Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation

View Author Information
Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087, United States
Cite this: J. Chem. Theory Comput. 2016, 12, 6, 2611–2632
Publication Date (Web):May 12, 2016
https://doi.org/10.1021/acs.jctc.6b00198
Copyright © 2016 American Chemical Society

    Article Views

    797

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    A new approach for performing Particle Mesh Ewald in ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with extended atomic orbital basis sets is presented. The new approach, the Ambient-Potential Composite Ewald (CEw) method, does not perform the QM/MM interaction with Mulliken charges nor electrostatically fit charges. Instead the nuclei and electron density interact directly with the MM environment, but in a manner that avoids the use of dense Fourier transform grids. By performing the electrostatics with the underlying QM density, the CEw method avoids self-consistent field instabilities that have been encountered with simple charge mapping procedures. Potential of mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in explicit solvent are computed from PBE0/6-31G* QM/MM molecular dynamics simulations with various electrostatic protocols. The CEw profiles are shown to be stable with respect to real-space Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to generate two-dimensional PMF profiles of the phosphoryl transesterification reactions with ethoxide and phenoxide leaving groups. The semiempirical models incorrectly produce a concerted ethoxide mechanism, whereas PBE0 correctly produces a stepwise mechanism. The ab initio reaction barriers agree more closely to experiment than the semiempirical models. The failure of Mulliken-charge QM/MM-Ewald is analyzed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 41 publications.

    1. Simone Bonfrate, Nicolas Ferré, Miquel Huix-Rotllant. Analytic Gradients for the Electrostatic Embedding QM/MM Model in Periodic Boundary Conditions Using Particle-Mesh Ewald Sums and Electrostatic Potential Fitted Charge Operators. Journal of Chemical Theory and Computation 2024, 20 (10) , 4338-4349. https://doi.org/10.1021/acs.jctc.4c00201
    2. LinHaiProfessor, ChemistryZhiqiang Cao, Ph.D. Postdoctoral Associate, School of Polymer Science and Engineering, The University of Southern Mississippi, Sreerag M. Narayanan, PhD student, University of Miami. QM/MM Methods. 2024https://doi.org/10.1021/acsinfocus.7e7030
    3. David A. Case, Hasan Metin Aktulga, Kellon Belfon, David S. Cerutti, G. Andrés Cisneros, Vinícius Wilian D. Cruzeiro, Negin Forouzesh, Timothy J. Giese, Andreas W. Götz, Holger Gohlke, Saeed Izadi, Koushik Kasavajhala, Mehmet C. Kaymak, Edward King, Tom Kurtzman, Tai-Sung Lee, Pengfei Li, Jian Liu, Tyler Luchko, Ray Luo, Madushanka Manathunga, Matias R. Machado, Hai Minh Nguyen, Kurt A. O’Hearn, Alexey V. Onufriev, Feng Pan, Sergio Pantano, Ruxi Qi, Ali Rahnamoun, Ali Risheh, Stephan Schott-Verdugo, Akhil Shajan, Jason Swails, Junmei Wang, Haixin Wei, Xiongwu Wu, Yongxian Wu, Shi Zhang, Shiji Zhao, Qiang Zhu, Thomas E. Cheatham, III, Daniel R. Roe, Adrian Roitberg, Carlos Simmerling, Darrin M. York, Maria C. Nagan, Kenneth M. Merz, Jr.. AmberTools. Journal of Chemical Information and Modeling 2023, 63 (20) , 6183-6191. https://doi.org/10.1021/acs.jcim.3c01153
    4. Jinzhe Zeng, Yujun Tao, Timothy J. Giese, Darrin M. York. QDπ: A Quantum Deep Potential Interaction Model for Drug Discovery. Journal of Chemical Theory and Computation 2023, 19 (4) , 1261-1275. https://doi.org/10.1021/acs.jctc.2c01172
    5. Timothy J. Giese, Jinzhe Zeng, Darrin M. York. Multireference Generalization of the Weighted Thermodynamic Perturbation Method. The Journal of Physical Chemistry A 2022, 126 (45) , 8519-8533. https://doi.org/10.1021/acs.jpca.2c06201
    6. Timothy J. Giese, Jinzhe Zeng, Şölen Ekesan, Darrin M. York. Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions. Journal of Chemical Theory and Computation 2022, 18 (7) , 4304-4317. https://doi.org/10.1021/acs.jctc.2c00151
    7. Jinzhe Zeng, Timothy J. Giese, Şölen Ekesan, Darrin M. York. Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution. Journal of Chemical Theory and Computation 2021, 17 (11) , 6993-7009. https://doi.org/10.1021/acs.jctc.1c00201
    8. Vinícius Wilian D. Cruzeiro, Madushanka Manathunga, Kenneth M. Merz Jr., Andreas W. Götz. Open-Source Multi-GPU-Accelerated QM/MM Simulations with AMBER and QUICK. Journal of Chemical Information and Modeling 2021, 61 (5) , 2109-2115. https://doi.org/10.1021/acs.jcim.1c00169
    9. Timothy J. Giese, Şölen Ekesan, Darrin M. York. Extension of the Variational Free Energy Profile and Multistate Bennett Acceptance Ratio Methods for High-Dimensional Potential of Mean Force Profile Analysis. The Journal of Physical Chemistry A 2021, 125 (19) , 4216-4232. https://doi.org/10.1021/acs.jpca.1c00736
    10. Kiyoshi Yagi, Shingo Ito, Yuji Sugita. Exploring the Minimum-Energy Pathways and Free-Energy Profiles of Enzymatic Reactions with QM/MM Calculations. The Journal of Physical Chemistry B 2021, 125 (18) , 4701-4713. https://doi.org/10.1021/acs.jpcb.1c01862
    11. Timothy C. Ricard, Srinivasan S. Iyengar. Efficient and Accurate Approach To Estimate Hybrid Functional and Large Basis-Set Contributions to Condensed-Phase Systems and Molecule–Surface Interactions. Journal of Chemical Theory and Computation 2020, 16 (8) , 4790-4812. https://doi.org/10.1021/acs.jctc.9b01089
    12. Leighton O. Jones, Martín A. Mosquera, George C. Schatz, Mark A. Ratner. Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences. Journal of the American Chemical Society 2020, 142 (7) , 3281-3295. https://doi.org/10.1021/jacs.9b10780
    13. Timothy J. Giese, Darrin M. York. Development of a Robust Indirect Approach for MM → QM Free Energy Calculations That Combines Force-Matched Reference Potential and Bennett’s Acceptance Ratio Methods. Journal of Chemical Theory and Computation 2019, 15 (10) , 5543-5562. https://doi.org/10.1021/acs.jctc.9b00401
    14. Jinfeng Liu, Haitao Sun, William J. Glover, Xiao He. Prediction of Excited-State Properties of Oligoacene Crystals Using Fragment-Based Quantum Mechanical Method. The Journal of Physical Chemistry A 2019, 123 (26) , 5407-5417. https://doi.org/10.1021/acs.jpca.8b12552
    15. Colin S. Gaines, Timothy J. Giese, Darrin M. York. Cleaning Up Mechanistic Debris Generated by Twister Ribozymes Using Computational RNA Enzymology. ACS Catalysis 2019, 9 (7) , 5803-5815. https://doi.org/10.1021/acscatal.9b01155
    16. Pengfei Li, Fengjiao Liu, Yihan Shao, Ye Mei. Computational Insights into Endo/Exo Selectivity of the Diels–Alder Reaction in Explicit Solvent at Ab Initio Quantum Mechanical/Molecular Mechanical Level. The Journal of Physical Chemistry B 2019, 123 (24) , 5131-5138. https://doi.org/10.1021/acs.jpcb.9b01989
    17. Hatice Gökcan, Erik Antonio Vázquez-Montelongo, G. Andrés Cisneros. LICHEM 1.1: Recent Improvements and New Capabilities. Journal of Chemical Theory and Computation 2019, 15 (5) , 3056-3065. https://doi.org/10.1021/acs.jctc.9b00028
    18. Timothy J. Giese, Darrin M. York. A GPU-Accelerated Parameter Interpolation Thermodynamic Integration Free Energy Method. Journal of Chemical Theory and Computation 2018, 14 (3) , 1564-1582. https://doi.org/10.1021/acs.jctc.7b01175
    19. Haoyuan Chen, Timothy J. Giese, Barbara L. Golden, and Darrin M. York . Divalent Metal Ion Activation of a Guanine General Base in the Hammerhead Ribozyme: Insights from Molecular Simulations. Biochemistry 2017, 56 (24) , 2985-2994. https://doi.org/10.1021/acs.biochem.6b01192
    20. Yujun Tao, Timothy J. Giese, Şölen Ekesan, Jinzhe Zeng, Bálint Aradi, Ben Hourahine, Hasan Metin Aktulga, Andreas W. Götz, Kenneth M. Merz, Darrin M. York. Amber free energy tools: Interoperable software for free energy simulations using generalized quantum mechanical/molecular mechanical and machine learning potentials. The Journal of Chemical Physics 2024, 160 (22) https://doi.org/10.1063/5.0211276
    21. Jinzhe Zeng, Duo Zhang, Denghui Lu, Pinghui Mo, Zeyu Li, Yixiao Chen, Marián Rynik, Li’ang Huang, Ziyao Li, Shaochen Shi, Yingze Wang, Haotian Ye, Ping Tuo, Jiabin Yang, Ye Ding, Yifan Li, Davide Tisi, Qiyu Zeng, Han Bao, Yu Xia, Jiameng Huang, Koki Muraoka, Yibo Wang, Junhan Chang, Fengbo Yuan, Sigbjørn Løland Bore, Chun Cai, Yinnian Lin, Bo Wang, Jiayan Xu, Jia-Xin Zhu, Chenxing Luo, Yuzhi Zhang, Rhys E. A. Goodall, Wenshuo Liang, Anurag Kumar Singh, Sikai Yao, Jingchao Zhang, Renata Wentzcovitch, Jiequn Han, Jie Liu, Weile Jia, Darrin M. York, Weinan E, Roberto Car, Linfeng Zhang, Han Wang. DeePMD-kit v2: A software package for deep potential models. The Journal of Chemical Physics 2023, 159 (5) https://doi.org/10.1063/5.0155600
    22. Katja‐Sophia Csizi, Markus Reiher. Universal QM / MM approaches for general nanoscale applications. WIREs Computational Molecular Science 2023, 13 (4) https://doi.org/10.1002/wcms.1656
    23. Erika McCarthy, Şölen Ekesan, Timothy J Giese, Timothy J Wilson, Jie Deng, Lin Huang, David M J Lilley, Darrin M York. Catalytic mechanism and pH dependence of a methyltransferase ribozyme (MTR1) from computational enzymology. Nucleic Acids Research 2023, 51 (9) , 4508-4518. https://doi.org/10.1093/nar/gkad260
    24. Jinzhe Zeng, Yujun Tao, Timothy J. Giese, Darrin M. York. Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states. The Journal of Chemical Physics 2023, 158 (12) https://doi.org/10.1063/5.0139281
    25. Vinícius Wilian D. Cruzeiro, Yuanheng Wang, Elisa Pieri, Edward G. Hohenstein, Todd J. Martínez. TeraChem protocol buffers (TCPB): Accelerating QM and QM/MM simulations with a client–server model. The Journal of Chemical Physics 2023, 158 (4) https://doi.org/10.1063/5.0130886
    26. Wenshuo Liang, Jinzhe Zeng, Darrin M. York, Linfeng Zhang, Han Wang. Learning DeePMD-Kit: A Guide to Building Deep Potential Models. 2023, 6-1-6-20. https://doi.org/10.1063/9780735425279_006
    27. Simone Bonfrate, Nicolas Ferré, Miquel Huix-Rotllant. An efficient electrostatic embedding QM/MM method using periodic boundary conditions based on particle-mesh Ewald sums and electrostatic potential fitted charge operators. The Journal of Chemical Physics 2023, 158 (2) https://doi.org/10.1063/5.0133646
    28. Şölen Ekesan, Darrin M. York. Who stole the proton? Suspect general base guanine found with a smoking gun in the pistol ribozyme. Organic & Biomolecular Chemistry 2022, 20 (31) , 6219-6230. https://doi.org/10.1039/D2OB00234E
    29. Madushanka Manathunga, Andreas W. Götz, Kenneth M. Merz. Computer-aided drug design, quantum-mechanical methods for biological problems. Current Opinion in Structural Biology 2022, 75 , 102417. https://doi.org/10.1016/j.sbi.2022.102417
    30. John P. Pederson, Jesse G. McDaniel. DFT-based QM/MM with particle-mesh Ewald for direct, long-range electrostatic embedding. The Journal of Chemical Physics 2022, 156 (17) https://doi.org/10.1063/5.0087386
    31. Jorge Nochebuena, Sehr Naseem‐Khan, G. Andrés Cisneros. Development and application of quantum mechanics/molecular mechanics methods with advanced polarizable potentials. WIREs Computational Molecular Science 2021, 11 (4) https://doi.org/10.1002/wcms.1515
    32. Hiroshi C. Watanabe, Masayuki Yamada, Yohichi Suzuki. Proton transfer in bulk water using the full adaptive QM/MM method: integration of solute- and solvent-adaptive approaches. Physical Chemistry Chemical Physics 2021, 23 (14) , 8344-8360. https://doi.org/10.1039/D1CP00116G
    33. Xiaoliang Pan, Kwangho Nam, Evgeny Epifanovsky, Andrew C. Simmonett, Edina Rosta, Yihan Shao. A simplified charge projection scheme for long-range electrostatics in ab initio QM/MM calculations. The Journal of Chemical Physics 2021, 154 (2) https://doi.org/10.1063/5.0038120
    34. Yunjiao He, Jinping Lei, Xuehua Pan, Xuhui Huang, Yanxiang Zhao. The hydrolytic water molecule of Class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-66431-w
    35. Mattia Bondanza, Michele Nottoli, Lorenzo Cupellini, Filippo Lipparini, Benedetta Mennucci. Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?. Physical Chemistry Chemical Physics 2020, 22 (26) , 14433-14448. https://doi.org/10.1039/D0CP02119A
    36. Zachary C. Holden, Bhaskar Rana, John M. Herbert. Analytic gradient for the QM/MM-Ewald method using charges derived from the electrostatic potential: Theory, implementation, and application to ab initio molecular dynamics simulation of the aqueous electron. The Journal of Chemical Physics 2019, 150 (14) https://doi.org/10.1063/1.5089673
    37. Jinping Lei, Gang Sheng, Peter Pak-Hang Cheung, Shenglong Wang, Yu Li, Xin Gao, Yingkai Zhang, Yanli Wang, Xuhui Huang. Two symmetric arginine residues play distinct roles in Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proceedings of the National Academy of Sciences 2019, 116 (3) , 845-853. https://doi.org/10.1073/pnas.1817041116
    38. Xiaoliang Pan, Edina Rosta, Yihan Shao. Representation of the QM Subsystem for Long-Range Electrostatic Interaction in Non-Periodic Ab Initio QM/MM Calculations. Molecules 2018, 23 (10) , 2500. https://doi.org/10.3390/molecules23102500
    39. Timothy J Giese, Darrin M York. Quantum mechanical force fields for condensed phase molecular simulations. Journal of Physics: Condensed Matter 2017, 29 (38) , 383002. https://doi.org/10.1088/1361-648X/aa7c5c
    40. Dorothea Golze, Niels Benedikter, Marcella Iannuzzi, Jan Wilhelm, Jürg Hutter. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals. The Journal of Chemical Physics 2017, 146 (3) https://doi.org/10.1063/1.4973510
    41. Eric G. Kratz, Robert E. Duke, G. Andrés Cisneros. Long-range electrostatic corrections in multipolar/polarizable QM/MM simulations. Theoretical Chemistry Accounts 2016, 135 (7) https://doi.org/10.1007/s00214-016-1923-8