ACS Publications. Most Trusted. Most Cited. Most Read
Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry
My Activity

Figure 1Loading Img
    Article

    Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, and Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
    § Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2017, 13, 9, 4324–4335
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.7b00388
    Published July 27, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.7b00388.

    • Force field parameters for the Rhodamine model, plots comparing the predicted transition dipole moment to the ab initio dipole moment and 100 fs dynamics of the lower polariton with 8 Rhodamine molecules plus solvent inside the cavity (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 139 publications.

    1. Maxim Sukharev, Joseph E. Subotnik, Abraham Nitzan. Unveiling the Dance of Molecules: Rovibrational Dynamics of Molecules under Intense Illumination at Complex Plasmonic Interfaces. Journal of Chemical Theory and Computation 2025, 21 (5) , 2165-2178. https://doi.org/10.1021/acs.jctc.4c01652
    2. Bing Gu. Toward Collective Chemistry under Strong Light-Matter Coupling. The Journal of Physical Chemistry Letters 2025, 16 (1) , 317-323. https://doi.org/10.1021/acs.jpclett.4c02896
    3. Tao E. Li. Mesoscale Molecular Simulations of Fabry–Pérot Vibrational Strong Coupling. Journal of Chemical Theory and Computation 2024, 20 (16) , 7016-7031. https://doi.org/10.1021/acs.jctc.4c00349
    4. Matteo Capone, Marco Romanelli, Davide Castaldo, Giovanni Parolin, Alessandro Bello, Gabriel Gil, Mirko Vanzan. A Vision for the Future of Multiscale Modeling. ACS Physical Chemistry Au 2024, 4 (3) , 202-225. https://doi.org/10.1021/acsphyschemau.3c00080
    5. Dominik Sidler, Thomas Schnappinger, Anatoly Obzhirov, Michael Ruggenthaler, Markus Kowalewski, Angel Rubio. Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling. The Journal of Physical Chemistry Letters 2024, 15 (19) , 5208-5214. https://doi.org/10.1021/acs.jpclett.4c00913
    6. Lucia Cascino, Stefano Corni, Stefania D’Agostino. Revealing the Interplay between Hybrid and Charge-Transfer States in Polariton Chemistry. The Journal of Physical Chemistry C 2024, 128 (7) , 2917-2927. https://doi.org/10.1021/acs.jpcc.3c06208
    7. Matteo Castagnola, Tor S. Haugland, Enrico Ronca, Henrik Koch, Christian Schäfer. Collective Strong Coupling Modifies Aggregation and Solvation. The Journal of Physical Chemistry Letters 2024, 15 (5) , 1428-1434. https://doi.org/10.1021/acs.jpclett.3c03506
    8. Bhaskar Rana, Edward G. Hohenstein, Todd J. Martínez. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning. The Journal of Physical Chemistry A 2024, 128 (1) , 139-151. https://doi.org/10.1021/acs.jpca.3c06607
    9. Michael Ruggenthaler, Dominik Sidler, Angel Rubio. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chemical Reviews 2023, 123 (19) , 11191-11229. https://doi.org/10.1021/acs.chemrev.2c00788
    10. Rahul Bhuyan, Jürgen Mony, Oleg Kotov, Gabriel W. Castellanos, Jaime Gómez Rivas, Timur O. Shegai, Karl Börjesson. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chemical Reviews 2023, 123 (18) , 10877-10919. https://doi.org/10.1021/acs.chemrev.2c00895
    11. Arkajit Mandal, Michael A.D. Taylor, Braden M. Weight, Eric R. Koessler, Xinyang Li, Pengfei Huo. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chemical Reviews 2023, 123 (16) , 9786-9879. https://doi.org/10.1021/acs.chemrev.2c00855
    12. Denis G. Baranov, Christian Schäfer, Maxim V. Gorkunov. Toward Molecular Chiral Polaritons. ACS Photonics 2023, 10 (8) , 2440-2455. https://doi.org/10.1021/acsphotonics.2c02011
    13. Braden M. Weight, Todd D. Krauss, Pengfei Huo. Investigating Molecular Exciton Polaritons Using Ab Initio Cavity Quantum Electrodynamics. The Journal of Physical Chemistry Letters 2023, 14 (25) , 5901-5913. https://doi.org/10.1021/acs.jpclett.3c01294
    14. Deping Hu, Pengfei Huo. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. Journal of Chemical Theory and Computation 2023, 19 (8) , 2353-2368. https://doi.org/10.1021/acs.jctc.3c00137
    15. Christian Schäfer, Denis G. Baranov. Chiral Polaritonics: Analytical Solutions, Intuition, and Use. The Journal of Physical Chemistry Letters 2023, 14 (15) , 3777-3784. https://doi.org/10.1021/acs.jpclett.3c00286
    16. Tao E. Li, Sharon Hammes-Schiffer. QM/MM Modeling of Vibrational Polariton Induced Energy Transfer and Chemical Dynamics. Journal of the American Chemical Society 2023, 145 (1) , 377-384. https://doi.org/10.1021/jacs.2c10170
    17. Christian Schäfer. Polaritonic Chemistry from First Principles via Embedding Radiation Reaction. The Journal of Physical Chemistry Letters 2022, 13 (30) , 6905-6911. https://doi.org/10.1021/acs.jpclett.2c01169
    18. Anton Matthijs Berghuis, Ruth H. Tichauer, Lianne M. A. de Jong, Ilia Sokolovskii, Ping Bai, Mohammad Ramezani, Shunsuke Murai, Gerrit Groenhof, Jaime Gómez Rivas. Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays. ACS Photonics 2022, 9 (7) , 2263-2272. https://doi.org/10.1021/acsphotonics.2c00007
    19. Ruth H. Tichauer, Dmitry Morozov, Ilia Sokolovskii, J. Jussi Toppari, Gerrit Groenhof. Identifying Vibrations that Control Non-adiabatic Relaxation of Polaritons in Strongly Coupled Molecule–Cavity Systems. The Journal of Physical Chemistry Letters 2022, 13 (27) , 6259-6267. https://doi.org/10.1021/acs.jpclett.2c00826
    20. Tao E. Li, Zhen Tao, Sharon Hammes-Schiffer. Semiclassical Real-Time Nuclear-Electronic Orbital Dynamics for Molecular Polaritons: Unified Theory of Electronic and Vibrational Strong Couplings. Journal of Chemical Theory and Computation 2022, 18 (5) , 2774-2784. https://doi.org/10.1021/acs.jctc.2c00096
    21. Derek S. Wang, Tomáš Neuman, Susanne F. Yelin, Johannes Flick. Cavity-Modified Unimolecular Dissociation Reactions via Intramolecular Vibrational Energy Redistribution. The Journal of Physical Chemistry Letters 2022, 13 (15) , 3317-3324. https://doi.org/10.1021/acs.jpclett.2c00558
    22. Jacopo Fregoni, Francisco J. Garcia-Vidal, Johannes Feist. Theoretical Challenges in Polaritonic Chemistry. ACS Photonics 2022, 9 (4) , 1096-1107. https://doi.org/10.1021/acsphotonics.1c01749
    23. Milo Baraclough, Ian R. Hooper, William L. Barnes. Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics 2021, 8 (10) , 2997-3003. https://doi.org/10.1021/acsphotonics.1c00931
    24. Dominik Sidler, Christian Schäfer, Michael Ruggenthaler, Angel Rubio. Polaritonic Chemistry: Collective Strong Coupling Implies Strong Local Modification of Chemical Properties. The Journal of Physical Chemistry Letters 2021, 12 (1) , 508-516. https://doi.org/10.1021/acs.jpclett.0c03436
    25. Iris Theophilou, Markus Penz, Michael Ruggenthaler, Angel Rubio. Virial Relations for Electrons Coupled to Quantum Field Modes. Journal of Chemical Theory and Computation 2020, 16 (10) , 6236-6243. https://doi.org/10.1021/acs.jctc.0c00618
    26. Dominik Sidler, Michael Ruggenthaler, Heiko Appel, Angel Rubio. Chemistry in Quantum Cavities: Exact Results, the Impact of Thermal Velocities, and Modified Dissociation. The Journal of Physical Chemistry Letters 2020, 11 (18) , 7525-7530. https://doi.org/10.1021/acs.jpclett.0c01556
    27. Kishan S. Menghrajani, William L. Barnes. Strong Coupling beyond the Light-Line. ACS Photonics 2020, 7 (9) , 2448-2459. https://doi.org/10.1021/acsphotonics.0c00552
    28. Florian Buchholz, Iris Theophilou, Klaas J. H. Giesbertz, Michael Ruggenthaler, Angel Rubio. Light–Matter Hybrid-Orbital-Based First-Principles Methods: The Influence of Polariton Statistics. Journal of Chemical Theory and Computation 2020, 16 (9) , 5601-5620. https://doi.org/10.1021/acs.jctc.0c00469
    29. Kalaivanan Nagarajan, Jino George, Anoop Thomas, Eloise Devaux, Thibault Chervy, Stefano Azzini, Kripa Joseph, Abdelaziz Jouaiti, Mir W. Hosseini, Anil Kumar, Cyriaque Genet, Nicola Bartolo, Cristiano Ciuti, Thomas W. Ebbesen. Conductivity and Photoconductivity of a p-Type Organic Semiconductor under Ultrastrong Coupling. ACS Nano 2020, 14 (8) , 10219-10225. https://doi.org/10.1021/acsnano.0c03496
    30. Arkajit Mandal, Todd D. Krauss, Pengfei Huo. Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics. The Journal of Physical Chemistry B 2020, 124 (29) , 6321-6340. https://doi.org/10.1021/acs.jpcb.0c03227
    31. Anton Matthijs Berghuis, Vincent Serpenti, Mohammad Ramezani, Shaojun Wang, Jaime Gómez Rivas. Light–Matter Coupling Strength Controlled by the Orientation of Organic Crystals in Plasmonic Cavities. The Journal of Physical Chemistry C 2020, 124 (22) , 12030-12038. https://doi.org/10.1021/acs.jpcc.0c00692
    32. Christian Schäfer, Michael Ruggenthaler, Vasil Rokaj, Angel Rubio. Relevance of the Quadratic Diamagnetic and Self-Polarization Terms in Cavity Quantum Electrodynamics. ACS Photonics 2020, 7 (4) , 975-990. https://doi.org/10.1021/acsphotonics.9b01649
    33. Mohammad Ramezani, Alexei Halpin, Shaojun Wang, Matthijs Berghuis, Jaime Gómez Rivas. Ultrafast Dynamics of Nonequilibrium Organic Exciton–Polariton Condensates. Nano Letters 2019, 19 (12) , 8590-8596. https://doi.org/10.1021/acs.nanolett.9b03139
    34. Florian Buchholz, Iris Theophilou, Soeren E. B. Nielsen, Michael Ruggenthaler, Angel Rubio. Reduced Density-Matrix Approach to Strong Matter-Photon Interaction. ACS Photonics 2019, 6 (11) , 2694-2711. https://doi.org/10.1021/acsphotonics.9b00648
    35. Inga S. Ulusoy, Johana A. Gomez, Oriol Vendrell. Modifying the Nonradiative Decay Dynamics through Conical Intersections via Collective Coupling to a Cavity Mode. The Journal of Physical Chemistry A 2019, 123 (41) , 8832-8844. https://doi.org/10.1021/acs.jpca.9b07404
    36. Arkajit Mandal, Pengfei Huo. Investigating New Reactivities Enabled by Polariton Photochemistry. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5519-5529. https://doi.org/10.1021/acs.jpclett.9b01599
    37. Gerrit Groenhof, Clàudia Climent, Johannes Feist, Dmitry Morozov, J. Jussi Toppari. Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5476-5483. https://doi.org/10.1021/acs.jpclett.9b02192
    38. Tamás Szidarovszky, Gábor J. Halász, Attila G. Császár, Lorenz S. Cederbaum, Ágnes Vibók. Conical Intersections Induced by Quantum Light: Field-Dressed Spectra from the Weak to the Ultrastrong Coupling Regimes. The Journal of Physical Chemistry Letters 2018, 9 (21) , 6215-6223. https://doi.org/10.1021/acs.jpclett.8b02609
    39. Gerrit Groenhof, J. Jussi Toppari. Coherent Light Harvesting through Strong Coupling to Confined Light. The Journal of Physical Chemistry Letters 2018, 9 (17) , 4848-4851. https://doi.org/10.1021/acs.jpclett.8b02032
    40. Rachel Crespo-Otero, Mario Barbatti. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chemical Reviews 2018, 118 (15) , 7026-7068. https://doi.org/10.1021/acs.chemrev.7b00577
    41. Johannes Feist, Javier Galego, and Francisco J. Garcia-Vidal . Polaritonic Chemistry with Organic Molecules. ACS Photonics 2018, 5 (1) , 205-216. https://doi.org/10.1021/acsphotonics.7b00680
    42. Juan B. Pérez-Sánchez, Arghadip Koner, Sricharan Raghavan-Chitra, Joel Yuen-Zhou. CUT-E as a 1/ N expansion for multiscale molecular polariton dynamics. The Journal of Chemical Physics 2025, 162 (6) https://doi.org/10.1063/5.0244452
    43. Dipti Jasrasaria, Arkajit Mandal, David R. Reichman, Timothy C. Berkelbach. Simulating anharmonic vibrational polaritons beyond the long wavelength approximation. The Journal of Chemical Physics 2025, 162 (1) https://doi.org/10.1063/5.0235584
    44. M. Elious Mondal, A. Nickolas Vamivakas, Steven T. Cundiff, Todd D. Krauss, Pengfei Huo. Polariton spectra under the collective coupling regime. I. Efficient simulation of linear spectra and quantum dynamics. The Journal of Chemical Physics 2025, 162 (1) https://doi.org/10.1063/5.0243535
    45. Felipe Herrera, William L. Barnes. Multiple interacting photonic modes in strongly coupled organic microcavities. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2024, 382 (2287) https://doi.org/10.1098/rsta.2023.0343
    46. Jun Zhang, Shaohong Wang, Mengdi Guo, Xin-Ke Li, Yong-Chen Xiong, Wanghuai Zhou. Photon-mediated energy transfer between molecules and atoms in a cavity: A numerical study. The Journal of Chemical Physics 2024, 161 (24) https://doi.org/10.1063/5.0242420
    47. Arpan Dutta, Ville Tiainen, Ilia Sokolovskii, Luís Duarte, Nemanja Markešević, Dmitry Morozov, Hassan A. Qureshi, Siim Pikker, Gerrit Groenhof, J. Jussi Toppari. Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-50532-5
    48. Lea Maria Ibele, Eduarda Sangiogo Gil, Evaristo Villaseco Arribas, Federica Agostini. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Physical Chemistry Chemical Physics 2024, 26 (42) , 26693-26718. https://doi.org/10.1039/D4CP02489C
    49. Richard Einsele, Luca Nils Philipp, Roland Mitrić. FMO-LC-TDDFTB method for excited states of large molecular assemblies in the strong light-matter coupling regime. The Journal of Chemical Physics 2024, 161 (15) https://doi.org/10.1063/5.0231191
    50. Ilia Sokolovskii, Dmitry Morozov, Gerrit Groenhof. One molecule to couple them all: Toward realistic numbers of molecules in multiscale molecular dynamics simulations of exciton-polaritons. The Journal of Chemical Physics 2024, 161 (13) https://doi.org/10.1063/5.0227515
    51. Matteo Castagnola, Marcus T. Lexander, Enrico Ronca, Henrik Koch. Strong coupling electron-photon dynamics: A real-time investigation of energy redistribution in molecular polaritons. Physical Review Research 2024, 6 (3) https://doi.org/10.1103/PhysRevResearch.6.033283
    52. Eduarda Sangiogo Gil, David Lauvergnat, Federica Agostini. Exact factorization of the photon–electron–nuclear wavefunction: Formulation and coupled-trajectory dynamics. The Journal of Chemical Physics 2024, 161 (8) https://doi.org/10.1063/5.0224779
    53. Csaba Fábri. Practical guide to the statistical mechanics of molecular polaritons. Molecular Physics 2024, 122 (15-16) https://doi.org/10.1080/00268976.2023.2272691
    54. Priyam Kumar De, Amber Jain. Exciton energy transfer inside cavity—A benchmark study of polaritonic dynamics using the surface hopping method. The Journal of Chemical Physics 2024, 161 (5) https://doi.org/10.1063/5.0216787
    55. Vladislav Buravets, Oleg Gorin, Vasilii Burtsev, Anna Zabelina, Denis Zabelin, Jiri Kosina, Jaroslav Maixner, Vaclav Svorcik, Alexander A. Kolganov, Evgeny A. Pidko, Oleksiy Lyutakov. Plasmon‐Mediated Organic Photoelectrochemistry Applied to Amination Reactions. ChemPlusChem 2024, 89 (8) https://doi.org/10.1002/cplu.202400020
    56. Ilia Sokolovskii, Gerrit Groenhof. Photochemical initiation of polariton-mediated exciton propagation. Nanophotonics 2024, 13 (14) , 2687-2694. https://doi.org/10.1515/nanoph-2023-0684
    57. Csaba Fábri, András Csehi, Gábor J. Halász, Lorenz S. Cederbaum, Ágnes Vibók. Classical and quantum light-induced non-adiabaticity in molecular systems. AVS Quantum Science 2024, 6 (2) https://doi.org/10.1116/5.0191522
    58. In Seong Lee, Michael Filatov, Seung Kyu Min. Formulation of transition dipole gradients for non-adiabatic dynamics with polaritonic states. The Journal of Chemical Physics 2024, 160 (15) https://doi.org/10.1063/5.0202095
    59. Ilia Sokolovskii, Gerrit Groenhof. Non-Hermitian molecular dynamics simulations of exciton–polaritons in lossy cavities. The Journal of Chemical Physics 2024, 160 (9) https://doi.org/10.1063/5.0188613
    60. Juan B. Pérez-Sánchez, Federico Mellini, Noel C. Giebink, Joel Yuen-Zhou. Collective polaritonic effects on chemical dynamics suppressed by disorder. Physical Review Research 2024, 6 (1) https://doi.org/10.1103/PhysRevResearch.6.013222
    61. Matteo Castagnola, Rosario Roberto Riso, Alberto Barlini, Enrico Ronca, Henrik Koch. Polaritonic response theory for exact and approximate wave functions. WIREs Computational Molecular Science 2024, 14 (1) https://doi.org/10.1002/wcms.1684
    62. Jacopo Fregoni. Advances in polaritonic photochemistry. 2023, 331-360. https://doi.org/10.1039/BK9781837672301-00331
    63. Mert Sagiroglugil, Fatih Yasar. Catalytic Reaction Mechanism of Bacterial GH92 α‐1,2‐Mannosidase: A QM/MM Metadynamics Study. ChemPhysChem 2023, 24 (24) https://doi.org/10.1002/cphc.202300628
    64. Ilia Sokolovskii, Ruth H. Tichauer, Dmitry Morozov, Johannes Feist, Gerrit Groenhof. Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-42067-y
    65. Braden M. Weight, Xinyang Li, Yu Zhang. Theory and modeling of light-matter interactions in chemistry: current and future. Physical Chemistry Chemical Physics 2023, 25 (46) , 31554-31577. https://doi.org/10.1039/D3CP01415K
    66. Ruth H. Tichauer, Ilia Sokolovskii, Gerrit Groenhof. Tuning the Coherent Propagation of Organic Exciton‐Polaritons through the Cavity Q‐factor. Advanced Science 2023, 10 (33) https://doi.org/10.1002/advs.202302650
    67. Evaristo Villaseco Arribas, Patricia Vindel-Zandbergen, Saswata Roy, Neepa T. Maitra. Different flavors of exact-factorization-based mixed quantum-classical methods for multistate dynamics. Physical Chemistry Chemical Physics 2023, 25 (38) , 26380-26395. https://doi.org/10.1039/D3CP03464J
    68. WanZhen Liang, Jiaquan Huang, Jin Sun, Pengcheng Zhang, Akang Li. Multiscale modeling and simulation of surface‐enhanced spectroscopy and plasmonic photocatalysis. WIREs Computational Molecular Science 2023, 13 (5) https://doi.org/10.1002/wcms.1665
    69. Christoph P. Theurer, Florian Laible, Jia Tang, Katharina Broch, Monika Fleischer, Frank Schreiber. Strong light–matter coupling in pentacene thin films on plasmonic arrays. Nanoscale 2023, 15 (27) , 11707-11713. https://doi.org/10.1039/D3NR01108A
    70. Bingyu Cui, Maxim Sukharev, Abraham Nitzan. Comparing semiclassical mean-field and 1-exciton approximations in evaluating optical response under strong light–matter coupling conditions. The Journal of Chemical Physics 2023, 158 (16) https://doi.org/10.1063/5.0146984
    71. Juan B. Pérez-Sánchez, Arghadip Koner, Nathaniel P. Stern, Joel Yuen-Zhou. Simulating molecular polaritons in the collective regime using few-molecule models. Proceedings of the National Academy of Sciences 2023, 120 (15) https://doi.org/10.1073/pnas.2219223120
    72. Jiaqi Bai, Zixin Wang, Chengjian Zhong, Shaojie Hou, Jiaqi Lian, Qiankang Si, Feng Gao, Feng Zhang. Vibrational coupling with O–H stretching increases catalytic efficiency of sucrase in Fabry–Pérot microcavity. Biochemical and Biophysical Research Communications 2023, 652 , 31-34. https://doi.org/10.1016/j.bbrc.2023.02.025
    73. Daniel Finkelstein-Shapiro, Pierre-Adrien Mante, Sinan Balci, Donatas Zigmantas, Tõnu Pullerits. Non-Hermitian Hamiltonians for linear and nonlinear optical response: A model for plexcitons. The Journal of Chemical Physics 2023, 158 (10) https://doi.org/10.1063/5.0130287
    74. Maxim Sukharev. Efficient parallel strategy for molecular plasmonics – A numerical tool for integrating Maxwell-Schrödinger equations in three dimensions. Journal of Computational Physics 2023, 477 , 111920. https://doi.org/10.1016/j.jcp.2023.111920
    75. Maxim Sukharev, Joseph Subotnik, Abraham Nitzan. Dissociation slowdown by collective optical response under strong coupling conditions. The Journal of Chemical Physics 2023, 158 (8) https://doi.org/10.1063/5.0133972
    76. Jacopo Fregoni, Stefano Corni. Polaritonic chemistry. 2023, 191-211. https://doi.org/10.1016/B978-0-323-91738-4.00004-X
    77. Tao E. Li, Abraham Nitzan, Joseph E. Subotnik. Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31703-8
    78. David Wellnitz, Guido Pupillo, Johannes Schachenmayer. Disorder enhanced vibrational entanglement and dynamics in polaritonic chemistry. Communications Physics 2022, 5 (1) https://doi.org/10.1038/s42005-022-00892-5
    79. Deping Hu, Arkajit Mandal, Braden M. Weight, Pengfei Huo. Quasi-diabatic propagation scheme for simulating polariton chemistry. The Journal of Chemical Physics 2022, 157 (19) https://doi.org/10.1063/5.0127118
    80. Bingyu Cui, Abraham Nizan. Collective response in light–matter interactions: The interplay between strong coupling and local dynamics. The Journal of Chemical Physics 2022, 157 (11) https://doi.org/10.1063/5.0101528
    81. Wanghuai Zhou, Deping Hu, Arkajit Mandal, Pengfei Huo. Nuclear gradient expressions for molecular cavity quantum electrodynamics simulations using mixed quantum-classical methods. The Journal of Chemical Physics 2022, 157 (10) https://doi.org/10.1063/5.0109395
    82. Dominik Sidler, Michael Ruggenthaler, Christian Schäfer, Enrico Ronca, Angel Rubio. A perspective on ab initio modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity. The Journal of Chemical Physics 2022, 156 (23) https://doi.org/10.1063/5.0094956
    83. Fatemeh Molaei. Understanding the Anisotropic Mechanical Behavior of Single‐Crystalline Alpha Quartz From the Insight of Molecular Dynamics. Journal of Geophysical Research: Solid Earth 2022, 127 (6) https://doi.org/10.1029/2021JB023681
    84. Tao E. Li, Bingyu Cui, Joseph E. Subotnik, Abraham Nitzan. Molecular Polaritonics: Chemical Dynamics Under Strong Light–Matter Coupling. Annual Review of Physical Chemistry 2022, 73 (1) , 43-71. https://doi.org/10.1146/annurev-physchem-090519-042621
    85. Tao E. Li, Abraham Nitzan, Joseph E. Subotnik. Polariton relaxation under vibrational strong coupling: Comparing cavity molecular dynamics simulations against Fermi’s golden rule rate. The Journal of Chemical Physics 2022, 156 (13) https://doi.org/10.1063/5.0079784
    86. Emiliano Cortés, Roland Grzeschik, Stefan A. Maier, Sebastian Schlücker. Experimental characterization techniques for plasmon-assisted chemistry. Nature Reviews Chemistry 2022, 6 (4) , 259-274. https://doi.org/10.1038/s41570-022-00368-8
    87. Junjie Yang, Zheng Pei, Erick Calderon Leon, Carly Wickizer, Binbin Weng, Yuezhi Mao, Qi Ou, Yihan Shao. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. The Journal of Chemical Physics 2022, 156 (12) https://doi.org/10.1063/5.0082386
    88. Jin Sun, Zongling Ding, Yuanqin Yu, Chuanmei Xie. A Theoretical Investigation about Photoswitching of Azobenzene Adsorbed on Ag Nanoparticles. Crystals 2022, 12 (2) , 248. https://doi.org/10.3390/cryst12020248
    89. Jin Sun, ZongLing Ding, YuanQin Yu, WanZhen Liang. Nonlinear features of Fano resonance: a QM/EM study. Physical Chemistry Chemical Physics 2021, 23 (30) , 15994-16004. https://doi.org/10.1039/D1CP02459K
    90. Victoria Esteso, Laura Caliò, Hilario Espinós, Giulia Lavarda, Tomás Torres, Johannes Feist, Francisco J. García-Vidal, Giovanni Bottari, Hernán Míguez. Light‐Harvesting Properties of a Subphthalocyanine Solar Absorber Coupled to an Optical Cavity. Solar RRL 2021, 5 (8) https://doi.org/10.1002/solr.202100308
    91. E. Hulkko, S. Pikker, V. Tiainen, R. H. Tichauer, G. Groenhof, J. J. Toppari. Effect of molecular Stokes shift on polariton dynamics. The Journal of Chemical Physics 2021, 154 (15) https://doi.org/10.1063/5.0037896
    92. C. Climent, F. J. Garcia-Vidal, J. Feist. Cavity-modified Chemistry: Towards Vacuum-field Catalysis. 2021, 343-393. https://doi.org/10.1039/9781839163043-00343
    93. Ruth H. Tichauer, Johannes Feist, Gerrit Groenhof. Multi-scale dynamics simulations of molecular polaritons: The effect of multiple cavity modes on polariton relaxation. The Journal of Chemical Physics 2021, 154 (10) https://doi.org/10.1063/5.0037868
    94. Tao E. Li, Abraham Nitzan, Joseph E. Subotnik. Cavity molecular dynamics simulations of vibrational polariton-enhanced molecular nonlinear absorption. The Journal of Chemical Physics 2021, 154 (9) https://doi.org/10.1063/5.0037623
    95. Jakub Fojt, Tuomas P. Rossi, Tomasz J. Antosiewicz, Mikael Kuisma, Paul Erhart. Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling. The Journal of Chemical Physics 2021, 154 (9) https://doi.org/10.1063/5.0037853
    96. Tamás Szidarovszky, Péter Badankó, Gábor J. Halász, Ágnes Vibók. Nonadiabatic phenomena in molecular vibrational polaritons. The Journal of Chemical Physics 2021, 154 (6) https://doi.org/10.1063/5.0033338
    97. Csaba Fábri, Gábor J. Halász, Lorenz S. Cederbaum, Ágnes Vibók. Born–Oppenheimer approximation in optical cavities: from success to breakdown. Chemical Science 2021, 12 (4) , 1251-1258. https://doi.org/10.1039/D0SC05164K
    98. Hiro Minamimoto, Fumiya Kato, Kei Murakoshi. Surface‐enhanced Raman scattering probe for molecules strongly coupled with localized surface plasmon under electrochemical potential control. Journal of Raman Spectroscopy 2021, 52 (2) , 431-438. https://doi.org/10.1002/jrs.6004
    99. Eric Davidsson, Markus Kowalewski. Simulating photodissociation reactions in bad cavities with the Lindblad equation. The Journal of Chemical Physics 2020, 153 (23) https://doi.org/10.1063/5.0033773
    100. Csaba Fábri, Benjamin Lasorne, Gábor J. Halász, Lorenz S. Cederbaum, Ágnes Vibók. Quantum light-induced nonadiabatic phenomena in the absorption spectrum of formaldehyde: Full- and reduced-dimensionality studies. The Journal of Chemical Physics 2020, 153 (23) https://doi.org/10.1063/5.0035870
    Load all citations

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2017, 13, 9, 4324–4335
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.7b00388
    Published July 27, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    2347

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.