ACS Publications. Most Trusted. Most Cited. Most Read
Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165
My Activity
    Featured Article

    Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165
    Click to copy article linkArticle link copied!

    • Stephen T. Wrobleski*
      Stephen T. Wrobleski
      Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      *For S.T.W.: phone, (609)252-4873; E-mail, [email protected]
    • Ryan Moslin*
      Ryan Moslin
      Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      *For R.M.: E-mail, [email protected]
      More by Ryan Moslin
    • Shuqun Lin
      Shuqun Lin
      Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Shuqun Lin
    • Yanlei Zhang
      Yanlei Zhang
      Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Yanlei Zhang
    • Steven Spergel
      Steven Spergel
      Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • James Kempson
      James Kempson
      Department of Discovery Synthesis, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • John S. Tokarski
      John S. Tokarski
      Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Joann Strnad
      Joann Strnad
      Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Joann Strnad
    • Adriana Zupa-Fernandez
      Adriana Zupa-Fernandez
      Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Lihong Cheng
      Lihong Cheng
      Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Lihong Cheng
    • David Shuster
      David Shuster
      Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Kathleen Gillooly
      Kathleen Gillooly
      Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Xiaoxia Yang
      Xiaoxia Yang
      Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Xiaoxia Yang
    • Elizabeth Heimrich
      Elizabeth Heimrich
      Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Kim W. McIntyre
      Kim W. McIntyre
      Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Charu Chaudhry
      Charu Chaudhry
      Leads Discovery and Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Javed Khan
      Javed Khan
      Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Javed Khan
    • Max Ruzanov
      Max Ruzanov
      Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Max Ruzanov
    • Jeffrey Tredup
      Jeffrey Tredup
      Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Dawn Mulligan
      Dawn Mulligan
      Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Dianlin Xie
      Dianlin Xie
      Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Dianlin Xie
    • Huadong Sun
      Huadong Sun
      Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Huadong Sun
    • Christine Huang
      Christine Huang
      Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Celia D’Arienzo
      Celia D’Arienzo
      Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Nelly Aranibar
      Nelly Aranibar
      Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Manoj Chiney
      Manoj Chiney
      Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
      More by Manoj Chiney
    • Anjaneya Chimalakonda
      Anjaneya Chimalakonda
      Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • William J. Pitts
      William J. Pitts
      Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Louis Lombardo
      Louis Lombardo
      Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • Percy H. Carter
      Percy H. Carter
      Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • James R. Burke
      James R. Burke
      Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    • David S. Weinstein
      David S. Weinstein
      Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
    Other Access OptionsSupporting Information (2)

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2019, 62, 20, 8973–8995
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jmedchem.9b00444
    Published July 18, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Small molecule JAK inhibitors have emerged as a major therapeutic advancement in treating autoimmune diseases. The discovery of isoform selective JAK inhibitors that traditionally target the catalytically active site of this kinase family has been a formidable challenge. Our strategy to achieve high selectivity for TYK2 relies on targeting the TYK2 pseudokinase (JH2) domain. Herein we report the late stage optimization efforts including a structure-guided design and water displacement strategy that led to the discovery of BMS-986165 (11) as a high affinity JH2 ligand and potent allosteric inhibitor of TYK2. In addition to unprecedented JAK isoform and kinome selectivity, 11 shows excellent pharmacokinetic properties with minimal profiling liabilities and is efficacious in several murine models of autoimmune disease. On the basis of these findings, 11 appears differentiated from all other reported JAK inhibitors and has been advanced as the first pseudokinase-directed therapeutic in clinical development as an oral treatment for autoimmune diseases.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.9b00444.

    • X-ray crystallographic data and refinement statistics for compounds 11, 12, and 29 in TYK2 JH2 (PDF)

    • Molecular formula strings list (CSV)

    Accession Codes

    Atomic coordinates for the X-ray structures of compound 11 (PDB 6NZP), 12 (PDB 6NZR), and 29 (PDB 6NZQ) in TYK2 JH2 are available from the RCSB Protein Data Bank (www.rscb.org). Authors will release the atomic coordinates upon article publication.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 266 publications.

    1. Shuangshuang Xiong, Jiaqi Yang, Ming Yang, Maoxu Xiao, Si Ha, Wenxiang Tao, Luyu Ma, Chenxuan Ji, Hua Xiang, Guoshun Luo. Discovery of a Highly Potent and Selective Tyrosine Kinase 2 (TYK2) Degrader with In Vivo Therapeutic Efficacy in a Murine Psoriasis Model. Journal of Medicinal Chemistry 2025, 68 (7) , 7560-7578. https://doi.org/10.1021/acs.jmedchem.5c00027
    2. Murugaiah A M Subbaiah, Thangeswaran Ramar, Maheswara Reddy, Sankara Sivaprasad LVJ, Shekhar Yeshwante, Srikanth Sridhar, Salil Desai, Manoj Chiney, Elizabeth A. Dierks, Arvind Mathur, Ryan Moslin, David S. Weinstein. Prodrug Strategy to Address Impaired Oral Absorption of a Weakly Basic TYK2 Inhibitor Caused by a Gastric Acid-Reducing Agent. Journal of Medicinal Chemistry 2024, 67 (22) , 20664-20681. https://doi.org/10.1021/acs.jmedchem.4c02219
    3. Jingwei Li, Qiao Lin, Otto Dungan, Yue Fu, Sumei Ren, Serge Ruccolo, Sarah Moor, Eric M. Phillips. Homogenous Palladium-Catalyzed Dehalogenative Deuteration and Tritiation of Aryl Halides with D2/T2 Gas. Journal of the American Chemical Society 2024, 146 (46) , 31497-31506. https://doi.org/10.1021/jacs.4c08176
    4. Chunhua Ma, Craig W. Lindsley, (Editor-in-Chief, Journal of Medicinal Chemistry)Junbiao Chang, Bin Yu (Early-Career Editorial Board Member, Journal of Medicinal Chemistry). Rational Molecular Editing: A New Paradigm in Drug Discovery. Journal of Medicinal Chemistry 2024, 67 (14) , 11459-11466. https://doi.org/10.1021/acs.jmedchem.4c01347
    5. Oscar Mammoliti, Sébastien Martina, Pieter Claes, Ghjuvanni Coti, Roland Blanque, Catherine Jagerschmidt, Kenji Shoji, Monica Borgonovi, Steve De Vos, Florence Marsais, Line Oste, Evelyne Quinton, Miriam López-Ramos, David Amantini, Reginald Brys, Juan-Miguel Jimenez, René Galien, Steven van der Plas. Discovery of GLPG3667, a Selective ATP Competitive Tyrosine Kinase 2 Inhibitor for the Treatment of Autoimmune Diseases. Journal of Medicinal Chemistry 2024, 67 (11) , 8545-8568. https://doi.org/10.1021/acs.jmedchem.4c00769
    6. Scott P. France, Erick A. Lindsey, Emma L. McInturff, Simon Berritt, Daniel W. Carney, Jacob C. DeForest, Sarah J. Fink, Andrew C. Flick, Tony S. Gibson, Kaitlyn Gray, Amber M. Johnson, Carolyn A. Leverett, Yiyang Liu, Subham Mahapatra, Rebecca B. Watson. Synthetic Approaches to the New Drugs Approved During 2022. Journal of Medicinal Chemistry 2024, 67 (6) , 4376-4418. https://doi.org/10.1021/acs.jmedchem.3c02374
    7. Maria Orehova, Janez Plavec, Vojč Kocman. High-Resolution Structure of RNA G-Quadruplex Containing Unique Structural Motifs Originating from the 5′-UTR of Human Tyrosine Kinase 2 (TYK2). ACS Omega 2024, 9 (6) , 7215-7229. https://doi.org/10.1021/acsomega.3c09592
    8. Silvana LeitBhaskar SrivastavaNathan E. GenungJoshua J. McElweeDenise LevasseurScott D. Edmondson. TARGETING SELECTIVE TYROSINE KINASE 2 (TYK2) INHIBITORS FOR THE TREATMENT OF AUTOIMMUNE DISEASES. , 157-185. https://doi.org/10.1021/mc-2023-vol58.ch07
    9. Erika Araujo, Ian M. Bell, Alexander Burckle, Dennis C. Koester, James R. Manning, Georgette CastanedoMingshuo Zeng, T. G. Murali Dhar, Natalie Holmberg-DouglasEric R. Welin, J. Robert Merritt, Kevin M. Peese, Joanne J. Bronson. TO MARKET, TO MARKET–2022: SMALL MOLECULES. , 595-710. https://doi.org/10.1021/mc-2023-vol58.ch24
    10. Eric Breinlinger, Stacy Van Epps, Michael Friedman, Maria Argiriadi, Ellen Chien, Gekleng Chhor, Marlon Cowart, Theresa Dunstan, Candace Graff, David Hardee, J. Martin Herold, Andrew Little, Richard McCarthy, Julie Parmentier, Matthew Perham, Wei Qiu, Michael Schrimpf, Thomas Vargo, Matthew P. Webster, Fei Wu, Dawn Bennett, Jeremy Edmunds. Targeting the Tyrosine Kinase 2 (TYK2) Pseudokinase Domain: Discovery of the Selective TYK2 Inhibitor ABBV-712. Journal of Medicinal Chemistry 2023, 66 (20) , 14335-14356. https://doi.org/10.1021/acs.jmedchem.3c01373
    11. Sean P. Henry, William L. Jorgensen. Progress on the Pharmacological Targeting of Janus Pseudokinases. Journal of Medicinal Chemistry 2023, 66 (16) , 10959-10990. https://doi.org/10.1021/acs.jmedchem.3c00926
    12. Silvana Leit, Jeremy Greenwood, Samantha Carriero, Sayan Mondal, Robert Abel, Mark Ashwell, Heather Blanchette, Nicholas A. Boyles, Mark Cartwright, Alan Collis, Shulu Feng, Phani Ghanakota, Geraldine C. Harriman, Vinayak Hosagrahara, Neelu Kaila, Rosanna Kapeller, Salma B. Rafi, Donna L. Romero, Paul M. Tarantino, Jignesh Timaniya, Angela V. Toms, Ronald T. Wester, William Westlin, Bhaskar Srivastava, Wenyan Miao, Peter Tummino, Joshua J. McElwee, Scott D. Edmondson, Craig E. Masse. Discovery of a Potent and Selective Tyrosine Kinase 2 Inhibitor: TAK-279. Journal of Medicinal Chemistry 2023, 66 (15) , 10473-10496. https://doi.org/10.1021/acs.jmedchem.3c00600
    13. Dean G. Brown. An Analysis of Successful Hit-to-Clinical Candidate Pairs. Journal of Medicinal Chemistry 2023, 66 (11) , 7101-7139. https://doi.org/10.1021/acs.jmedchem.3c00521
    14. Lucija Hok, Robert Vianello. Selective Deuteration Improves the Affinity of Adenosine A2A Receptor Ligands: A Computational Case Study with Istradefylline and Caffeine. Journal of Chemical Information and Modeling 2023, 63 (10) , 3138-3149. https://doi.org/10.1021/acs.jcim.3c00424
    15. Kuojun Zhang, Ke Ye, He Tang, Zhihao Qi, Tianyu Wang, Jie Mao, Xiangyu Zhang, Sheng Jiang. Development and Therapeutic Implications of Tyrosine Kinase 2 Inhibitors. Journal of Medicinal Chemistry 2023, 66 (7) , 4378-4416. https://doi.org/10.1021/acs.jmedchem.2c01800
    16. Yingzi Bu, Ruoxi Gao, Bohan Zhang, Luchen Zhang, Duxin Sun. CoGT: Ensemble Machine Learning Method and Its Application on JAK Inhibitor Discovery. ACS Omega 2023, 8 (14) , 13232-13242. https://doi.org/10.1021/acsomega.3c00160
    17. Zachary J. Garlets, Elizabeth M. Yuill, Alice Yang, Qingmei Ye, Wei Ding, Christopher Wood, Junying Fan, Nicolas Lucien Cuniere, Chris Sfouggatakis. Tracking the Isotopologues: Process Improvement for the Synthesis of a Deuterated Pyrazole. Organic Process Research & Development 2023, 27 (1) , 159-166. https://doi.org/10.1021/acs.oprd.2c00318
    18. Fei Liu, Bin Wang, Yanlong Liu, Wei Shi, Xujing Tang, Xiaojin Wang, Zhongyuan Hu, Ying Zhang, Yahui Guo, Xiayun Chang, Xiangyi He, Hongjiang Xu, Ying He. Novel TYK2 Inhibitors with an N-(Methyl-d3)pyridazine-3-carboxamide Skeleton for the Treatment of Autoimmune Diseases. ACS Medicinal Chemistry Letters 2022, 13 (11) , 1730-1738. https://doi.org/10.1021/acsmedchemlett.2c00334
    19. Sean P. Henry, Maria-Elena Liosi, Joseph A. Ippolito, Fabian Menges, Ana S. Newton, Joseph Schlessinger, William L. Jorgensen. Covalent Modification of the JH2 Domain of Janus Kinase 2. ACS Medicinal Chemistry Letters 2022, 13 (11) , 1819-1826. https://doi.org/10.1021/acsmedchemlett.2c00414
    20. Ao Wang, Xianggang Luo, Yawan Wang, Xin Meng, Zhengyu Lu, Yushe Yang. Design, Synthesis, and Biological Evaluation of Androgen Receptor Degrading and Antagonizing Bifunctional Steroidal Analogs for the Treatment of Advanced Prostate Cancer. Journal of Medicinal Chemistry 2022, 65 (18) , 12460-12481. https://doi.org/10.1021/acs.jmedchem.2c01164
    21. Daniel S. Treitler, Maxime C. Soumeillant, Eric M. Simmons, Dong Lin, Bahar Inankur, Amanda J. Rogers, Michael Dummeldinger, Sergei Kolotuchin, Collin Chan, Jun Li, Adam Freitag, Federico Lora Gonzalez, Michael J. Smith, Chris Sfouggatakis, Jianji Wang, Tamas Benkovics, Joerg Deerberg, James H. Simpson, Ke Chen, Steven Tymonko. Development of a Commercial Process for Deucravacitinib, a Deuterated API for TYK2 Inhibition. Organic Process Research & Development 2022, 26 (4) , 1202-1222. https://doi.org/10.1021/acs.oprd.1c00468
    22. Yue Pan, Mary M. Mader. Principles of Kinase Allosteric Inhibition and Pocket Validation. Journal of Medicinal Chemistry 2022, 65 (7) , 5288-5299. https://doi.org/10.1021/acs.jmedchem.2c00073
    23. Matthew J. Goldfogel, Xuelei Guo, Jeishla L. Meléndez Matos, John A. Gurak, Jr., Matthew V. Joannou, William B. Moffat, Eric M. Simmons, Steven R. Wisniewski. Advancing Base-Metal Catalysis: Development of a Screening Method for Nickel-Catalyzed Suzuki–Miyaura Reactions of Pharmaceutically Relevant Heterocycles. Organic Process Research & Development 2022, 26 (3) , 785-794. https://doi.org/10.1021/acs.oprd.1c00210
    24. Zhen Wang, Weixue Huang, Kaijie Zhou, Xiaomei Ren, Ke Ding. Targeting the Non-Catalytic Functions: a New Paradigm for Kinase Drug Discovery?. Journal of Medicinal Chemistry 2022, 65 (3) , 1735-1748. https://doi.org/10.1021/acs.jmedchem.1c01978
    25. Ricardo A. M. Serafim, Jonathan M. Elkins, William J. Zuercher, Stefan A. Laufer, Matthias Gehringer. Chemical Probes for Understudied Kinases: Challenges and Opportunities. Journal of Medicinal Chemistry 2022, 65 (2) , 1132-1170. https://doi.org/10.1021/acs.jmedchem.1c00980
    26. Nadine Russ, Martin Schröder, Benedict-Tilman Berger, Sebastian Mandel, Yagmur Aydogan, Sandy Mauer, Christian Pohl, David H. Drewry, Apirat Chaikuad, Susanne Müller, Stefan Knapp. Design and Development of a Chemical Probe for Pseudokinase Ca2+/calmodulin-Dependent Ser/Thr Kinase. Journal of Medicinal Chemistry 2021, 64 (19) , 14358-14376. https://doi.org/10.1021/acs.jmedchem.1c00845
    27. Priyadeep Bhutani, Gaurav Joshi, Nivethitha Raja, Namrata Bachhav, Prabhakar K. Rajanna, Hemant Bhutani, Atish T. Paul, Raj Kumar. U.S. FDA Approved Drugs from 2015–June 2020: A Perspective. Journal of Medicinal Chemistry 2021, 64 (5) , 2339-2381. https://doi.org/10.1021/acs.jmedchem.0c01786
    28. Chufeng Zhang, Wenyan Qi, Yong Li, Minghai Tang, Tao Yang, Kongjun Liu, Yong Chen, Dexin Deng, Mingli Xiang, Lijuan Chen. Discovery of 3-(4-(2-((1H-Indol-5-yl)amino)-5-fluoropyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile Derivatives as Selective TYK2 Inhibitors for the Treatment of Inflammatory Bowel Disease. Journal of Medicinal Chemistry 2021, 64 (4) , 1966-1988. https://doi.org/10.1021/acs.jmedchem.0c01468
    29. Zhouling Xie, Xiaoxiao Yang, Yajun Duan, Jihong Han, Chenzhong Liao. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. Journal of Medicinal Chemistry 2021, 64 (3) , 1283-1345. https://doi.org/10.1021/acs.jmedchem.0c01511
    30. Chunjian Liu, James Lin, Charles Langevine, Daniel Smith, Jianqing Li, John S. Tokarski, Javed Khan, Max Ruzanov, Joann Strnad, Adriana Zupa-Fernandez, Lihong Cheng, Kathleen M. Gillooly, David Shuster, Yifan Zhang, Anil Thankappan, Kim W. McIntyre, Charu Chaudhry, Paul A. Elzinga, Manoj Chiney, Anjaneya Chimalakonda, Louis J. Lombardo, John E. Macor, Percy H. Carter, James R. Burke, David S. Weinstein. Discovery of BMS-986202: A Clinical Tyk2 Inhibitor that Binds to Tyk2 JH2. Journal of Medicinal Chemistry 2021, 64 (1) , 677-694. https://doi.org/10.1021/acs.jmedchem.0c01698
    31. Brian S. Gerstenberger, Catherine Ambler, Eric P. Arnold, Mary-Ellen Banker, Matthew F. Brown, James D. Clark, Alpay Dermenci, Martin E. Dowty, Andrew Fensome, Susan Fish, Matthew M. Hayward, Martin Hegen, Brett D. Hollingshead, John D. Knafels, David W. Lin, Tsung H. Lin, Dafydd R. Owen, Eddine Saiah, Raman Sharma, Felix F. Vajdos, Li Xing, Xiaojing Yang, Xin Yang, Stephen W. Wright. Discovery of Tyrosine Kinase 2 (TYK2) Inhibitor (PF-06826647) for the Treatment of Autoimmune Diseases. Journal of Medicinal Chemistry 2020, 63 (22) , 13561-13577. https://doi.org/10.1021/acs.jmedchem.0c00948
    32. Bingsong Han, Francesco G. Salituro, Maria-Jesus Blanco. Impact of Allosteric Modulation in Drug Discovery: Innovation in Emerging Chemical Modalities. ACS Medicinal Chemistry Letters 2020, 11 (10) , 1810-1819. https://doi.org/10.1021/acsmedchemlett.9b00655
    33. Yuqin Zhu, Yuxiang Ma, Weidong Zu, Jianing Song, Hua Wang, You Zhong, Hongmei Li, Yanmin Zhang, Qianqian Gao, Bo Kong, Junyu Xu, Fei Jiang, Xinren Wang, Shuwen Li, Chenhe Liu, Haichun Liu, Tao Lu, Yadong Chen. Identification of N-Phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine Derivatives as Novel, Potent, and Selective NF-κB Inducing Kinase (NIK) Inhibitors for the Treatment of Psoriasis. Journal of Medicinal Chemistry 2020, 63 (13) , 6748-6773. https://doi.org/10.1021/acs.jmedchem.0c00055
    34. Matthew A. Cerny, Amit S. Kalgutkar, R. Scott Obach, Raman Sharma, Douglas K. Spracklin, Gregory S. Walker. Effective Application of Metabolite Profiling in Drug Design and Discovery. Journal of Medicinal Chemistry 2020, 63 (12) , 6387-6406. https://doi.org/10.1021/acs.jmedchem.9b01840
    35. Jeremy A. Turkett, Anna E. Ringuette, Craig W. Lindsley, Aaron M. Bender. Synthesis of Substituted 6,7-Dihydro-5H-pyrrolo[2,3-c]pyridazines/pyrazines via Catalyst-Free Tandem Hydroamination–Aromatic Substitution. The Journal of Organic Chemistry 2020, 85 (9) , 6123-6130. https://doi.org/10.1021/acs.joc.9b03463
    36. Yu Chang, Shilin Xu, Ke Ding. Tyrosine Kinase 2 (TYK2) Allosteric Inhibitors To Treat Autoimmune Diseases. Journal of Medicinal Chemistry 2019, 62 (20) , 8951-8952. https://doi.org/10.1021/acs.jmedchem.9b01612
    37. Hirokazu Matsumoto, Tien-Cheng Wang, Haruka Taniguchi, Yu Nishioka, Mariko Hatakeyama, Takayoshi Kinoshita, Masaaki Sawa. Identification of small molecule activators targeting TYK2 pseudokinase domain. Bioorganic & Medicinal Chemistry Letters 2025, 123 , 130233. https://doi.org/10.1016/j.bmcl.2025.130233
    38. Alicia Wagner, Roger Trombley, Maris Podgurski, Anthony A. Ruberto, Meng Cui, Caitlin A. Cooper, William E. Long, Gia-Bao Nguyen, Adriana A. Marin, Sarah Lee Mai, Franco Lombardo, Steven P. Maher, Dennis E. Kyle, Roman Manetsch. Discovery and optimization of a novel carboxamide scaffold with selective antimalarial activity. European Journal of Medicinal Chemistry 2025, 291 , 117572. https://doi.org/10.1016/j.ejmech.2025.117572
    39. Wei Liu, Yongjun Mao, Junhao Chen, Xinze Yan. New and Convergent Synthesis of Deucravacitinib. Organic Preparations and Procedures International 2025, , 1-10. https://doi.org/10.1080/00304948.2025.2480315
    40. Teppei Hagino, Hidehisa Saeki, Eita Fujimoto, Naoko Kanda. Long-term effectiveness and safety of deucravacitinib for psoriasis: a 52-week real-world study of genital, scalp and nail lesions. Clinical and Experimental Dermatology 2025, 50 (5) , 952-959. https://doi.org/10.1093/ced/llae530
    41. Manish Ramchandani, Amit Kumar Goyal. Computational insights of deucravacitinib’s selectivity for TYK2 pseudokinase vs. JAK kinase domain via molecular modeling studies. Journal of Biomolecular Structure and Dynamics 2025, , 1-15. https://doi.org/10.1080/07391102.2025.2484663
    42. Guofang Guo, Yan Zhang, Ziting Huang, Wen Liu, Xueyi Lu, Zihan Liu, Xu-Qiong Xiao, Ying Bai, Xinxin Shao. Direct trideuteromethylselenation with a shelf-stable reagent Se -methyl- d 3 selenosulfonate. Organic Chemistry Frontiers 2025, 12 (8) , 2592-2599. https://doi.org/10.1039/D4QO02396J
    43. Debora Chiodi, Yoshihiro Ishihara. Methoxy group: a non-lipophilic “scout” for protein pocket finding. Future Medicinal Chemistry 2025, , 1-3. https://doi.org/10.1080/17568919.2025.2485865
    44. April W. Armstrong, Leon Kircik, Linda Stein Gold, Bruce Strober, Claudia H. M. C. De Oliveira, John Vaile, Ying-Ming Jou, Carolin Daamen, Thomas Scharnitz, Mark Lebwohl. Deucravacitinib: Laboratory Parameters Across Phase 3 Plaque Psoriasis Trials. Dermatology and Therapy 2025, 15 (4) , 1025-1035. https://doi.org/10.1007/s13555-025-01362-w
    45. Jiong Chen, Yuan-Yuan Zhu, Lu Huang, Shuang-Shuang Zhang, Shuang-Xi Gu. Application of deuterium in research and development of drugs. European Journal of Medicinal Chemistry 2025, 287 , 117371. https://doi.org/10.1016/j.ejmech.2025.117371
    46. Ian R. Outhwaite, Isabelle Kwan, Ariel Leyte-Vidal, Neil P. Shah, Ivet Bahar, Markus A. Seeliger. Resistance to Allosteric Inhibitors. Journal of Molecular Biology 2025, 13 , 169133. https://doi.org/10.1016/j.jmb.2025.169133
    47. Tyler P. Molitor, Genki Hayashi, Mei-Yao Lin, Carissa J. Dunn, Nathan G. Peterson, Robert G. Poston, Michael P. Kurnellas, David A. Traver, Seona Patel, Zeynep Akgungor, Virginia Leonardi, Colizel Lewis, Joshua S. Segales, Dylan S. Bennett, Anh P. Truong, Manjari Dani, Swati Naphade, Jamie K. Wong, Annie E. McDermott, Sarah M. Kovalev, Gillian L. Ciaccio, Saud A. Sadiq, Zhonghua Pei, Stephen Wood, Arash Rassoulpour. Central TYK2 inhibition identifies TYK2 as a key neuroimmune modulator. Proceedings of the National Academy of Sciences 2025, 122 (13) https://doi.org/10.1073/pnas.2422172122
    48. Teppei Hagino, Marina Onda, Hidehisa Saeki, Eita Fujimoto, Naoko Kanda. Real‐world 52‐week effectiveness of deucravacitinib in psoriasis: A stratified analysis by age and body mass index. The Journal of Dermatology 2025, 52 (4) , 663-671. https://doi.org/10.1111/1346-8138.17617
    49. Teppei Hagino, Hidehisa Saeki, Eita Fujimoto, Naoko Kanda. Long‐term real‐world effectiveness of deucravacitinib in psoriasis: A 52‐week prospective study stratified by prior apremilast or biologic therapy. The Journal of Dermatology 2025, 52 (4) , 634-641. https://doi.org/10.1111/1346-8138.17665
    50. Florian Perner, Heike L. Pahl, Robert Zeiser, Florian H. Heidel. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025, 185 https://doi.org/10.1038/s41375-025-02569-8
    51. Akimichi Morita, Shinichi Imafuku, Yayoi Tada, Yukari Okubo, Katsuyoshi Habiro, Katsuki Tsuritani, Subhashis Banerjee, Kim Hoyt, Renata M. Kisa, Mamitaro Ohtsuki. Deucravacitinib in plaque psoriasis: Safety and efficacy through 3 years in Japanese patients in the phase 3 POETYK PSO ‐1, PSO ‐4, and LTE trials. The Journal of Dermatology 2025, 16 https://doi.org/10.1111/1346-8138.17685
    52. April W. Armstrong, Mark Lebwohl, Richard B. Warren, Howard Sofen, Akimichi Morita, Carle Paul, Kim A. Papp, Matthew J. Colombo, Julie Scotto, John Vaile, Joe Zhuo, Eleni Vritzali, Victoria Berger, Georgene Schroeder, Subhashis Banerjee, Diamant Thaçi, Bruce Strober. Deucravacitinib in plaque psoriasis: Four‐year safety and efficacy results from the Phase 3 POETYK PSO ‐1, PSO ‐2 and long‐term extension trials. Journal of the European Academy of Dermatology and Venereology 2025, 66 https://doi.org/10.1111/jdv.20553
    53. Anushka Bhatt, Pramiti Gupta, Richard Furie, Himanshu Vashistha. A focused report on IFN-1 targeted therapies for lupus erythematosus. Expert Opinion on Investigational Drugs 2025, 34 (3) , 121-129. https://doi.org/10.1080/13543784.2025.2473060
    54. Francesco Ciccia, Dennis McGonagle, Ranjeny Thomas, Helena Marzo-Ortega, David A. Martin, Arne Yndestad, Mikhail Volkov. JAK inhibition and axial spondyloarthritis: new steps on the path to understanding pathophysiology. Frontiers in Immunology 2025, 16 https://doi.org/10.3389/fimmu.2025.1488357
    55. Zhiqin Fang, Rundong Jiang, Yutong Wang, Wangqing Chen, Xiang Chen, Mingzhu Yin. Topical TYK2 inhibitor ameliorates psoriasis‐like dermatitis via the AKT‐SP1‐NGFR‐AP1 pathway in keratinocytes. Clinical and Translational Medicine 2025, 15 (3) https://doi.org/10.1002/ctm2.70256
    56. Zhiheng Jin, Gang Li, Dengqin He, Jiaxin Chen, Yali Zhang, Mengjie Li, Hongliang Yao. An overview of small-molecule agents for the treatment of psoriasis. Bioorganic & Medicinal Chemistry 2025, 119 , 118067. https://doi.org/10.1016/j.bmc.2025.118067
    57. Jianzhong Zhang, Yangfeng Ding, Ping Wang, Linfeng Li, Weili Pan, Yan Lu, Hao Cheng, Xian Jiang, Ji-Chen Ho, Shuping Guo, Leona Liu, Arkendu Chatterjee, Renata M Kisa, Subhashis Banerjee. Deucravacitinib, an oral selective allosteric tyrosine kinase 2 inhibitor, in patients from China mainland, Taiwan and South Korea with moderate-to-severe plaque psoriasis: a phase III randomized clinical trial. British Journal of Dermatology 2025, 192 (3) , 402-409. https://doi.org/10.1093/bjd/ljae406
    58. Joseph F. Merola, Laura K. Ferris, Jeffrey M. Sobell, Howard Sofen, John Osborne, John Vaile, Ying-Ming Jou, Carolin Daamen, Julie Scotto, Thomas Scharnitz, Mark Lebwohl. Deucravacitinib: Adverse Events of Interest Across Phase 3 Plaque Psoriasis Trials. Dermatology and Therapy 2025, 15 (2) , 453-462. https://doi.org/10.1007/s13555-025-01337-x
    59. Lin Pan, Juan Xu, Hongming Xie, Yingjun Zhang, Huanfeng Jiang, Yongqi Yao, Wanqing Wu. Tyrosine kinase 2 inhibitors: Synthesis and applications in the treatment of autoimmune diseases. European Journal of Medicinal Chemistry 2025, 283 , 117114. https://doi.org/10.1016/j.ejmech.2024.117114
    60. Elham Adabi, Filippos T. Charitidis, Frederic B. Thalheimer, Mar Guaza-Lasheras, Colin Clarke, Christian J. Buchholz. Enhanced conversion of T cells into CAR T cells by modulation of the MAPK/ERK pathway. Cell Reports Medicine 2025, 6 (2) , 101970. https://doi.org/10.1016/j.xcrm.2025.101970
    61. Malindi Georgia Haggett, Sangho Lee, Francis Yi Xing Lai. A systematic review of the efficacy of TYK2 inhibitors in patients with dermatological disease. Australasian Journal of Dermatology 2025, 66 (1) , 1-13. https://doi.org/10.1111/ajd.14391
    62. Meeral Gosia, Gaurav Doshi, Siddhi Bagwe Parab, Angel Godad. Innovative Approaches to Psoriasis: Small Molecules Targeting Key Signaling Pathways. Immunological Investigations 2025, 9 , 1-37. https://doi.org/10.1080/08820139.2025.2449960
    63. April W. Armstrong, Mark Lebwohl, Richard B. Warren, Howard Sofen, Shinichi Imafuku, Mamitaro Ohtsuki, Lynda Spelman, Thierry Passeron, Kim A. Papp, Renata M. Kisa, John Vaile, Victoria Berger, Eleni Vritzali, Kim Hoyt, Matthew J. Colombo, Julie Scotto, Subhashis Banerjee, Bruce Strober, Diamant Thaçi, Andrew Blauvelt. Safety and Efficacy of Deucravacitinib in Moderate to Severe Plaque Psoriasis for Up to 3 Years. JAMA Dermatology 2025, 161 (1) , 56. https://doi.org/10.1001/jamadermatol.2024.4688
    64. Lulu Xia, Hongxin Li, Li Long, Wei Ruan, Jiajia Ma, Shan Xu, Dan Qiao. Research progress on the pathogenesis of psoriasis and its small molecule inhibitors. Archiv der Pharmazie 2025, 358 (1) https://doi.org/10.1002/ardp.202400621
    65. JunJun Jia, Xuelian Zhou, Qingfei Chu. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer. Molecular and Cellular Biochemistry 2025, 480 (1) , 1-17. https://doi.org/10.1007/s11010-024-04983-5
    66. Rajdeep Dey, Udit Chaube, Hardik Bhatt, Bhumika Patel. Small Molecule Drug Design. 2025, 622-633. https://doi.org/10.1016/B978-0-323-95502-7.00262-1
    67. Huali Yang, Ning Li, Yang Liu. Sotyktu (Deucravacitinib): the first tyrosine kinase 2 (TYK2) inhibitor approved for the treatment of psoriasis. 2025, 571-586. https://doi.org/10.1016/B978-0-443-23932-8.00031-5
    68. Anniina Virtanen, Vivian Kettunen, Kirsikka Musta, Veera Räkköläinen, Stefan Knapp, Teemu Haikarainen, Olli Silvennoinen. Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target. Advances in Biological Regulation 2025, 95 , 101072. https://doi.org/10.1016/j.jbior.2024.101072
    69. Arno R. Bourgonje, Ryan C. Ungaro, Saurabh Mehandru, Jean-Frédéric Colombel. Targeting the Interleukin 23 Pathway in Inflammatory Bowel Disease. Gastroenterology 2025, 168 (1) , 29-52.e3. https://doi.org/10.1053/j.gastro.2024.05.036
    70. 宪昊 迟. Research Progress on Virtual Screening Design Techniques for Small Molecule Inhibitors of JAK3 Kinase. Hans Journal of Medicinal Chemistry 2025, 13 (01) , 107-117. https://doi.org/10.12677/hjmce.2025.131011
    71. Teppei Hagino, Hidehisa Saeki, Eita Fujimoto, Naoko Kanda. Effectiveness and safety of deucravacitinib treatment for moderate-to-severe psoriasis in real-world clinical practice in Japan. Journal of Dermatological Treatment 2024, 35 (1) https://doi.org/10.1080/09546634.2024.2307489
    72. David A. De Luca, Cristian Papara, Tomasz Hawro, Diamant Thaçi, Sascha Ständer. Exploring the effect of deucravacitinib in patients with palmoplantar pustular psoriasis. Journal of Dermatological Treatment 2024, 35 (1) https://doi.org/10.1080/09546634.2024.2399220
    73. Seong Jin Jo. Rapid improvement of plaque psoriasis with short-term deucravacitinib therapy: A case report. Journal of the Korean Society for Psoriasis 2024, 21 (2) , 83-85. https://doi.org/10.23203/JKSP.2024.21.2.83
    74. Mariko Niki, Yoshiaki Kubo. A case of Bell palsy during the course of oral TYK2 inhibitor deucravacitinib therapy in psoriasis. The Journal of Dermatology 2024, 212 https://doi.org/10.1111/1346-8138.17596
    75. Martin Stinglhamer, Jan Hendrik Kuhlmann, Elisa Martinelli, Stefania Perulli, Martin Sandvoss, Christian Mück‐Lichtenfeld, Volker Derdau, Olga García Mancheño. Regioselektiver, photoredox‐katalysierter Wasserstoffisotopenaustausch an benzylischen Positionen. Angewandte Chemie 2024, 136 (50) https://doi.org/10.1002/ange.202411567
    76. Martin Stinglhamer, Jan Hendrik Kuhlmann, Elisa Martinelli, Stefania Perulli, Martin Sandvoss, Christian Mück‐Lichtenfeld, Volker Derdau, Olga García Mancheño. Site‐selective Photoredox‐Catalyzed Late‐stage Benzylic Hydrogen Isotope Exchange. Angewandte Chemie International Edition 2024, 63 (50) https://doi.org/10.1002/anie.202411567
    77. Lalmohan Maji, Sindhuja Sengupta, Gurubasavaraja Swamy Purawarga Matada, Ghanshyam Teli, Gourab Biswas, Pronoy Kanti Das, Manjunatha Panduranga Mudgal. Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship. Molecular Diversity 2024, 28 (6) , 4467-4513. https://doi.org/10.1007/s11030-023-10794-5
    78. Yiqiong Bao, Ran Xu, Jingjing Guo. The multiple-action allosteric inhibition of TYK2 by deucravacitinib: Insights from computational simulations. Computational Biology and Chemistry 2024, 113 , 108224. https://doi.org/10.1016/j.compbiolchem.2024.108224
    79. You Lv, Jianxun Qi, Jeffrey J. Babon, Longxing Cao, Guohuang Fan, Jiajia Lang, Jin Zhang, Pengbing Mi, Bostjan Kobe, Faming Wang. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduction and Targeted Therapy 2024, 9 (1) https://doi.org/10.1038/s41392-024-01934-w
    80. Keiichiro Mine, Seiho Nagafuchi, Satoru Akazawa, Norio Abiru, Hitoe Mori, Hironori Kurisaki, Kazuya Shimoda, Yasunobu Yoshikai, Hirokazu Takahashi, Keizo Anzai. TYK2 signaling promotes the development of autoreactive CD8+ cytotoxic T lymphocytes and type 1 diabetes. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45573-9
    81. Abdelrahman Mahmoud, Ali A. S. Ahmed, Ahmed Naeem, Mohamed Abuelazm, Mahmoud Elshinawy, Abdul Rhman Hassan, Hazem Rezq, Basel Abdelazeem. Tyrosine Kinase-2 Inhibitor (Deucravacitinib) for Psoriasis: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. International Journal of Dermatology and Venereology 2024, 7 (4) , 216-225. https://doi.org/10.1097/JD9.0000000000000395
    82. Yurie Satoh-Kanda, Shingo Nakayamada, Yoshiya Tanaka. Fine-tuning SLE treatment: the potential of selective TYK2 inhibition. RMD Open 2024, 10 (4) , e005072. https://doi.org/10.1136/rmdopen-2024-005072
    83. Lingli Chen, Yujie Wei, Mengjin Hu, Yile Liu, Xiangrong Zheng. Psoriasis may increase the risk of idiopathic pulmonary fibrosis: a two-sample Mendelian randomization study. Respiratory Research 2024, 25 (1) https://doi.org/10.1186/s12931-024-02721-5
    84. Jiahao Liu, Jiachun Nie, Zhe Wang, Terumasa Kato, Yan Liu, Keiji Maruoka. Facile Generation of Trideuteromethyl Radical from Alkylsilyl Peroxide and Subsequent Functionalization. Asian Journal of Organic Chemistry 2024, 13 (11) https://doi.org/10.1002/ajoc.202400382
    85. Yuhsien Lai, Xuesong Wu, Zhuoyu Jiang, Yifei Fang, Xiuting Liu, Dan Hong, Yanyun Jiang, Guozhen Tan, Shiqi Tang, Siyao Lu, David Wei, Sam T. Hwang, Kit S. Lam, Liangchun Wang, Yanyu Huang, Zhenrui Shi. Topical treatment of tyrosine kinase 2 inhibitor through borneol-embedded hydrogel: Evaluation for preventive, therapeutic, and Recurrent management of psoriasis. Bioactive Materials 2024, 41 , 83-95. https://doi.org/10.1016/j.bioactmat.2024.07.013
    86. Rohit Pal, Gurubasavaraja Swamy Purawarga Matada, Ghanshyam Teli, Moumita Saha, Rajiv Patel. Therapeutic potential of anticancer activity of nitrogen-containing heterocyclic scaffolds as Janus kinase (JAK) inhibitor: Biological activity, selectivity, and structure–activity relationship. Bioorganic Chemistry 2024, 152 , 107696. https://doi.org/10.1016/j.bioorg.2024.107696
    87. Yi-Ru Bai, Xin Yang, Ke-Tong Chen, Xiao-Dan Cuan, Yao-Dong Zhang, Li Zhou, Li Yang, Hong-Min Liu, Shuo Yuan. A comprehensive review of new small molecule drugs approved by the FDA in 2022: Advance and prospect. European Journal of Medicinal Chemistry 2024, 277 , 116759. https://doi.org/10.1016/j.ejmech.2024.116759
    88. Yu Xia, Qingqing Chen, He-Nan Liu, Yuan Chi, Ying Zhu, Li-Shen Shan, Bing Dai, Lin Wu, Xiaobao Shi. Synthetic routes and clinical application of new drugs approved by EMA during 2023. European Journal of Medicinal Chemistry 2024, 277 , 116762. https://doi.org/10.1016/j.ejmech.2024.116762
    89. Łukasz Zadka, Adam Ustaszewski, Natalia Glatzel-Plucińska, Agnieszka Rusak, Izabela Łaczmańska, Katarzyna Ratajczak-Wielgomas, Alicja Kmiecik, Aleksandra Piotrowska, Katarzyna Haczkiewicz-Leśniak, Agnieszka Gomułkiewicz, Magdalena Kostrzewska-Poczekaj, Piotr Dzięgiel. TYK2 Protein Expression and Its Potential as a Tissue-Based Biomarker for the Diagnosis of Colorectal Cancer. Cancers 2024, 16 (21) , 3665. https://doi.org/10.3390/cancers16213665
    90. Xiaofeng Liu, Binyou Wang, Yuan Liu, Yang Yu, Ying Wan, Jianming Wu, Yiwei Wang. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions. Molecular Diversity 2024, 28 (5) , 3445-3456. https://doi.org/10.1007/s11030-023-10742-3
    91. Ian M. Catlett, Lu Gao, Yanhua Hu, Subhashis Banerjee, James G. Krueger. Pharmacodynamic Response to Deucravacitinib, an Oral, Selective, Allosteric TYK2 Inhibitor, in a Global, Phase 2, Randomized, Double-Blind, Placebo-Controlled Psoriasis Trial. Dermatology and Therapy 2024, 14 (10) , 2827-2839. https://doi.org/10.1007/s13555-024-01262-5
    92. Katherine A. Davies, Peter E. Czabotar, James M. Murphy. Death at a funeral: Activation of the dead enzyme, MLKL, to kill cells by necroptosis. Current Opinion in Structural Biology 2024, 88 , 102891. https://doi.org/10.1016/j.sbi.2024.102891
    93. Xiaoyan Zheng, Congyu Ke, Sichang Wang, Shenlin Huang. Concise synthesis of pyridopyridazines. Tetrahedron Letters 2024, 149 , 155263. https://doi.org/10.1016/j.tetlet.2024.155263
    94. Anniina Virtanen, Francesca Romana Spinelli, Jean Baptiste Telliez, John J. O’Shea, Olli Silvennoinen, Massimo Gadina. JAK inhibitor selectivity: new opportunities, better drugs?. Nature Reviews Rheumatology 2024, 20 (10) , 649-665. https://doi.org/10.1038/s41584-024-01153-1
    95. Brandon Johnson, Lihong Cheng, Jennifer Koenitzer, Ian M. Catlett, Peter Schafer. Nonclinical evaluations of deucravacitinib and Janus kinase inhibitors in homeostatic and inflammatory pathways. Frontiers in Immunology 2024, 15 https://doi.org/10.3389/fimmu.2024.1437512
    96. Saad Ahmed, Rohan Yesudian, Hassan Ubaide, Laura C Coates. Rationale and concerns for using JAK inhibitors in axial spondyloarthritis. Rheumatology Advances in Practice 2024, 8 (4) https://doi.org/10.1093/rap/rkae141
    97. Mengyi Shan, Xuan Zhao, Peng Sun, Xinhao Qu, Gang Cheng, Lu-Ping Qin. Revisiting Structure-activity Relationships: Unleashing the potential of selective Janus kinase 1 inhibitors. Bioorganic Chemistry 2024, 149 , 107506. https://doi.org/10.1016/j.bioorg.2024.107506
    98. Giorgia Sprega, Giorgi Kobidze, Alfredo Fabrizio Lo Faro, Barbara Sechi, Paola Peluso, Tivadar Farkas, Francesco Paolo Busardò, Bezhan Chankvetadze. Separation of isotopologues of amphetamine with various degree of deuteration on achiral and polysaccharide-based chiral columns in high-performance liquid chromatography. Journal of Chromatography A 2024, 1730 , 465062. https://doi.org/10.1016/j.chroma.2024.465062
    99. Bruce Strober, Andrew Blauvelt, Richard B. Warren, Kim A. Papp, April W. Armstrong, Kenneth B. Gordon, Akimichi Morita, Andrew F. Alexis, Mark Lebwohl, Peter Foley, Renata M. Kisa, Elizabeth Colston, Tao Wang, Subhashis Banerjee, Diamant Thaçi. Deucravacitinib in moderate‐to‐severe plaque psoriasis: Pooled safety and tolerability over 52 weeks from two phase 3 trials ( POETYK PSO ‐1 and PSO ‐2). Journal of the European Academy of Dermatology and Venereology 2024, 38 (8) , 1543-1554. https://doi.org/10.1111/jdv.19925
    100. Caixia Hu, Xiaomei Han, Yu Cui, Yan Zhang, Yi Cheng. Safety and efficacy of Deucravacitinib for moderate to severe plaque psoriasis: A meta‐analysis. Skin Research and Technology 2024, 30 (8) https://doi.org/10.1111/srt.13855
    Load more citations

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2019, 62, 20, 8973–8995
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jmedchem.9b00444
    Published July 18, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    26k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.