology 2024, 38 (12) https://doi.org/10.1002/jbt.70079
    37. Zhi-Xin Peng, Hui-Wen Gu, Yuan Pan, Yan Wang, Jun Yan, Wanjun Long, Haiyan Fu, Yuanbin She. Revealing the key antioxidant compounds and potential action mechanisms of Chinese Cabernet Sauvignon red wines by integrating UHPLC-QTOF-MS-based untargeted metabolomics, network pharmacology and molecular docking approaches. Food Chemistry 2024, 460 , 140540. https://doi.org/10.1016/j.foodchem.2024.140540
    38. Wei Lu, Jixian Zhang, Weifeng Huang, Ziqiao Zhang, Xiangyu Jia, Zhenyu Wang, Leilei Shi, Chengtao Li, Peter G. Wolynes, Shuangjia Zheng. DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45461-2
    39. Antonio Del Rio Flores, Rui Zhai, David W. Kastner, Kaushik Seshadri, Siyue Yang, Kyle De Matias, Yuanbo Shen, Wenlong Cai, Maanasa Narayanamoorthy, Nicholas B. Do, Zhaoqiang Xue, Dunya Al Marzooqi, Heather J. Kulik, Wenjun Zhang. Enzymatic synthesis of azide by a promiscuous N-nitrosylase. Nature Chemistry 2024, 16 (12) , 2066-2075. https://doi.org/10.1038/s41557-024-01646-2
    40. Haixin Wei, J. Andrew McCammon. Structure and dynamics in drug discovery. npj Drug Discovery 2024, 1 (1) https://doi.org/10.1038/s44386-024-00001-2
    41. Thato Matlhodi, Lisema Patrick Makatsela, Tendamudzimu Harmfree Dongola, Mthokozisi Blessing Cedric Simelane, Addmore Shonhai, Njabulo Joyfull Gumede, Fortunate Mokoena, . Auto QSAR-based active learning docking for hit identification of potential inhibitors of Plasmodium falciparum Hsp90 as antimalarial agents. PLOS ONE 2024, 19 (11) , e0308969. https://doi.org/10.1371/journal.pone.0308969
    42. V. Udayappan, D. Easwaramoorthy, S. Aravindhan, A. Arvind Asok. Experimental and theoretical vibrational analysis, structural conformations, DFT estimations, antibacterial, antifungal, DPPH,H2O2, Nitric oxide scavenging activity drug, in silico molecular docking, and ADMET studies of N-(2-carboxylphenyl) phthalimide (CPPD). Journal of Molecular Liquids 2024, 414 , 126119. https://doi.org/10.1016/j.molliq.2024.126119
    43. Joseph M. Paggi, Ayush Pandit, Ron O. Dror. The Art and Science of Molecular Docking. Annual Review of Biochemistry 2024, 93 (1) , 389-410. https://doi.org/10.1146/annurev-biochem-030222-120000
    44. Sepideh Soltani, Anupom Roy, Arto Urtti, Mikko Karttunen. A computational investigation of eumelanin–drug binding in aqueous solutions. Materials Advances 2024, 5 (13) , 5494-5513. https://doi.org/10.1039/D4MA00246F
    45. Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Bodenstein, David A. Evans, Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn Tunyasuvunakool, Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridgland, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie, Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishub Jain, Yousuf A. Khan, Caroline M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula, Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski, Augustin Žídek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, John M. Jumper. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630 (8016) , 493-500. https://doi.org/10.1038/s41586-024-07487-w
    46. Huy Hoang Nguyen Vo, Thu Huong Thi Phung, Khanh Linh Chung, Thien Y. Vu. Precise cuts for tailoring chromene-phenyl COX inhibitors with Ligand Designer. Journal of Molecular Graphics and Modelling 2024, 129 , 108747. https://doi.org/10.1016/j.jmgm.2024.108747
    47. Yue Wang, Chujie Li, Zhengwen Li, Mohamed Moalin, Gertjan J. M. den Hartog, Ming Zhang. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids—An Overview. Molecules 2024, 29 (11) , 2627. https://doi.org/10.3390/molecules29112627
    48. Jintao Zhu, Zhonghui Gu, Jianfeng Pei, Luhua Lai. DiffBindFR: an SE(3) equivariant network for flexible protein–ligand docking. Chemical Science 2024, 15 (21) , 7926-7942. https://doi.org/10.1039/D3SC06803J
    49. Tahsin F. Kellici, Dimitar Hristozov, Inaki Morao. AI ‐Based Protein Structure Predictions and Their Implications in Drug Discovery. 2024, 227-253. https://doi.org/10.1002/9783527840748.ch10
    50. Guillem Macip, Júlia Mestres‐Truyol, Pol Garcia‐Segura, Bryan Saldivar‐Espinoza, Santiago Garcia‐Vallvé, Gerard Pujadas. Mining for Bioactive Molecules in Open Databases. 2024, 269-297. https://doi.org/10.1002/9783527830497.ch9
    51. Edward B. Miller, Howook Hwang, Mee Shelley, Andrew Placzek, João P.G.L.M. Rodrigues, Robert K. Suto, Lingle Wang, Karen Akinsanya, Robert Abel. Enabling structure-based drug discovery utilizing predicted models. Cell 2024, 187 (3) , 521-525. https://doi.org/10.1016/j.cell.2023.12.034
    52. Ekaterina Shevchenko, Stefan Laufer, Antti Poso, Thales Kronenberger. Drug Design in Motion: Concepts and Applications of Classical Molecular Dynamics Simulations. 2024, 199-242. https://doi.org/10.1007/978-3-031-76718-0_8
    53. N. Anis Ahamed, Ibrahim A. Arif. Finding potential inhibitors for Main protease (Mpro) of SARS-CoV-2 through virtual screening and MD simulation studies. Saudi Journal of Biological Sciences 2023, 30 (12) , 103845. https://doi.org/10.1016/j.sjbs.2023.103845
    54. Wenzhi Ma, Wei Zhang, Yuan Le, Xiaoxuan Shi, Qingbo Xu, Yang Xiao, Yueying Dou, Xiaoman Wang, Wenbiao Zhou, Wei Peng, Hongbo Zhang, Bo Huang. Using macromolecular electron densities to improve the enrichment of active compounds in virtual screening. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-00984-5
    55. K. Sudhakar, J. Irshad Ahamed, P. Kamalarajan. Synthesis, spectral characterizations, vibrational spectroscopy, DFT-computations, antibacterial, antioxidant, and molecular docking studies of the novel (Z)-2-(5-((10-hexyl-10H-phenothiazin-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid. Journal of Molecular Structure 2023, 1292 , 136008. https://doi.org/10.1016/j.molstruc.2023.136008
    56. Kameliya Anichina, Anelia Mavrova, Dimitar Vuchev, Galya Popova-Daskalova, Giada Bassi, Arianna Rossi, Monica Montesi, Silvia Panseri, Filip Fratev, Emilia Naydenova. Benzimidazoles Containing Piperazine Skeleton at C-2 Position as Promising Tubulin Modulators with Anthelmintic and Antineoplastic Activity. Pharmaceuticals 2023, 16 (11) , 1518. https://doi.org/10.3390/ph16111518
    57. Devki D. Sukhtankar, Juan José Fung, Mi-na Kim, Thomas Cayton, Valerie Chiou, Niña G. Caculitan, Piotr Zalicki, Sujeong Kim, Yoonjung Jo, SoHui Kim, Jae Min Lee, Junhee Choi, SeongGyeong Mun, Ashley Chin, Yongdae Jang, Ji Yeong Lee, Gowoon Kim, Eun Hee Kim, Won-Ki Huh, Jae-Yeon Jeong, Dong-Seung Seen, Pina M. Cardarelli, . GPC-100, a novel CXCR4 antagonist, improves in vivo hematopoietic cell mobilization when combined with propranolol. PLOS ONE 2023, 18 (10) , e0287863. https://doi.org/10.1371/journal.pone.0287863
    58. Ping Lin, Yuzhen Niu. Inhibitory selectivity to the AKR1B10 and aldose reductase (AR): insight from molecular dynamics simulations and free energy calculations. RSC Advances 2023, 13 (38) , 26709-26718. https://doi.org/10.1039/D3RA02215C
    59. Shizun Wang, Jiasi Luan, Lu Chen, Haihan Liu, Weixia Li, Jian Wang. Computational characteristics of the structure-activity relationship of inhibitors targeting Pks13-TE domain. Computational Biology and Chemistry 2023, 104 , 107864. https://doi.org/10.1016/j.compbiolchem.2023.107864
    60. Anastasiia V. Sadybekov, Vsevolod Katritch. Computational approaches streamlining drug discovery. Nature 2023, 616 (7958) , 673-685. https://doi.org/10.1038/s41586-023-05905-z
    61. Stephen J. Trudeau, Howook Hwang, Deepika Mathur, Kamrun Begum, Donald Petrey, Diana Murray, Barry Honig. PrePCI : A structure‐ and chemical similarity‐informed database of predicted protein compound interactions. Protein Science 2023, 32 (4) https://doi.org/10.1002/pro.4594
    62. Felix Potlitz, Andreas Link, Lukas Schulig. Advances in the discovery of new chemotypes through ultra-large library docking. Expert Opinion on Drug Discovery 2023, 18 (3) , 303-313. https://doi.org/10.1080/17460441.2023.2171984
    63. D. Sala, H. Batebi, K. Ledwitch, P.W. Hildebrand, J. Meiler. Targeting in silico GPCR conformations with ultra-large library screening for hit discovery. Trends in Pharmacological Sciences 2023, 44 (3) , 150-161. https://doi.org/10.1016/j.tips.2022.12.006
    64. Davide Bassani, Stefano Moro. In Silico Insights Toward the Exploration of Adenosine Receptors Ligand Recognition. 2023, 275-315. https://doi.org/10.1007/7355_2023_164
    65. Valeria Scardino, Juan I. Di Filippo, Claudio N. Cavasotto. How good are AlphaFold models for docking-based virtual screening?. iScience 2023, 26 (1) , 105920. https://doi.org/10.1016/j.isci.2022.105920
    66. Hongshan Jin, Chengjun Wu, Rui Su, Tiemin Sun, Xingzhou Li, Chun Guo. Identifying Dopamine D3 Receptor Ligands through Virtual Screening and Exploring the Binding Modes of Hit Compounds. Molecules 2023, 28 (2) , 527. https://doi.org/10.3390/molecules28020527
    67. Yiqun Chang, Bryson A. Hawkins, Jonathan J. Du, Paul W. Groundwater, David E. Hibbs, Felcia Lai. A Guide to In Silico Drug Design. Pharmaceutics 2023, 15 (1) , 49. https://doi.org/10.3390/pharmaceutics15010049
    68. Njabulo Joyfull Gumede. Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PLpro Inhibitors. Molecules 2022, 27 (23) , 8569. https://doi.org/10.3390/molecules27238569
    69. Gabriel C. Veríssimo, Mateus Sá M. Serafim, Thales Kronenberger, Rafaela S. Ferreira, Kathia M. Honorio, Vinícius G. Maltarollo. Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opinion on Drug Discovery 2022, 17 (9) , 929-947. https://doi.org/10.1080/17460441.2022.2114451
    70. Hugo Guterres, Sang‐Jun Park, Han Zhang, Thomas Perone, Jongtaek Kim, Wonpil Im. CHARMM‐GUI high‐throughput simulator for efficient evaluation of protein–ligand interactions with different force fields. Protein Science 2022, 31 (9) https://doi.org/10.1002/pro.4413
    71. Kai Zhu, Cui Li, Kingsley Y. Wu, Christopher Mohr, Xun Li, Brian Lanman. Modeling receptor flexibility in the structure-based design of KRASG12C inhibitors. Journal of Computer-Aided Molecular Design 2022, 36 (8) , 591-604. https://doi.org/10.1007/s10822-022-00467-0
    72. Debojyoti Halder, Subham Das, Aiswarya R., Jeyaprakash R. S.. Molecular docking and dynamics based approach for the identification of kinase inhibitors targeting PI3Kα against non-small cell lung cancer: a computational study. RSC Advances 2022, 12 (33) , 21452-21467. https://doi.org/10.1039/D2RA03451D
    73. Jeremy C. Jones, Bogdan Zagribelnyy, Philippe Noriel Q. Pascua, Dmitry S. Bezrukov, Subrata Barman, Faten Okda, Richard J. Webby, Yan A. Ivanenkov, Elena A. Govorkova, . Influenza A virus polymerase acidic protein E23G/K substitutions weaken key baloxavir drug-binding contacts with minimal impact on replication and transmission. PLOS Pathogens 2022, 18 (7) , e1010698. https://doi.org/10.1371/journal.ppat.1010698
    74. Zuzana Mészáros, Lucie Petrásková, Natalia Kulik, Helena Pelantová, Pavla Bojarová, Vladimír Křen, Kristýna Slámová. Hypertransglycosylating Variants of the GH20 β‐ N ‐Acetylhexosaminidase for the Synthesis of Chitooligomers. Advanced Synthesis & Catalysis 2022, 364 (12) , 2009-2022. https://doi.org/10.1002/adsc.202200046
    75. Karishma Singh, Roger M. Coopoosamy, Njabulo J. Gumede, Saheed Sabiu. Computational Insights and In Vitro Validation of Antibacterial Potential of Shikimate Pathway-Derived Phenolic Acids as NorA Efflux Pump Inhibitors. Molecules 2022, 27 (8) , 2601. https://doi.org/10.3390/molecules27082601
    76. Leah Frye, Sathesh Bhat, Karen Akinsanya, Robert Abel. From computer-aided drug discovery to computer-driven drug discovery. Drug Discovery Today: Technologies 2021, 39 , 111-117. https://doi.org/10.1016/j.ddtec.2021.08.001
    77. Michaela Hovorková, Natalia Kulik, Dorota Konvalinková, Lucie Petrásková, Vladimír Křen, Pavla Bojarová. Mutagenesis of Catalytic Nucleophile of β‐Galactosidase Retains Residual Hydrolytic Activity and Affords a Transgalactosidase. ChemCatChem 2021, 13 (21) , 4532-4542. https://doi.org/10.1002/cctc.202101107
    78. Jonathan Dickerhoff, Kassandra R. Warnecke, Kaibo Wang, Nanjie Deng, Danzhou Yang. Evaluating Molecular Docking Software for Small Molecule Binding to G-Quadruplex DNA. International Journal of Molecular Sciences 2021, 22 (19) , 10801. https://doi.org/10.3390/ijms221910801
    79. Ha Thi Nguyen, Thien-Y. Vu, A. Vijay Kumar, Vo Nguyen Huy Hoang, Pham Thi Ngoc My, Prashant S. Mandal, Vinay Bharadwaj Tatipamula. N -Aryl iminochromenes inhibit cyclooxygenase enzymes via π–π stacking interactions and present a novel class of anti-inflammatory drugs. RSC Advances 2021, 11 (47) , 29385-29393. https://doi.org/10.1039/D1RA04407A

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2021, 17, 4, 2630–2639
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.1c00136
    Published March 29, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    6388

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.