Multiscale Molecular Dynamics Simulations of Polaritonic ChemistryClick to copy article linkArticle link copied!
Abstract

When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 139 publications.
- Maxim Sukharev, Joseph E. Subotnik, Abraham Nitzan. Unveiling the Dance of Molecules: Rovibrational Dynamics of Molecules under Intense Illumination at Complex Plasmonic Interfaces. Journal of Chemical Theory and Computation 2025, 21
(5)
, 2165-2178. https://doi.org/10.1021/acs.jctc.4c01652
- Bing Gu. Toward Collective Chemistry under Strong Light-Matter Coupling. The Journal of Physical Chemistry Letters 2025, 16
(1)
, 317-323. https://doi.org/10.1021/acs.jpclett.4c02896
- Tao E. Li. Mesoscale Molecular Simulations of Fabry–Pérot Vibrational Strong Coupling. Journal of Chemical Theory and Computation 2024, 20
(16)
, 7016-7031. https://doi.org/10.1021/acs.jctc.4c00349
- Matteo Capone, Marco Romanelli, Davide Castaldo, Giovanni Parolin, Alessandro Bello, Gabriel Gil, Mirko Vanzan. A Vision for the Future of Multiscale Modeling. ACS Physical Chemistry Au 2024, 4
(3)
, 202-225. https://doi.org/10.1021/acsphyschemau.3c00080
- Dominik Sidler, Thomas Schnappinger, Anatoly Obzhirov, Michael Ruggenthaler, Markus Kowalewski, Angel Rubio. Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling. The Journal of Physical Chemistry Letters 2024, 15
(19)
, 5208-5214. https://doi.org/10.1021/acs.jpclett.4c00913
- Lucia Cascino, Stefano Corni, Stefania D’Agostino. Revealing the Interplay between Hybrid and Charge-Transfer States in Polariton Chemistry. The Journal of Physical Chemistry C 2024, 128
(7)
, 2917-2927. https://doi.org/10.1021/acs.jpcc.3c06208
- Matteo Castagnola, Tor S. Haugland, Enrico Ronca, Henrik Koch, Christian Schäfer. Collective Strong Coupling Modifies Aggregation and Solvation. The Journal of Physical Chemistry Letters 2024, 15
(5)
, 1428-1434. https://doi.org/10.1021/acs.jpclett.3c03506
- Bhaskar Rana, Edward G. Hohenstein, Todd J. Martínez. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning. The Journal of Physical Chemistry A 2024, 128
(1)
, 139-151. https://doi.org/10.1021/acs.jpca.3c06607
- Michael Ruggenthaler, Dominik Sidler, Angel Rubio. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chemical Reviews 2023, 123
(19)
, 11191-11229. https://doi.org/10.1021/acs.chemrev.2c00788
- Rahul Bhuyan, Jürgen Mony, Oleg Kotov, Gabriel W. Castellanos, Jaime Gómez Rivas, Timur O. Shegai, Karl Börjesson. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chemical Reviews 2023, 123
(18)
, 10877-10919. https://doi.org/10.1021/acs.chemrev.2c00895
- Arkajit Mandal, Michael A.D. Taylor, Braden M. Weight, Eric R. Koessler, Xinyang Li, Pengfei Huo. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chemical Reviews 2023, 123
(16)
, 9786-9879. https://doi.org/10.1021/acs.chemrev.2c00855
- Denis G. Baranov, Christian Schäfer, Maxim V. Gorkunov. Toward Molecular Chiral Polaritons. ACS Photonics 2023, 10
(8)
, 2440-2455. https://doi.org/10.1021/acsphotonics.2c02011
- Braden M. Weight, Todd D. Krauss, Pengfei Huo. Investigating Molecular Exciton Polaritons Using Ab Initio Cavity Quantum Electrodynamics. The Journal of Physical Chemistry Letters 2023, 14
(25)
, 5901-5913. https://doi.org/10.1021/acs.jpclett.3c01294
- Deping Hu, Pengfei Huo. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. Journal of Chemical Theory and Computation 2023, 19
(8)
, 2353-2368. https://doi.org/10.1021/acs.jctc.3c00137
- Christian Schäfer, Denis G. Baranov. Chiral Polaritonics: Analytical Solutions, Intuition, and Use. The Journal of Physical Chemistry Letters 2023, 14
(15)
, 3777-3784. https://doi.org/10.1021/acs.jpclett.3c00286
- Tao E. Li, Sharon Hammes-Schiffer. QM/MM Modeling of Vibrational Polariton Induced Energy Transfer and Chemical Dynamics. Journal of the American Chemical Society 2023, 145
(1)
, 377-384. https://doi.org/10.1021/jacs.2c10170
- Christian Schäfer. Polaritonic Chemistry from First Principles via Embedding Radiation Reaction. The Journal of Physical Chemistry Letters 2022, 13
(30)
, 6905-6911. https://doi.org/10.1021/acs.jpclett.2c01169
- Anton Matthijs Berghuis, Ruth H. Tichauer, Lianne M. A. de Jong, Ilia Sokolovskii, Ping Bai, Mohammad Ramezani, Shunsuke Murai, Gerrit Groenhof, Jaime Gómez Rivas. Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays. ACS Photonics 2022, 9
(7)
, 2263-2272. https://doi.org/10.1021/acsphotonics.2c00007
- Ruth H. Tichauer, Dmitry Morozov, Ilia Sokolovskii, J. Jussi Toppari, Gerrit Groenhof. Identifying Vibrations that Control Non-adiabatic Relaxation of Polaritons in Strongly Coupled Molecule–Cavity Systems. The Journal of Physical Chemistry Letters 2022, 13
(27)
, 6259-6267. https://doi.org/10.1021/acs.jpclett.2c00826
- Tao E. Li, Zhen Tao, Sharon Hammes-Schiffer. Semiclassical Real-Time Nuclear-Electronic Orbital Dynamics for Molecular Polaritons: Unified Theory of Electronic and Vibrational Strong Couplings. Journal of Chemical Theory and Computation 2022, 18
(5)
, 2774-2784. https://doi.org/10.1021/acs.jctc.2c00096
- Derek S. Wang, Tomáš Neuman, Susanne F. Yelin, Johannes Flick. Cavity-Modified Unimolecular Dissociation Reactions via Intramolecular Vibrational Energy Redistribution. The Journal of Physical Chemistry Letters 2022, 13
(15)
, 3317-3324. https://doi.org/10.1021/acs.jpclett.2c00558
- Jacopo Fregoni, Francisco J. Garcia-Vidal, Johannes Feist. Theoretical Challenges in Polaritonic Chemistry. ACS Photonics 2022, 9
(4)
, 1096-1107. https://doi.org/10.1021/acsphotonics.1c01749
- Milo Baraclough, Ian R. Hooper, William L. Barnes. Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics 2021, 8
(10)
, 2997-3003. https://doi.org/10.1021/acsphotonics.1c00931
- Dominik Sidler, Christian Schäfer, Michael Ruggenthaler, Angel Rubio. Polaritonic Chemistry: Collective Strong Coupling Implies Strong Local Modification of Chemical Properties. The Journal of Physical Chemistry Letters 2021, 12
(1)
, 508-516. https://doi.org/10.1021/acs.jpclett.0c03436
- Iris Theophilou, Markus Penz, Michael Ruggenthaler, Angel Rubio. Virial Relations for Electrons Coupled to Quantum Field Modes. Journal of Chemical Theory and Computation 2020, 16
(10)
, 6236-6243. https://doi.org/10.1021/acs.jctc.0c00618
- Dominik Sidler, Michael Ruggenthaler, Heiko Appel, Angel Rubio. Chemistry in Quantum Cavities: Exact Results, the Impact of Thermal Velocities, and Modified Dissociation. The Journal of Physical Chemistry Letters 2020, 11
(18)
, 7525-7530. https://doi.org/10.1021/acs.jpclett.0c01556
- Kishan S. Menghrajani, William L. Barnes. Strong Coupling beyond the Light-Line. ACS Photonics 2020, 7
(9)
, 2448-2459. https://doi.org/10.1021/acsphotonics.0c00552
- Florian Buchholz, Iris Theophilou, Klaas J. H. Giesbertz, Michael Ruggenthaler, Angel Rubio. Light–Matter Hybrid-Orbital-Based First-Principles Methods: The Influence of Polariton Statistics. Journal of Chemical Theory and Computation 2020, 16
(9)
, 5601-5620. https://doi.org/10.1021/acs.jctc.0c00469
- Kalaivanan Nagarajan, Jino George, Anoop Thomas, Eloise Devaux, Thibault Chervy, Stefano Azzini, Kripa Joseph, Abdelaziz Jouaiti, Mir W. Hosseini, Anil Kumar, Cyriaque Genet, Nicola Bartolo, Cristiano Ciuti, Thomas W. Ebbesen. Conductivity and Photoconductivity of a p-Type Organic Semiconductor under Ultrastrong Coupling. ACS Nano 2020, 14
(8)
, 10219-10225. https://doi.org/10.1021/acsnano.0c03496
- Arkajit Mandal, Todd D. Krauss, Pengfei Huo. Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics. The Journal of Physical Chemistry B 2020, 124
(29)
, 6321-6340. https://doi.org/10.1021/acs.jpcb.0c03227
- Anton Matthijs Berghuis, Vincent Serpenti, Mohammad Ramezani, Shaojun Wang, Jaime Gómez Rivas. Light–Matter Coupling Strength Controlled by the Orientation of Organic Crystals in Plasmonic Cavities. The Journal of Physical Chemistry C 2020, 124
(22)
, 12030-12038. https://doi.org/10.1021/acs.jpcc.0c00692
- Christian Schäfer, Michael Ruggenthaler, Vasil Rokaj, Angel Rubio. Relevance of the Quadratic Diamagnetic and Self-Polarization Terms in Cavity Quantum Electrodynamics. ACS Photonics 2020, 7
(4)
, 975-990. https://doi.org/10.1021/acsphotonics.9b01649
- Mohammad Ramezani, Alexei Halpin, Shaojun Wang, Matthijs Berghuis, Jaime Gómez Rivas. Ultrafast Dynamics of Nonequilibrium Organic Exciton–Polariton Condensates. Nano Letters 2019, 19
(12)
, 8590-8596. https://doi.org/10.1021/acs.nanolett.9b03139
- Florian Buchholz, Iris Theophilou, Soeren E. B. Nielsen, Michael Ruggenthaler, Angel Rubio. Reduced Density-Matrix Approach to Strong Matter-Photon Interaction. ACS Photonics 2019, 6
(11)
, 2694-2711. https://doi.org/10.1021/acsphotonics.9b00648
- Inga S. Ulusoy, Johana A. Gomez, Oriol Vendrell. Modifying the Nonradiative Decay Dynamics through Conical Intersections via Collective Coupling to a Cavity Mode. The Journal of Physical Chemistry A 2019, 123
(41)
, 8832-8844. https://doi.org/10.1021/acs.jpca.9b07404
- Arkajit Mandal, Pengfei Huo. Investigating New Reactivities Enabled by Polariton Photochemistry. The Journal of Physical Chemistry Letters 2019, 10
(18)
, 5519-5529. https://doi.org/10.1021/acs.jpclett.9b01599
- Gerrit Groenhof, Clàudia Climent, Johannes Feist, Dmitry Morozov, J. Jussi Toppari. Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations. The Journal of Physical Chemistry Letters 2019, 10
(18)
, 5476-5483. https://doi.org/10.1021/acs.jpclett.9b02192
- Tamás Szidarovszky, Gábor J. Halász, Attila G. Császár, Lorenz S. Cederbaum, Ágnes Vibók. Conical Intersections Induced by Quantum Light: Field-Dressed Spectra from the Weak to the Ultrastrong Coupling Regimes. The Journal of Physical Chemistry Letters 2018, 9
(21)
, 6215-6223. https://doi.org/10.1021/acs.jpclett.8b02609
- Gerrit Groenhof, J. Jussi Toppari. Coherent Light Harvesting through Strong Coupling to Confined Light. The Journal of Physical Chemistry Letters 2018, 9
(17)
, 4848-4851. https://doi.org/10.1021/acs.jpclett.8b02032
- Rachel Crespo-Otero, Mario Barbatti. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chemical Reviews 2018, 118
(15)
, 7026-7068. https://doi.org/10.1021/acs.chemrev.7b00577
- Johannes Feist, Javier Galego, and Francisco J. Garcia-Vidal . Polaritonic Chemistry with Organic Molecules. ACS Photonics 2018, 5
(1)
, 205-216. https://doi.org/10.1021/acsphotonics.7b00680
- Juan B. Pérez-Sánchez, Arghadip Koner, Sricharan Raghavan-Chitra, Joel Yuen-Zhou. CUT-E as a 1/
N
expansion for multiscale molecular polariton dynamics. The Journal of Chemical Physics 2025, 162
(6)
https://doi.org/10.1063/5.0244452
- Dipti Jasrasaria, Arkajit Mandal, David R. Reichman, Timothy C. Berkelbach. Simulating anharmonic vibrational polaritons beyond the long wavelength approximation. The Journal of Chemical Physics 2025, 162
(1)
https://doi.org/10.1063/5.0235584
- M. Elious Mondal, A. Nickolas Vamivakas, Steven T. Cundiff, Todd D. Krauss, Pengfei Huo. Polariton spectra under the collective coupling regime. I. Efficient simulation of linear spectra and quantum dynamics. The Journal of Chemical Physics 2025, 162
(1)
https://doi.org/10.1063/5.0243535
- Felipe Herrera, William L. Barnes. Multiple interacting photonic modes in strongly coupled organic microcavities. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2024, 382
(2287)
https://doi.org/10.1098/rsta.2023.0343
- Jun Zhang, Shaohong Wang, Mengdi Guo, Xin-Ke Li, Yong-Chen Xiong, Wanghuai Zhou. Photon-mediated energy transfer between molecules and atoms in a cavity: A numerical study. The Journal of Chemical Physics 2024, 161
(24)
https://doi.org/10.1063/5.0242420
- Arpan Dutta, Ville Tiainen, Ilia Sokolovskii, Luís Duarte, Nemanja Markešević, Dmitry Morozov, Hassan A. Qureshi, Siim Pikker, Gerrit Groenhof, J. Jussi Toppari. Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime. Nature Communications 2024, 15
(1)
https://doi.org/10.1038/s41467-024-50532-5
- Lea Maria Ibele, Eduarda Sangiogo Gil, Evaristo Villaseco Arribas, Federica Agostini. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Physical Chemistry Chemical Physics 2024, 26
(42)
, 26693-26718. https://doi.org/10.1039/D4CP02489C
- Richard Einsele, Luca Nils Philipp, Roland Mitrić. FMO-LC-TDDFTB method for excited states of large molecular assemblies in the strong light-matter coupling regime. The Journal of Chemical Physics 2024, 161
(15)
https://doi.org/10.1063/5.0231191
- Ilia Sokolovskii, Dmitry Morozov, Gerrit Groenhof. One molecule to couple them all: Toward realistic numbers of molecules in multiscale molecular dynamics simulations of exciton-polaritons. The Journal of Chemical Physics 2024, 161
(13)
https://doi.org/10.1063/5.0227515
- Matteo Castagnola, Marcus T. Lexander, Enrico Ronca, Henrik Koch. Strong coupling electron-photon dynamics: A real-time investigation of energy redistribution in molecular polaritons. Physical Review Research 2024, 6
(3)
https://doi.org/10.1103/PhysRevResearch.6.033283
- Eduarda Sangiogo Gil, David Lauvergnat, Federica Agostini. Exact factorization of the photon–electron–nuclear wavefunction: Formulation and coupled-trajectory dynamics. The Journal of Chemical Physics 2024, 161
(8)
https://doi.org/10.1063/5.0224779
- Csaba Fábri. Practical guide to the statistical mechanics of molecular polaritons. Molecular Physics 2024, 122
(15-16)
https://doi.org/10.1080/00268976.2023.2272691
- Priyam Kumar De, Amber Jain. Exciton energy transfer inside cavity—A benchmark study of polaritonic dynamics using the surface hopping method. The Journal of Chemical Physics 2024, 161
(5)
https://doi.org/10.1063/5.0216787
- Vladislav Buravets, Oleg Gorin, Vasilii Burtsev, Anna Zabelina, Denis Zabelin, Jiri Kosina, Jaroslav Maixner, Vaclav Svorcik, Alexander A. Kolganov, Evgeny A. Pidko, Oleksiy Lyutakov. Plasmon‐Mediated Organic Photoelectrochemistry Applied to Amination Reactions. ChemPlusChem 2024, 89
(8)
https://doi.org/10.1002/cplu.202400020
- Ilia Sokolovskii, Gerrit Groenhof. Photochemical initiation of polariton-mediated exciton propagation. Nanophotonics 2024, 13
(14)
, 2687-2694. https://doi.org/10.1515/nanoph-2023-0684
- Csaba Fábri, András Csehi, Gábor J. Halász, Lorenz S. Cederbaum, Ágnes Vibók. Classical and quantum light-induced non-adiabaticity in molecular systems. AVS Quantum Science 2024, 6
(2)
https://doi.org/10.1116/5.0191522
- In Seong Lee, Michael Filatov, Seung Kyu Min. Formulation of transition dipole gradients for non-adiabatic dynamics with polaritonic states. The Journal of Chemical Physics 2024, 160
(15)
https://doi.org/10.1063/5.0202095
- Ilia Sokolovskii, Gerrit Groenhof. Non-Hermitian molecular dynamics simulations of exciton–polaritons in lossy cavities. The Journal of Chemical Physics 2024, 160
(9)
https://doi.org/10.1063/5.0188613
- Juan B. Pérez-Sánchez, Federico Mellini, Noel C. Giebink, Joel Yuen-Zhou. Collective polaritonic effects on chemical dynamics suppressed by disorder. Physical Review Research 2024, 6
(1)
https://doi.org/10.1103/PhysRevResearch.6.013222
- Matteo Castagnola, Rosario Roberto Riso, Alberto Barlini, Enrico Ronca, Henrik Koch. Polaritonic response theory for exact and approximate wave functions. WIREs Computational Molecular Science 2024, 14
(1)
https://doi.org/10.1002/wcms.1684
- Jacopo Fregoni. Advances in polaritonic photochemistry. 2023, 331-360. https://doi.org/10.1039/BK9781837672301-00331
- Mert Sagiroglugil, Fatih Yasar. Catalytic Reaction Mechanism of Bacterial GH92 α‐1,2‐Mannosidase: A QM/MM Metadynamics Study. ChemPhysChem 2023, 24
(24)
https://doi.org/10.1002/cphc.202300628
- Ilia Sokolovskii, Ruth H. Tichauer, Dmitry Morozov, Johannes Feist, Gerrit Groenhof. Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-42067-y
- Braden M. Weight, Xinyang Li, Yu Zhang. Theory and modeling of light-matter interactions in chemistry: current and future. Physical Chemistry Chemical Physics 2023, 25
(46)
, 31554-31577. https://doi.org/10.1039/D3CP01415K
- Ruth H. Tichauer, Ilia Sokolovskii, Gerrit Groenhof. Tuning the Coherent Propagation of Organic Exciton‐Polaritons through the Cavity Q‐factor. Advanced Science 2023, 10
(33)
https://doi.org/10.1002/advs.202302650
- Evaristo Villaseco Arribas, Patricia Vindel-Zandbergen, Saswata Roy, Neepa T. Maitra. Different flavors of exact-factorization-based mixed quantum-classical methods for multistate dynamics. Physical Chemistry Chemical Physics 2023, 25
(38)
, 26380-26395. https://doi.org/10.1039/D3CP03464J
- WanZhen Liang, Jiaquan Huang, Jin Sun, Pengcheng Zhang, Akang Li. Multiscale modeling and simulation of surface‐enhanced spectroscopy and plasmonic photocatalysis. WIREs Computational Molecular Science 2023, 13
(5)
https://doi.org/10.1002/wcms.1665
- Christoph P. Theurer, Florian Laible, Jia Tang, Katharina Broch, Monika Fleischer, Frank Schreiber. Strong light–matter coupling in pentacene thin films on plasmonic arrays. Nanoscale 2023, 15
(27)
, 11707-11713. https://doi.org/10.1039/D3NR01108A
- Bingyu Cui, Maxim Sukharev, Abraham Nitzan. Comparing semiclassical mean-field and 1-exciton approximations in evaluating optical response under strong light–matter coupling conditions. The Journal of Chemical Physics 2023, 158
(16)
https://doi.org/10.1063/5.0146984
- Juan B. Pérez-Sánchez, Arghadip Koner, Nathaniel P. Stern, Joel Yuen-Zhou. Simulating molecular polaritons in the collective regime using few-molecule models. Proceedings of the National Academy of Sciences 2023, 120
(15)
https://doi.org/10.1073/pnas.2219223120
- Jiaqi Bai, Zixin Wang, Chengjian Zhong, Shaojie Hou, Jiaqi Lian, Qiankang Si, Feng Gao, Feng Zhang. Vibrational coupling with O–H stretching increases catalytic efficiency of sucrase in Fabry–Pérot microcavity. Biochemical and Biophysical Research Communications 2023, 652 , 31-34. https://doi.org/10.1016/j.bbrc.2023.02.025
- Daniel Finkelstein-Shapiro, Pierre-Adrien Mante, Sinan Balci, Donatas Zigmantas, Tõnu Pullerits. Non-Hermitian Hamiltonians for linear and nonlinear optical response: A model for plexcitons. The Journal of Chemical Physics 2023, 158
(10)
https://doi.org/10.1063/5.0130287
- Maxim Sukharev. Efficient parallel strategy for molecular plasmonics – A numerical tool for integrating Maxwell-Schrödinger equations in three dimensions. Journal of Computational Physics 2023, 477 , 111920. https://doi.org/10.1016/j.jcp.2023.111920
- Maxim Sukharev, Joseph Subotnik, Abraham Nitzan. Dissociation slowdown by collective optical response under strong coupling conditions. The Journal of Chemical Physics 2023, 158
(8)
https://doi.org/10.1063/5.0133972
- Jacopo Fregoni, Stefano Corni. Polaritonic chemistry. 2023, 191-211. https://doi.org/10.1016/B978-0-323-91738-4.00004-X
- Tao E. Li, Abraham Nitzan, Joseph E. Subotnik. Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping. Nature Communications 2022, 13
(1)
https://doi.org/10.1038/s41467-022-31703-8
- David Wellnitz, Guido Pupillo, Johannes Schachenmayer. Disorder enhanced vibrational entanglement and dynamics in polaritonic chemistry. Communications Physics 2022, 5
(1)
https://doi.org/10.1038/s42005-022-00892-5
- Deping Hu, Arkajit Mandal, Braden M. Weight, Pengfei Huo. Quasi-diabatic propagation scheme for simulating polariton chemistry. The Journal of Chemical Physics 2022, 157
(19)
https://doi.org/10.1063/5.0127118
- Bingyu Cui, Abraham Nizan. Collective response in light–matter interactions: The interplay between strong coupling and local dynamics. The Journal of Chemical Physics 2022, 157
(11)
https://doi.org/10.1063/5.0101528
- Wanghuai Zhou, Deping Hu, Arkajit Mandal, Pengfei Huo. Nuclear gradient expressions for molecular cavity quantum electrodynamics simulations using mixed quantum-classical methods. The Journal of Chemical Physics 2022, 157
(10)
https://doi.org/10.1063/5.0109395
- Dominik Sidler, Michael Ruggenthaler, Christian Schäfer, Enrico Ronca, Angel Rubio. A perspective on
ab initio
modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity. The Journal of Chemical Physics 2022, 156
(23)
https://doi.org/10.1063/5.0094956
- Fatemeh Molaei. Understanding the Anisotropic Mechanical Behavior of Single‐Crystalline Alpha Quartz From the Insight of Molecular Dynamics. Journal of Geophysical Research: Solid Earth 2022, 127
(6)
https://doi.org/10.1029/2021JB023681
- Tao E. Li, Bingyu Cui, Joseph E. Subotnik, Abraham Nitzan. Molecular Polaritonics: Chemical Dynamics Under Strong Light–Matter Coupling. Annual Review of Physical Chemistry 2022, 73
(1)
, 43-71. https://doi.org/10.1146/annurev-physchem-090519-042621
- Tao E. Li, Abraham Nitzan, Joseph E. Subotnik. Polariton relaxation under vibrational strong coupling: Comparing cavity molecular dynamics simulations against Fermi’s golden rule rate. The Journal of Chemical Physics 2022, 156
(13)
https://doi.org/10.1063/5.0079784
- Emiliano Cortés, Roland Grzeschik, Stefan A. Maier, Sebastian Schlücker. Experimental characterization techniques for plasmon-assisted chemistry. Nature Reviews Chemistry 2022, 6
(4)
, 259-274. https://doi.org/10.1038/s41570-022-00368-8
- Junjie Yang, Zheng Pei, Erick Calderon Leon, Carly Wickizer, Binbin Weng, Yuezhi Mao, Qi Ou, Yihan Shao. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. The Journal of Chemical Physics 2022, 156
(12)
https://doi.org/10.1063/5.0082386
- Jin Sun, Zongling Ding, Yuanqin Yu, Chuanmei Xie. A Theoretical Investigation about Photoswitching of Azobenzene Adsorbed on Ag Nanoparticles. Crystals 2022, 12
(2)
, 248. https://doi.org/10.3390/cryst12020248
- Jin Sun, ZongLing Ding, YuanQin Yu, WanZhen Liang. Nonlinear features of Fano resonance: a QM/EM study. Physical Chemistry Chemical Physics 2021, 23
(30)
, 15994-16004. https://doi.org/10.1039/D1CP02459K
- Victoria Esteso, Laura Caliò, Hilario Espinós, Giulia Lavarda, Tomás Torres, Johannes Feist, Francisco J. García-Vidal, Giovanni Bottari, Hernán Míguez. Light‐Harvesting Properties of a Subphthalocyanine Solar Absorber Coupled to an Optical Cavity. Solar RRL 2021, 5
(8)
https://doi.org/10.1002/solr.202100308
- E. Hulkko, S. Pikker, V. Tiainen, R. H. Tichauer, G. Groenhof, J. J. Toppari. Effect of molecular Stokes shift on polariton dynamics. The Journal of Chemical Physics 2021, 154
(15)
https://doi.org/10.1063/5.0037896
- C. Climent, F. J. Garcia-Vidal, J. Feist. Cavity-modified Chemistry: Towards Vacuum-field Catalysis. 2021, 343-393. https://doi.org/10.1039/9781839163043-00343
- Ruth H. Tichauer, Johannes Feist, Gerrit Groenhof. Multi-scale dynamics simulations of molecular polaritons: The effect of multiple cavity modes on polariton relaxation. The Journal of Chemical Physics 2021, 154
(10)
https://doi.org/10.1063/5.0037868
- Tao E. Li, Abraham Nitzan, Joseph E. Subotnik. Cavity molecular dynamics simulations of vibrational polariton-enhanced molecular nonlinear absorption. The Journal of Chemical Physics 2021, 154
(9)
https://doi.org/10.1063/5.0037623
- Jakub Fojt, Tuomas P. Rossi, Tomasz J. Antosiewicz, Mikael Kuisma, Paul Erhart. Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling. The Journal of Chemical Physics 2021, 154
(9)
https://doi.org/10.1063/5.0037853
- Tamás Szidarovszky, Péter Badankó, Gábor J. Halász, Ágnes Vibók. Nonadiabatic phenomena in molecular vibrational polaritons. The Journal of Chemical Physics 2021, 154
(6)
https://doi.org/10.1063/5.0033338
- Csaba Fábri, Gábor J. Halász, Lorenz S. Cederbaum, Ágnes Vibók. Born–Oppenheimer approximation in optical cavities: from success to breakdown. Chemical Science 2021, 12
(4)
, 1251-1258. https://doi.org/10.1039/D0SC05164K
- Hiro Minamimoto, Fumiya Kato, Kei Murakoshi. Surface‐enhanced Raman scattering probe for molecules strongly coupled with localized surface plasmon under electrochemical potential control. Journal of Raman Spectroscopy 2021, 52
(2)
, 431-438. https://doi.org/10.1002/jrs.6004
- Eric Davidsson, Markus Kowalewski. Simulating photodissociation reactions in bad cavities with the Lindblad equation. The Journal of Chemical Physics 2020, 153
(23)
https://doi.org/10.1063/5.0033773
- Csaba Fábri, Benjamin Lasorne, Gábor J. Halász, Lorenz S. Cederbaum, Ágnes Vibók. Quantum light-induced nonadiabatic phenomena in the absorption spectrum of formaldehyde: Full- and reduced-dimensionality studies. The Journal of Chemical Physics 2020, 153
(23)
https://doi.org/10.1063/5.0035870
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.