ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space

View Author Information
Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Box 1031, SE-171 21 Solna, Sweden
§ Science for Life Laboratory, Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
Cite this: J. Med. Chem. 2017, 60, 19, 8160–8169
Publication Date (Web):September 20, 2017
https://doi.org/10.1021/acs.jmedchem.7b01006
Copyright © 2017 American Chemical Society

    Article Views

    3528

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    Fragment-based lead discovery has emerged as a leading drug development strategy for novel therapeutic targets. Although fragment-based drug discovery benefits immensely from access to atomic-resolution information, structure-based virtual screening has rarely been used to drive fragment discovery and optimization. Here, molecular docking of 0.3 million fragments to a crystal structure of cancer target MTH1 was performed. Twenty-two predicted fragment ligands, for which analogs could be acquired commercially, were experimentally evaluated. Five fragments inhibited MTH1 with IC50 values ranging from 6 to 79 μM. Structure-based optimization guided by predicted binding modes and analogs from commercial chemical libraries yielded nanomolar inhibitors. Subsequently solved crystal structures confirmed binding modes predicted by docking for three scaffolds. Structure-guided exploration of commercial chemical space using molecular docking gives access to fragment libraries that are several orders of magnitude larger than those screened experimentally and can enable efficient optimization of hits to potent leads.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.7b01006.

    • Additional data and methods (PDF)

    • Molecular formula strings (CSV)

    • Atomic coordinates of predicted binding modes of fragments 15 (ZIP)

    Accession Codes

    Atomic coordinates of MTH1 bound to compounds 1a, 2, and 4b (PDB codes 5NGS, 5NGR, and 5NGT) have been deposited in the Protein Data Bank. Authors will release atomic coordinates and experimental data upon article publication.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 30 publications.

    1. Bai-Feng Zheng, Zhi-Zheng Wang, Jin Dong, Jin-Yi Ma, Yang Zuo, Qiong-You Wu, Guang-Fu Yang. Discovery of a Subnanomolar Inhibitor of Protoporphyrinogen IX Oxidase via Fragment-Based Virtual Screening. Journal of Agricultural and Food Chemistry 2023, 71 (23) , 8746-8756. https://doi.org/10.1021/acs.jafc.3c00168
    2. Yujeong Lee, Yoshiyuki Onishi, Lisa McPherson, Anna M. Kietrys, Marian Hebenbrock, Yong Woong Jun, Ishani Das, Shanthi Adimoolam, Debin Ji, Michael G. Mohsen, James M. Ford, Eric T. Kool. Enhancing Repair of Oxidative DNA Damage with Small-Molecule Activators of MTH1. ACS Chemical Biology 2022, 17 (8) , 2074-2087. https://doi.org/10.1021/acschembio.2c00038
    3. Andreas Luttens, Hjalmar Gullberg, Eldar Abdurakhmanov, Duy Duc Vo, Dario Akaberi, Vladimir O. Talibov, Natalia Nekhotiaeva, Laura Vangeel, Steven De Jonghe, Dirk Jochmans, Janina Krambrich, Ali Tas, Bo Lundgren, Ylva Gravenfors, Alexander J. Craig, Yoseph Atilaw, Anja Sandström, Lindon W. K. Moodie, Åke Lundkvist, Martijn J. van Hemert, Johan Neyts, Johan Lennerstrand, Jan Kihlberg, Kristian Sandberg, U. Helena Danielson, Jens Carlsson. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. Journal of the American Chemical Society 2022, 144 (7) , 2905-2920. https://doi.org/10.1021/jacs.1c08402
    4. Gabriele Bassi, Nicholas Favalli, Christian Pellegrino, Yuichi Onda, Jörg Scheuermann, Samuele Cazzamalli, Markus G. Manz, Dario Neri. Specific Inhibitor of Placental Alkaline Phosphatase Isolated from a DNA-Encoded Chemical Library Targets Tumor of the Female Reproductive Tract. Journal of Medicinal Chemistry 2021, 64 (21) , 15799-15809. https://doi.org/10.1021/acs.jmedchem.1c01103
    5. André Fischer, Martin Smieško, Manuel Sellner, Markus A. Lill. Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results. Journal of Medicinal Chemistry 2021, 64 (5) , 2489-2500. https://doi.org/10.1021/acs.jmedchem.0c02227
    6. Yu-ki Tahara, Anna M. Kietrys, Marian Hebenbrock, Yujeong Lee, David L. Wilson, Eric T. Kool. Dual Inhibitors of 8-Oxoguanine Surveillance by OGG1 and NUDT1. ACS Chemical Biology 2019, 14 (12) , 2606-2615. https://doi.org/10.1021/acschembio.9b00490
    7. Paul N. Mortenson, Daniel A. Erlanson, Iwan J. P. de Esch, Wolfgang Jahnke, Christopher N. Johnson. Fragment-to-Lead Medicinal Chemistry Publications in 2017. Journal of Medicinal Chemistry 2019, 62 (8) , 3857-3872. https://doi.org/10.1021/acs.jmedchem.8b01472
    8. Fredrik Rahm, Jenny Viklund, Lionel Trésaugues, Manuel Ellermann, Anja Giese, Ulrika Ericsson, Rickard Forsblom, Tobias Ginman, Judith Günther, Kenth Hallberg, Johan Lindström, Lars Boukharta Persson, Camilla Silvander, Antoine Talagas, Laura Díaz-Sáez, Oleg Fedorov, Kilian V. M. Huber, Ioanna Panagakou, Paulina Siejka, Mátyás Gorjánácz, Marcus Bauser, Martin Andersson. Creation of a Novel Class of Potent and Selective MutT Homologue 1 (MTH1) Inhibitors Using Fragment-Based Screening and Structure-Based Drug Design. Journal of Medicinal Chemistry 2018, 61 (6) , 2533-2551. https://doi.org/10.1021/acs.jmedchem.7b01884
    9. Yifeng Ding, Qingquan Liu. Targeting the nucleic acid oxidative damage repair enzyme MTH1: a promising therapeutic option. Frontiers in Cell and Developmental Biology 2024, 12 https://doi.org/10.3389/fcell.2024.1334417
    10. Anwesha Das, Arijit Nandi, Vijeta Kumari, Mallika Alvala. FBDD & De Novo Drug Design. 2023, 159-201. https://doi.org/10.2174/9789815179934123010008
    11. Roderick E. Hubbard. Fragment-based Ligand Discovery (FBLD). 2023, 188-230. https://doi.org/10.1039/9781788018982-00188
    12. Elissa A. Fink, Jun Xu, Harald Hübner, Joao M. Braz, Philipp Seemann, Charlotte Avet, Veronica Craik, Dorothee Weikert, Maximilian F. Schmidt, Chase M. Webb, Nataliya A. Tolmachova, Yurii S. Moroz, Xi-Ping Huang, Chakrapani Kalyanaraman, Stefan Gahbauer, Geng Chen, Zheng Liu, Matthew P. Jacobson, John J. Irwin, Michel Bouvier, Yang Du, Brian K. Shoichet, Allan I. Basbaum, Peter Gmeiner. Structure-based discovery of nonopioid analgesics acting through the α 2A -adrenergic receptor. Science 2022, 377 (6614) https://doi.org/10.1126/science.abn7065
    13. Moira Rachman, Serena Piticchio, Maciej Majewski, Xavier Barril. Fragment-to-lead tailored in silico design. Drug Discovery Today: Technologies 2021, 40 , 44-57. https://doi.org/10.1016/j.ddtec.2021.08.005
    14. Sarfraz Ahmad, Muhammad Usman Mirza, Lee Yean Kee, Mamoona Nazir, Noorsaadah Abdul Rahman, John F. Trant, Iskandar Abdullah. Fragment‐based in silico design of SARS‐CoV‐2 main protease inhibitors. Chemical Biology & Drug Design 2021, 98 (4) , 604-619. https://doi.org/10.1111/cbdd.13914
    15. José T. Moreira-Filho, Arthur C. Silva, Rafael F. Dantas, Barbara F. Gomes, Lauro R. Souza Neto, Jose Brandao-Neto, Raymond J. Owens, Nicholas Furnham, Bruno J. Neves, Floriano P. Silva-Junior, Carolina H. Andrade. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.642383
    16. Bruno Junior Neves, Melina Mottin, José Teofilo Moreira-Filho, Bruna Katiele de Paula Sousa, Sabrina Silva Mendonca, Carolina Horta Andrade. Best Practices for Docking-Based Virtual Screening. 2021, 75-98. https://doi.org/10.1016/B978-0-12-822312-3.00001-1
    17. Yizhen Yin, Fener Chen. Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives. Acta Pharmaceutica Sinica B 2020, 10 (12) , 2259-2271. https://doi.org/10.1016/j.apsb.2020.02.012
    18. Lauro Ribeiro de Souza Neto, José Teófilo Moreira-Filho, Bruno Junior Neves, Rocío Lucía Beatriz Riveros Maidana, Ana Carolina Ramos Guimarães, Nicholas Furnham, Carolina Horta Andrade, Floriano Paes Silva. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00093
    19. Bruno Rizzuti, Fedora Grande. Virtual screening in drug discovery: a precious tool for a still-demanding challenge. 2020, 309-327. https://doi.org/10.1016/B978-0-12-819132-3.00014-2
    20. Célien Jacquemard, Malgorzata N. Drwal, Jérémy Desaphy, Esther Kellenberger. Binding mode information improves fragment docking. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0346-7
    21. Pedro H. M. Torres, Ana C. R. Sodero, Paula Jofily, Floriano P. Silva-Jr. Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences 2019, 20 (18) , 4574. https://doi.org/10.3390/ijms20184574
    22. Lars Wiedmer, Claude Schärer, Dimitrios Spiliotopoulos, Marianne Hürzeler, Paweł Śledź, Amedeo Caflisch. Ligand retargeting by binding site analogy. European Journal of Medicinal Chemistry 2019, 175 , 107-113. https://doi.org/10.1016/j.ejmech.2019.04.037
    23. Olivia Slater, Maria Kontoyianni. The compromise of virtual screening and its impact on drug discovery. Expert Opinion on Drug Discovery 2019, 14 (7) , 619-637. https://doi.org/10.1080/17460441.2019.1604677
    24. Xin-yu Zhao, Kai Liu, Xiao-li Wang, Ri-lei Yu, Cong-min Kang. Exploration of Novel MTH1 Inhibitors Using Fragment-Based De Novo Design, Virtual Screening, and Reverse Virtual Screening Methods. Russian Journal of Bioorganic Chemistry 2019, 45 (4) , 253-262. https://doi.org/10.1134/S1068162019040137
    25. Priyamvada Rai, Robert W. Sobol. Mechanisms of MTH1 inhibition-induced DNA strand breaks: The slippery slope from the oxidized nucleotide pool to genotoxic damage. DNA Repair 2019, 77 , 18-26. https://doi.org/10.1016/j.dnarep.2019.03.001
    26. Takeshi Yokoyama, Ryota Kitakami, Mineyuki Mizuguchi. Discovery of a new class of MTH1 inhibitor by X-ray crystallographic screening. European Journal of Medicinal Chemistry 2019, 167 , 153-160. https://doi.org/10.1016/j.ejmech.2019.02.011
    27. Daniel A. Erlanson, Ben J. Davis, Wolfgang Jahnke. Fragment-Based Drug Discovery: Advancing Fragments in the Absence of Crystal Structures. Cell Chemical Biology 2019, 26 (1) , 9-15. https://doi.org/10.1016/j.chembiol.2018.10.001
    28. Rui-Juan Niu, Qing-Chuan Zheng, Hong-Xing Zhang. The influence of residue in the position of 116 on the inhibitory potency of TH588 for MTH1. Journal of Molecular Graphics and Modelling 2018, 85 , 75-83. https://doi.org/10.1016/j.jmgm.2018.08.002
    29. Marcin Stolarczyk, Iwona Bryndal, Agnieszka Matera-Witkiewicz, Tadeusz Lis, Karolina Królewska-Golińska, Marcin Cieślak, Julia Kaźmierczak-Barańska, Jerzy Cieplik. Synthesis, crystal structure and cytotoxic activity of novel 5-methyl-4-thiopyrimidine derivatives. Acta Crystallographica Section C Structural Chemistry 2018, 74 (10) , 1138-1145. https://doi.org/10.1107/S2053229618012706
    30. Petro Borysko, Yurii S. Moroz, Oleksandr V. Vasylchenko, Vasyl V. Hurmach, Anastasia Starodubtseva, Natalia Stefanishena, Kateryna Nesteruk, Sergey Zozulya, Ivan S. Kondratov, Oleksandr O. Grygorenko. Straightforward hit identification approach in fragment-based discovery of bromodomain-containing protein 4 (BRD4) inhibitors. Bioorganic & Medicinal Chemistry 2018, 26 (12) , 3399-3405. https://doi.org/10.1016/j.bmc.2018.05.010

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect