Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165Click to copy article linkArticle link copied!
- Stephen T. Wrobleski*Stephen T. Wrobleski*For S.T.W.: phone, (609)252-4873; E-mail, [email protected]Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Stephen T. Wrobleski
- Ryan Moslin*Ryan Moslin*For R.M.: E-mail, [email protected]Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Ryan Moslin
- Shuqun LinShuqun LinImmunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Shuqun Lin
- Yanlei ZhangYanlei ZhangImmunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Yanlei Zhang
- Steven SpergelSteven SpergelImmunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Steven Spergel
- James KempsonJames KempsonDepartment of Discovery Synthesis, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by James Kempson
- John S. TokarskiJohn S. TokarskiMolecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by John S. Tokarski
- Joann StrnadJoann StrnadImmunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Joann Strnad
- Adriana Zupa-FernandezAdriana Zupa-FernandezImmunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Adriana Zupa-Fernandez
- Lihong ChengLihong ChengImmunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Lihong Cheng
- David ShusterDavid ShusterImmunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by David Shuster
- Kathleen GilloolyKathleen GilloolyImmunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Kathleen Gillooly
- Xiaoxia YangXiaoxia YangImmunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Xiaoxia Yang
- Elizabeth HeimrichElizabeth HeimrichImmunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Elizabeth Heimrich
- Kim W. McIntyreKim W. McIntyreImmunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Kim W. McIntyre
- Charu ChaudhryCharu ChaudhryLeads Discovery and Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Charu Chaudhry
- Javed KhanJaved KhanMolecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Javed Khan
- Max RuzanovMax RuzanovMolecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Max Ruzanov
- Jeffrey TredupJeffrey TredupMolecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Jeffrey Tredup
- Dawn MulliganDawn MulliganMolecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Dawn Mulligan
- Dianlin XieDianlin XieMolecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Dianlin Xie
- Huadong SunHuadong SunMetabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Huadong Sun
- Christine HuangChristine HuangMetabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Christine Huang
- Celia D’ArienzoCelia D’ArienzoMetabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Celia D’Arienzo
- Nelly AranibarNelly AranibarMetabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Nelly Aranibar
- Manoj ChineyManoj ChineyMetabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Manoj Chiney
- Anjaneya ChimalakondaAnjaneya ChimalakondaMetabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Anjaneya Chimalakonda
- William J. PittsWilliam J. PittsImmunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by William J. Pitts
- Louis LombardoLouis LombardoImmunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Louis Lombardo
- Percy H. CarterPercy H. CarterImmunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by Percy H. Carter
- James R. BurkeJames R. BurkeImmunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by James R. Burke
- David S. WeinsteinDavid S. WeinsteinImmunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United StatesMore by David S. Weinstein
Abstract

Small molecule JAK inhibitors have emerged as a major therapeutic advancement in treating autoimmune diseases. The discovery of isoform selective JAK inhibitors that traditionally target the catalytically active site of this kinase family has been a formidable challenge. Our strategy to achieve high selectivity for TYK2 relies on targeting the TYK2 pseudokinase (JH2) domain. Herein we report the late stage optimization efforts including a structure-guided design and water displacement strategy that led to the discovery of BMS-986165 (11) as a high affinity JH2 ligand and potent allosteric inhibitor of TYK2. In addition to unprecedented JAK isoform and kinome selectivity, 11 shows excellent pharmacokinetic properties with minimal profiling liabilities and is efficacious in several murine models of autoimmune disease. On the basis of these findings, 11 appears differentiated from all other reported JAK inhibitors and has been advanced as the first pseudokinase-directed therapeutic in clinical development as an oral treatment for autoimmune diseases.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 266 publications.
- Shuangshuang Xiong, Jiaqi Yang, Ming Yang, Maoxu Xiao, Si Ha, Wenxiang Tao, Luyu Ma, Chenxuan Ji, Hua Xiang, Guoshun Luo. Discovery of a Highly Potent and Selective Tyrosine Kinase 2 (TYK2) Degrader with In Vivo Therapeutic Efficacy in a Murine Psoriasis Model. Journal of Medicinal Chemistry 2025, 68
(7)
, 7560-7578. https://doi.org/10.1021/acs.jmedchem.5c00027
- Murugaiah A M Subbaiah, Thangeswaran Ramar, Maheswara Reddy, Sankara Sivaprasad LVJ, Shekhar Yeshwante, Srikanth Sridhar, Salil Desai, Manoj Chiney, Elizabeth A. Dierks, Arvind Mathur, Ryan Moslin, David S. Weinstein. Prodrug Strategy to Address Impaired Oral Absorption of a Weakly Basic TYK2 Inhibitor Caused by a Gastric Acid-Reducing Agent. Journal of Medicinal Chemistry 2024, 67
(22)
, 20664-20681. https://doi.org/10.1021/acs.jmedchem.4c02219
- Jingwei Li, Qiao Lin, Otto Dungan, Yue Fu, Sumei Ren, Serge Ruccolo, Sarah Moor, Eric M. Phillips. Homogenous Palladium-Catalyzed Dehalogenative Deuteration and Tritiation of Aryl Halides with D2/T2 Gas. Journal of the American Chemical Society 2024, 146
(46)
, 31497-31506. https://doi.org/10.1021/jacs.4c08176
- Chunhua Ma, Craig W. Lindsley, (Editor-in-Chief, Journal of Medicinal Chemistry)Junbiao Chang, Bin Yu (Early-Career Editorial Board Member, Journal of Medicinal Chemistry). Rational Molecular Editing: A New Paradigm in Drug Discovery. Journal of Medicinal Chemistry 2024, 67
(14)
, 11459-11466. https://doi.org/10.1021/acs.jmedchem.4c01347
- Oscar Mammoliti, Sébastien Martina, Pieter Claes, Ghjuvanni Coti, Roland Blanque, Catherine Jagerschmidt, Kenji Shoji, Monica Borgonovi, Steve De Vos, Florence Marsais, Line Oste, Evelyne Quinton, Miriam López-Ramos, David Amantini, Reginald Brys, Juan-Miguel Jimenez, René Galien, Steven van der Plas. Discovery of GLPG3667, a Selective ATP Competitive Tyrosine Kinase 2 Inhibitor for the Treatment of Autoimmune Diseases. Journal of Medicinal Chemistry 2024, 67
(11)
, 8545-8568. https://doi.org/10.1021/acs.jmedchem.4c00769
- Scott P. France, Erick A. Lindsey, Emma L. McInturff, Simon Berritt, Daniel W. Carney, Jacob C. DeForest, Sarah J. Fink, Andrew C. Flick, Tony S. Gibson, Kaitlyn Gray, Amber M. Johnson, Carolyn A. Leverett, Yiyang Liu, Subham Mahapatra, Rebecca B. Watson. Synthetic Approaches to the New Drugs Approved During 2022. Journal of Medicinal Chemistry 2024, 67
(6)
, 4376-4418. https://doi.org/10.1021/acs.jmedchem.3c02374
- Maria Orehova, Janez Plavec, Vojč Kocman. High-Resolution Structure of RNA G-Quadruplex Containing Unique Structural Motifs Originating from the 5′-UTR of Human Tyrosine Kinase 2 (TYK2). ACS Omega 2024, 9
(6)
, 7215-7229. https://doi.org/10.1021/acsomega.3c09592
- Silvana LeitBhaskar SrivastavaNathan E. GenungJoshua J. McElweeDenise LevasseurScott D. Edmondson. TARGETING SELECTIVE TYROSINE KINASE 2 (TYK2) INHIBITORS FOR THE TREATMENT OF AUTOIMMUNE DISEASES. , 157-185. https://doi.org/10.1021/mc-2023-vol58.ch07
- Erika Araujo, Ian M. Bell, Alexander Burckle, Dennis C. Koester, James R. Manning, Georgette CastanedoMingshuo Zeng, T. G. Murali Dhar, Natalie Holmberg-DouglasEric R. Welin, J. Robert Merritt, Kevin M. Peese, Joanne J. Bronson. TO MARKET, TO MARKET–2022: SMALL MOLECULES. , 595-710. https://doi.org/10.1021/mc-2023-vol58.ch24
- Eric Breinlinger, Stacy Van Epps, Michael Friedman, Maria Argiriadi, Ellen Chien, Gekleng Chhor, Marlon Cowart, Theresa Dunstan, Candace Graff, David Hardee, J. Martin Herold, Andrew Little, Richard McCarthy, Julie Parmentier, Matthew Perham, Wei Qiu, Michael Schrimpf, Thomas Vargo, Matthew P. Webster, Fei Wu, Dawn Bennett, Jeremy Edmunds. Targeting the Tyrosine Kinase 2 (TYK2) Pseudokinase Domain: Discovery of the Selective TYK2 Inhibitor ABBV-712. Journal of Medicinal Chemistry 2023, 66
(20)
, 14335-14356. https://doi.org/10.1021/acs.jmedchem.3c01373
- Sean P. Henry, William L. Jorgensen. Progress on the Pharmacological Targeting of Janus Pseudokinases. Journal of Medicinal Chemistry 2023, 66
(16)
, 10959-10990. https://doi.org/10.1021/acs.jmedchem.3c00926
- Silvana Leit, Jeremy Greenwood, Samantha Carriero, Sayan Mondal, Robert Abel, Mark Ashwell, Heather Blanchette, Nicholas A. Boyles, Mark Cartwright, Alan Collis, Shulu Feng, Phani Ghanakota, Geraldine C. Harriman, Vinayak Hosagrahara, Neelu Kaila, Rosanna Kapeller, Salma B. Rafi, Donna L. Romero, Paul M. Tarantino, Jignesh Timaniya, Angela V. Toms, Ronald T. Wester, William Westlin, Bhaskar Srivastava, Wenyan Miao, Peter Tummino, Joshua J. McElwee, Scott D. Edmondson, Craig E. Masse. Discovery of a Potent and Selective Tyrosine Kinase 2 Inhibitor: TAK-279. Journal of Medicinal Chemistry 2023, 66
(15)
, 10473-10496. https://doi.org/10.1021/acs.jmedchem.3c00600
- Dean G. Brown. An Analysis of Successful Hit-to-Clinical Candidate Pairs. Journal of Medicinal Chemistry 2023, 66
(11)
, 7101-7139. https://doi.org/10.1021/acs.jmedchem.3c00521
- Lucija Hok, Robert Vianello. Selective Deuteration Improves the Affinity of Adenosine A2A Receptor Ligands: A Computational Case Study with Istradefylline and Caffeine. Journal of Chemical Information and Modeling 2023, 63
(10)
, 3138-3149. https://doi.org/10.1021/acs.jcim.3c00424
- Kuojun Zhang, Ke Ye, He Tang, Zhihao Qi, Tianyu Wang, Jie Mao, Xiangyu Zhang, Sheng Jiang. Development and Therapeutic Implications of Tyrosine Kinase 2 Inhibitors. Journal of Medicinal Chemistry 2023, 66
(7)
, 4378-4416. https://doi.org/10.1021/acs.jmedchem.2c01800
- Yingzi Bu, Ruoxi Gao, Bohan Zhang, Luchen Zhang, Duxin Sun. CoGT: Ensemble Machine Learning Method and Its Application on JAK Inhibitor Discovery. ACS Omega 2023, 8
(14)
, 13232-13242. https://doi.org/10.1021/acsomega.3c00160
- Zachary J. Garlets, Elizabeth M. Yuill, Alice Yang, Qingmei Ye, Wei Ding, Christopher Wood, Junying Fan, Nicolas Lucien Cuniere, Chris Sfouggatakis. Tracking the Isotopologues: Process Improvement for the Synthesis of a Deuterated Pyrazole. Organic Process Research & Development 2023, 27
(1)
, 159-166. https://doi.org/10.1021/acs.oprd.2c00318
- Fei Liu, Bin Wang, Yanlong Liu, Wei Shi, Xujing Tang, Xiaojin Wang, Zhongyuan Hu, Ying Zhang, Yahui Guo, Xiayun Chang, Xiangyi He, Hongjiang Xu, Ying He. Novel TYK2 Inhibitors with an N-(Methyl-d3)pyridazine-3-carboxamide Skeleton for the Treatment of Autoimmune Diseases. ACS Medicinal Chemistry Letters 2022, 13
(11)
, 1730-1738. https://doi.org/10.1021/acsmedchemlett.2c00334
- Sean P. Henry, Maria-Elena Liosi, Joseph A. Ippolito, Fabian Menges, Ana S. Newton, Joseph Schlessinger, William L. Jorgensen. Covalent Modification of the JH2 Domain of Janus Kinase 2. ACS Medicinal Chemistry Letters 2022, 13
(11)
, 1819-1826. https://doi.org/10.1021/acsmedchemlett.2c00414
- Ao Wang, Xianggang Luo, Yawan Wang, Xin Meng, Zhengyu Lu, Yushe Yang. Design, Synthesis, and Biological Evaluation of Androgen Receptor Degrading and Antagonizing Bifunctional Steroidal Analogs for the Treatment of Advanced Prostate Cancer. Journal of Medicinal Chemistry 2022, 65
(18)
, 12460-12481. https://doi.org/10.1021/acs.jmedchem.2c01164
- Daniel S. Treitler, Maxime C. Soumeillant, Eric M. Simmons, Dong Lin, Bahar Inankur, Amanda J. Rogers, Michael Dummeldinger, Sergei Kolotuchin, Collin Chan, Jun Li, Adam Freitag, Federico Lora Gonzalez, Michael J. Smith, Chris Sfouggatakis, Jianji Wang, Tamas Benkovics, Joerg Deerberg, James H. Simpson, Ke Chen, Steven Tymonko. Development of a Commercial Process for Deucravacitinib, a Deuterated API for TYK2 Inhibition. Organic Process Research & Development 2022, 26
(4)
, 1202-1222. https://doi.org/10.1021/acs.oprd.1c00468
- Yue Pan, Mary M. Mader. Principles of Kinase Allosteric Inhibition and Pocket Validation. Journal of Medicinal Chemistry 2022, 65
(7)
, 5288-5299. https://doi.org/10.1021/acs.jmedchem.2c00073
- Matthew J. Goldfogel, Xuelei Guo, Jeishla L. Meléndez Matos, John A. Gurak, Jr., Matthew V. Joannou, William B. Moffat, Eric M. Simmons, Steven R. Wisniewski. Advancing Base-Metal Catalysis: Development of a Screening Method for Nickel-Catalyzed Suzuki–Miyaura Reactions of Pharmaceutically Relevant Heterocycles. Organic Process Research & Development 2022, 26
(3)
, 785-794. https://doi.org/10.1021/acs.oprd.1c00210
- Zhen Wang, Weixue Huang, Kaijie Zhou, Xiaomei Ren, Ke Ding. Targeting the Non-Catalytic Functions: a New Paradigm for Kinase Drug Discovery?. Journal of Medicinal Chemistry 2022, 65
(3)
, 1735-1748. https://doi.org/10.1021/acs.jmedchem.1c01978
- Ricardo A. M. Serafim, Jonathan M. Elkins, William J. Zuercher, Stefan A. Laufer, Matthias Gehringer. Chemical Probes for Understudied Kinases: Challenges and Opportunities. Journal of Medicinal Chemistry 2022, 65
(2)
, 1132-1170. https://doi.org/10.1021/acs.jmedchem.1c00980
- Nadine Russ, Martin Schröder, Benedict-Tilman Berger, Sebastian Mandel, Yagmur Aydogan, Sandy Mauer, Christian Pohl, David H. Drewry, Apirat Chaikuad, Susanne Müller, Stefan Knapp. Design and Development of a Chemical Probe for Pseudokinase Ca2+/calmodulin-Dependent Ser/Thr Kinase. Journal of Medicinal Chemistry 2021, 64
(19)
, 14358-14376. https://doi.org/10.1021/acs.jmedchem.1c00845
- Priyadeep Bhutani, Gaurav Joshi, Nivethitha Raja, Namrata Bachhav, Prabhakar K. Rajanna, Hemant Bhutani, Atish T. Paul, Raj Kumar. U.S. FDA Approved Drugs from 2015–June 2020: A Perspective. Journal of Medicinal Chemistry 2021, 64
(5)
, 2339-2381. https://doi.org/10.1021/acs.jmedchem.0c01786
- Chufeng Zhang, Wenyan Qi, Yong Li, Minghai Tang, Tao Yang, Kongjun Liu, Yong Chen, Dexin Deng, Mingli Xiang, Lijuan Chen. Discovery of 3-(4-(2-((1H-Indol-5-yl)amino)-5-fluoropyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile Derivatives as Selective TYK2 Inhibitors for the Treatment of Inflammatory Bowel Disease. Journal of Medicinal Chemistry 2021, 64
(4)
, 1966-1988. https://doi.org/10.1021/acs.jmedchem.0c01468
- Zhouling Xie, Xiaoxiao Yang, Yajun Duan, Jihong Han, Chenzhong Liao. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. Journal of Medicinal Chemistry 2021, 64
(3)
, 1283-1345. https://doi.org/10.1021/acs.jmedchem.0c01511
- Chunjian Liu, James Lin, Charles Langevine, Daniel Smith, Jianqing Li, John S. Tokarski, Javed Khan, Max Ruzanov, Joann Strnad, Adriana Zupa-Fernandez, Lihong Cheng, Kathleen M. Gillooly, David Shuster, Yifan Zhang, Anil Thankappan, Kim W. McIntyre, Charu Chaudhry, Paul A. Elzinga, Manoj Chiney, Anjaneya Chimalakonda, Louis J. Lombardo, John E. Macor, Percy H. Carter, James R. Burke, David S. Weinstein. Discovery of BMS-986202: A Clinical Tyk2 Inhibitor that Binds to Tyk2 JH2. Journal of Medicinal Chemistry 2021, 64
(1)
, 677-694. https://doi.org/10.1021/acs.jmedchem.0c01698
- Brian S. Gerstenberger, Catherine Ambler, Eric P. Arnold, Mary-Ellen Banker, Matthew F. Brown, James D. Clark, Alpay Dermenci, Martin E. Dowty, Andrew Fensome, Susan Fish, Matthew M. Hayward, Martin Hegen, Brett D. Hollingshead, John D. Knafels, David W. Lin, Tsung H. Lin, Dafydd R. Owen, Eddine Saiah, Raman Sharma, Felix F. Vajdos, Li Xing, Xiaojing Yang, Xin Yang, Stephen W. Wright. Discovery of Tyrosine Kinase 2 (TYK2) Inhibitor (PF-06826647) for the Treatment of Autoimmune Diseases. Journal of Medicinal Chemistry 2020, 63
(22)
, 13561-13577. https://doi.org/10.1021/acs.jmedchem.0c00948
- Bingsong Han, Francesco G. Salituro, Maria-Jesus Blanco. Impact of Allosteric Modulation in Drug Discovery: Innovation in Emerging Chemical Modalities. ACS Medicinal Chemistry Letters 2020, 11
(10)
, 1810-1819. https://doi.org/10.1021/acsmedchemlett.9b00655
- Yuqin Zhu, Yuxiang Ma, Weidong Zu, Jianing Song, Hua Wang, You Zhong, Hongmei Li, Yanmin Zhang, Qianqian Gao, Bo Kong, Junyu Xu, Fei Jiang, Xinren Wang, Shuwen Li, Chenhe Liu, Haichun Liu, Tao Lu, Yadong Chen. Identification of N-Phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine Derivatives as Novel, Potent, and Selective NF-κB Inducing Kinase (NIK) Inhibitors for the Treatment of Psoriasis. Journal of Medicinal Chemistry 2020, 63
(13)
, 6748-6773. https://doi.org/10.1021/acs.jmedchem.0c00055
- Matthew A. Cerny, Amit S. Kalgutkar, R. Scott Obach, Raman Sharma, Douglas K. Spracklin, Gregory S. Walker. Effective Application of Metabolite Profiling in Drug Design and Discovery. Journal of Medicinal Chemistry 2020, 63
(12)
, 6387-6406. https://doi.org/10.1021/acs.jmedchem.9b01840
- Jeremy A. Turkett, Anna E. Ringuette, Craig W. Lindsley, Aaron M. Bender. Synthesis of Substituted 6,7-Dihydro-5H-pyrrolo[2,3-c]pyridazines/pyrazines via Catalyst-Free Tandem Hydroamination–Aromatic Substitution. The Journal of Organic Chemistry 2020, 85
(9)
, 6123-6130. https://doi.org/10.1021/acs.joc.9b03463
- Yu Chang, Shilin Xu, Ke Ding. Tyrosine Kinase 2 (TYK2) Allosteric Inhibitors To Treat Autoimmune Diseases. Journal of Medicinal Chemistry 2019, 62
(20)
, 8951-8952. https://doi.org/10.1021/acs.jmedchem.9b01612
- Hirokazu Matsumoto, Tien-Cheng Wang, Haruka Taniguchi, Yu Nishioka, Mariko Hatakeyama, Takayoshi Kinoshita, Masaaki Sawa. Identification of small molecule activators targeting TYK2 pseudokinase domain. Bioorganic & Medicinal Chemistry Letters 2025, 123 , 130233. https://doi.org/10.1016/j.bmcl.2025.130233
- Alicia Wagner, Roger Trombley, Maris Podgurski, Anthony A. Ruberto, Meng Cui, Caitlin A. Cooper, William E. Long, Gia-Bao Nguyen, Adriana A. Marin, Sarah Lee Mai, Franco Lombardo, Steven P. Maher, Dennis E. Kyle, Roman Manetsch. Discovery and optimization of a novel carboxamide scaffold with selective antimalarial activity. European Journal of Medicinal Chemistry 2025, 291 , 117572. https://doi.org/10.1016/j.ejmech.2025.117572
- Wei Liu, Yongjun Mao, Junhao Chen, Xinze Yan. New and Convergent Synthesis of Deucravacitinib. Organic Preparations and Procedures International 2025, , 1-10. https://doi.org/10.1080/00304948.2025.2480315
- Teppei Hagino, Hidehisa Saeki, Eita Fujimoto, Naoko Kanda. Long-term effectiveness and safety of deucravacitinib for psoriasis: a 52-week real-world study of genital, scalp and nail lesions. Clinical and Experimental Dermatology 2025, 50
(5)
, 952-959. https://doi.org/10.1093/ced/llae530
- Manish Ramchandani, Amit Kumar Goyal. Computational insights of deucravacitinib’s selectivity for TYK2 pseudokinase vs. JAK kinase domain via molecular modeling studies. Journal of Biomolecular Structure and Dynamics 2025, , 1-15. https://doi.org/10.1080/07391102.2025.2484663
- Guofang Guo, Yan Zhang, Ziting Huang, Wen Liu, Xueyi Lu, Zihan Liu, Xu-Qiong Xiao, Ying Bai, Xinxin Shao. Direct trideuteromethylselenation with a shelf-stable reagent
Se
-methyl-
d
3
selenosulfonate. Organic Chemistry Frontiers 2025, 12
(8)
, 2592-2599. https://doi.org/10.1039/D4QO02396J
- Debora Chiodi, Yoshihiro Ishihara. Methoxy group: a non-lipophilic “scout” for protein pocket finding. Future Medicinal Chemistry 2025, , 1-3. https://doi.org/10.1080/17568919.2025.2485865
- April W. Armstrong, Leon Kircik, Linda Stein Gold, Bruce Strober, Claudia H. M. C. De Oliveira, John Vaile, Ying-Ming Jou, Carolin Daamen, Thomas Scharnitz, Mark Lebwohl. Deucravacitinib: Laboratory Parameters Across Phase 3 Plaque Psoriasis Trials. Dermatology and Therapy 2025, 15
(4)
, 1025-1035. https://doi.org/10.1007/s13555-025-01362-w
- Jiong Chen, Yuan-Yuan Zhu, Lu Huang, Shuang-Shuang Zhang, Shuang-Xi Gu. Application of deuterium in research and development of drugs. European Journal of Medicinal Chemistry 2025, 287 , 117371. https://doi.org/10.1016/j.ejmech.2025.117371
- Ian R. Outhwaite, Isabelle Kwan, Ariel Leyte-Vidal, Neil P. Shah, Ivet Bahar, Markus A. Seeliger. Resistance to Allosteric Inhibitors. Journal of Molecular Biology 2025, 13 , 169133. https://doi.org/10.1016/j.jmb.2025.169133
- Tyler P. Molitor, Genki Hayashi, Mei-Yao Lin, Carissa J. Dunn, Nathan G. Peterson, Robert G. Poston, Michael P. Kurnellas, David A. Traver, Seona Patel, Zeynep Akgungor, Virginia Leonardi, Colizel Lewis, Joshua S. Segales, Dylan S. Bennett, Anh P. Truong, Manjari Dani, Swati Naphade, Jamie K. Wong, Annie E. McDermott, Sarah M. Kovalev, Gillian L. Ciaccio, Saud A. Sadiq, Zhonghua Pei, Stephen Wood, Arash Rassoulpour. Central TYK2 inhibition identifies TYK2 as a key neuroimmune modulator. Proceedings of the National Academy of Sciences 2025, 122
(13)
https://doi.org/10.1073/pnas.2422172122
- Teppei Hagino, Marina Onda, Hidehisa Saeki, Eita Fujimoto, Naoko Kanda. Real‐world 52‐week effectiveness of deucravacitinib in psoriasis: A stratified analysis by age and body mass index. The Journal of Dermatology 2025, 52
(4)
, 663-671. https://doi.org/10.1111/1346-8138.17617
- Teppei Hagino, Hidehisa Saeki, Eita Fujimoto, Naoko Kanda. Long‐term real‐world effectiveness of deucravacitinib in psoriasis: A 52‐week prospective study stratified by prior apremilast or biologic therapy. The Journal of Dermatology 2025, 52
(4)
, 634-641. https://doi.org/10.1111/1346-8138.17665
- Florian Perner, Heike L. Pahl, Robert Zeiser, Florian H. Heidel. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025, 185 https://doi.org/10.1038/s41375-025-02569-8
- Akimichi Morita, Shinichi Imafuku, Yayoi Tada, Yukari Okubo, Katsuyoshi Habiro, Katsuki Tsuritani, Subhashis Banerjee, Kim Hoyt, Renata M. Kisa, Mamitaro Ohtsuki. Deucravacitinib in plaque psoriasis: Safety and efficacy through 3 years in Japanese patients in the phase 3
POETYK PSO
‐1,
PSO
‐4, and
LTE
trials. The Journal of Dermatology 2025, 16 https://doi.org/10.1111/1346-8138.17685
- April W. Armstrong, Mark Lebwohl, Richard B. Warren, Howard Sofen, Akimichi Morita, Carle Paul, Kim A. Papp, Matthew J. Colombo, Julie Scotto, John Vaile, Joe Zhuo, Eleni Vritzali, Victoria Berger, Georgene Schroeder, Subhashis Banerjee, Diamant Thaçi, Bruce Strober. Deucravacitinib in plaque psoriasis: Four‐year safety and efficacy results from the Phase 3
POETYK PSO
‐1,
PSO
‐2 and long‐term extension trials. Journal of the European Academy of Dermatology and Venereology 2025, 66 https://doi.org/10.1111/jdv.20553
- Anushka Bhatt, Pramiti Gupta, Richard Furie, Himanshu Vashistha. A focused report on IFN-1 targeted therapies for lupus erythematosus. Expert Opinion on Investigational Drugs 2025, 34
(3)
, 121-129. https://doi.org/10.1080/13543784.2025.2473060
- Francesco Ciccia, Dennis McGonagle, Ranjeny Thomas, Helena Marzo-Ortega, David A. Martin, Arne Yndestad, Mikhail Volkov. JAK inhibition and axial spondyloarthritis: new steps on the path to understanding pathophysiology. Frontiers in Immunology 2025, 16 https://doi.org/10.3389/fimmu.2025.1488357
- Zhiqin Fang, Rundong Jiang, Yutong Wang, Wangqing Chen, Xiang Chen, Mingzhu Yin. Topical TYK2 inhibitor ameliorates psoriasis‐like dermatitis via the AKT‐SP1‐NGFR‐AP1 pathway in keratinocytes. Clinical and Translational Medicine 2025, 15
(3)
https://doi.org/10.1002/ctm2.70256
- Zhiheng Jin, Gang Li, Dengqin He, Jiaxin Chen, Yali Zhang, Mengjie Li, Hongliang Yao. An overview of small-molecule agents for the treatment of psoriasis. Bioorganic & Medicinal Chemistry 2025, 119 , 118067. https://doi.org/10.1016/j.bmc.2025.118067
- Jianzhong Zhang, Yangfeng Ding, Ping Wang, Linfeng Li, Weili Pan, Yan Lu, Hao Cheng, Xian Jiang, Ji-Chen Ho, Shuping Guo, Leona Liu, Arkendu Chatterjee, Renata M Kisa, Subhashis Banerjee. Deucravacitinib, an oral selective allosteric tyrosine kinase 2 inhibitor, in patients from China mainland, Taiwan and South Korea with moderate-to-severe plaque psoriasis: a phase III randomized clinical trial. British Journal of Dermatology 2025, 192
(3)
, 402-409. https://doi.org/10.1093/bjd/ljae406
- Joseph F. Merola, Laura K. Ferris, Jeffrey M. Sobell, Howard Sofen, John Osborne, John Vaile, Ying-Ming Jou, Carolin Daamen, Julie Scotto, Thomas Scharnitz, Mark Lebwohl. Deucravacitinib: Adverse Events of Interest Across Phase 3 Plaque Psoriasis Trials. Dermatology and Therapy 2025, 15
(2)
, 453-462. https://doi.org/10.1007/s13555-025-01337-x
- Lin Pan, Juan Xu, Hongming Xie, Yingjun Zhang, Huanfeng Jiang, Yongqi Yao, Wanqing Wu. Tyrosine kinase 2 inhibitors: Synthesis and applications in the treatment of autoimmune diseases. European Journal of Medicinal Chemistry 2025, 283 , 117114. https://doi.org/10.1016/j.ejmech.2024.117114
- Elham Adabi, Filippos T. Charitidis, Frederic B. Thalheimer, Mar Guaza-Lasheras, Colin Clarke, Christian J. Buchholz. Enhanced conversion of T cells into CAR T cells by modulation of the MAPK/ERK pathway. Cell Reports Medicine 2025, 6
(2)
, 101970. https://doi.org/10.1016/j.xcrm.2025.101970
- Malindi Georgia Haggett, Sangho Lee, Francis Yi Xing Lai. A systematic review of the efficacy of
TYK2
inhibitors in patients with dermatological disease. Australasian Journal of Dermatology 2025, 66
(1)
, 1-13. https://doi.org/10.1111/ajd.14391
- Meeral Gosia, Gaurav Doshi, Siddhi Bagwe Parab, Angel Godad. Innovative Approaches to Psoriasis: Small Molecules Targeting Key Signaling Pathways. Immunological Investigations 2025, 9 , 1-37. https://doi.org/10.1080/08820139.2025.2449960
- April W. Armstrong, Mark Lebwohl, Richard B. Warren, Howard Sofen, Shinichi Imafuku, Mamitaro Ohtsuki, Lynda Spelman, Thierry Passeron, Kim A. Papp, Renata M. Kisa, John Vaile, Victoria Berger, Eleni Vritzali, Kim Hoyt, Matthew J. Colombo, Julie Scotto, Subhashis Banerjee, Bruce Strober, Diamant Thaçi, Andrew Blauvelt. Safety and Efficacy of Deucravacitinib in Moderate to Severe Plaque Psoriasis for Up to 3 Years. JAMA Dermatology 2025, 161
(1)
, 56. https://doi.org/10.1001/jamadermatol.2024.4688
- Lulu Xia, Hongxin Li, Li Long, Wei Ruan, Jiajia Ma, Shan Xu, Dan Qiao. Research progress on the pathogenesis of psoriasis and its small molecule inhibitors. Archiv der Pharmazie 2025, 358
(1)
https://doi.org/10.1002/ardp.202400621
- JunJun Jia, Xuelian Zhou, Qingfei Chu. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer. Molecular and Cellular Biochemistry 2025, 480
(1)
, 1-17. https://doi.org/10.1007/s11010-024-04983-5
- Rajdeep Dey, Udit Chaube, Hardik Bhatt, Bhumika Patel. Small Molecule Drug Design. 2025, 622-633. https://doi.org/10.1016/B978-0-323-95502-7.00262-1
- Huali Yang, Ning Li, Yang Liu. Sotyktu (Deucravacitinib): the first tyrosine kinase 2 (TYK2) inhibitor approved for the treatment of psoriasis. 2025, 571-586. https://doi.org/10.1016/B978-0-443-23932-8.00031-5
- Anniina Virtanen, Vivian Kettunen, Kirsikka Musta, Veera Räkköläinen, Stefan Knapp, Teemu Haikarainen, Olli Silvennoinen. Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target. Advances in Biological Regulation 2025, 95 , 101072. https://doi.org/10.1016/j.jbior.2024.101072
- Arno R. Bourgonje, Ryan C. Ungaro, Saurabh Mehandru, Jean-Frédéric Colombel. Targeting the Interleukin 23 Pathway in Inflammatory Bowel Disease. Gastroenterology 2025, 168
(1)
, 29-52.e3. https://doi.org/10.1053/j.gastro.2024.05.036
- 宪昊 迟. Research Progress on Virtual Screening Design Techniques for Small Molecule Inhibitors of JAK3 Kinase. Hans Journal of Medicinal Chemistry 2025, 13
(01)
, 107-117. https://doi.org/10.12677/hjmce.2025.131011
- Teppei Hagino, Hidehisa Saeki, Eita Fujimoto, Naoko Kanda. Effectiveness and safety of deucravacitinib treatment for moderate-to-severe psoriasis in real-world clinical practice in Japan. Journal of Dermatological Treatment 2024, 35
(1)
https://doi.org/10.1080/09546634.2024.2307489
- David A. De Luca, Cristian Papara, Tomasz Hawro, Diamant Thaçi, Sascha Ständer. Exploring the effect of deucravacitinib in patients with palmoplantar pustular psoriasis. Journal of Dermatological Treatment 2024, 35
(1)
https://doi.org/10.1080/09546634.2024.2399220
- Seong Jin Jo. Rapid improvement of plaque psoriasis with short-term deucravacitinib therapy: A case report. Journal of the Korean Society for Psoriasis 2024, 21
(2)
, 83-85. https://doi.org/10.23203/JKSP.2024.21.2.83
- Mariko Niki, Yoshiaki Kubo. A case of Bell palsy during the course of oral
TYK2
inhibitor deucravacitinib therapy in psoriasis. The Journal of Dermatology 2024, 212 https://doi.org/10.1111/1346-8138.17596
- Martin Stinglhamer, Jan Hendrik Kuhlmann, Elisa Martinelli, Stefania Perulli, Martin Sandvoss, Christian Mück‐Lichtenfeld, Volker Derdau, Olga García Mancheño. Regioselektiver, photoredox‐katalysierter Wasserstoffisotopenaustausch an benzylischen Positionen. Angewandte Chemie 2024, 136
(50)
https://doi.org/10.1002/ange.202411567
- Martin Stinglhamer, Jan Hendrik Kuhlmann, Elisa Martinelli, Stefania Perulli, Martin Sandvoss, Christian Mück‐Lichtenfeld, Volker Derdau, Olga García Mancheño. Site‐selective Photoredox‐Catalyzed Late‐stage Benzylic Hydrogen Isotope Exchange. Angewandte Chemie International Edition 2024, 63
(50)
https://doi.org/10.1002/anie.202411567
- Lalmohan Maji, Sindhuja Sengupta, Gurubasavaraja Swamy Purawarga Matada, Ghanshyam Teli, Gourab Biswas, Pronoy Kanti Das, Manjunatha Panduranga Mudgal. Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship. Molecular Diversity 2024, 28
(6)
, 4467-4513. https://doi.org/10.1007/s11030-023-10794-5
- Yiqiong Bao, Ran Xu, Jingjing Guo. The multiple-action allosteric inhibition of TYK2 by deucravacitinib: Insights from computational simulations. Computational Biology and Chemistry 2024, 113 , 108224. https://doi.org/10.1016/j.compbiolchem.2024.108224
- You Lv, Jianxun Qi, Jeffrey J. Babon, Longxing Cao, Guohuang Fan, Jiajia Lang, Jin Zhang, Pengbing Mi, Bostjan Kobe, Faming Wang. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduction and Targeted Therapy 2024, 9
(1)
https://doi.org/10.1038/s41392-024-01934-w
- Keiichiro Mine, Seiho Nagafuchi, Satoru Akazawa, Norio Abiru, Hitoe Mori, Hironori Kurisaki, Kazuya Shimoda, Yasunobu Yoshikai, Hirokazu Takahashi, Keizo Anzai. TYK2 signaling promotes the development of autoreactive CD8+ cytotoxic T lymphocytes and type 1 diabetes. Nature Communications 2024, 15
(1)
https://doi.org/10.1038/s41467-024-45573-9
- Abdelrahman Mahmoud, Ali A. S. Ahmed, Ahmed Naeem, Mohamed Abuelazm, Mahmoud Elshinawy, Abdul Rhman Hassan, Hazem Rezq, Basel Abdelazeem. Tyrosine Kinase-2 Inhibitor (Deucravacitinib) for Psoriasis: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. International Journal of Dermatology and Venereology 2024, 7
(4)
, 216-225. https://doi.org/10.1097/JD9.0000000000000395
- Yurie Satoh-Kanda, Shingo Nakayamada, Yoshiya Tanaka. Fine-tuning SLE treatment: the potential of selective TYK2 inhibition. RMD Open 2024, 10
(4)
, e005072. https://doi.org/10.1136/rmdopen-2024-005072
- Lingli Chen, Yujie Wei, Mengjin Hu, Yile Liu, Xiangrong Zheng. Psoriasis may increase the risk of idiopathic pulmonary fibrosis: a two-sample Mendelian randomization study. Respiratory Research 2024, 25
(1)
https://doi.org/10.1186/s12931-024-02721-5
- Jiahao Liu, Jiachun Nie, Zhe Wang, Terumasa Kato, Yan Liu, Keiji Maruoka. Facile Generation of Trideuteromethyl Radical from Alkylsilyl Peroxide and Subsequent Functionalization. Asian Journal of Organic Chemistry 2024, 13
(11)
https://doi.org/10.1002/ajoc.202400382
- Yuhsien Lai, Xuesong Wu, Zhuoyu Jiang, Yifei Fang, Xiuting Liu, Dan Hong, Yanyun Jiang, Guozhen Tan, Shiqi Tang, Siyao Lu, David Wei, Sam T. Hwang, Kit S. Lam, Liangchun Wang, Yanyu Huang, Zhenrui Shi. Topical treatment of tyrosine kinase 2 inhibitor through borneol-embedded hydrogel: Evaluation for preventive, therapeutic, and Recurrent management of psoriasis. Bioactive Materials 2024, 41 , 83-95. https://doi.org/10.1016/j.bioactmat.2024.07.013
- Rohit Pal, Gurubasavaraja Swamy Purawarga Matada, Ghanshyam Teli, Moumita Saha, Rajiv Patel. Therapeutic potential of anticancer activity of nitrogen-containing heterocyclic scaffolds as Janus kinase (JAK) inhibitor: Biological activity, selectivity, and structure–activity relationship. Bioorganic Chemistry 2024, 152 , 107696. https://doi.org/10.1016/j.bioorg.2024.107696
- Yi-Ru Bai, Xin Yang, Ke-Tong Chen, Xiao-Dan Cuan, Yao-Dong Zhang, Li Zhou, Li Yang, Hong-Min Liu, Shuo Yuan. A comprehensive review of new small molecule drugs approved by the FDA in 2022: Advance and prospect. European Journal of Medicinal Chemistry 2024, 277 , 116759. https://doi.org/10.1016/j.ejmech.2024.116759
- Yu Xia, Qingqing Chen, He-Nan Liu, Yuan Chi, Ying Zhu, Li-Shen Shan, Bing Dai, Lin Wu, Xiaobao Shi. Synthetic routes and clinical application of new drugs approved by EMA during 2023. European Journal of Medicinal Chemistry 2024, 277 , 116762. https://doi.org/10.1016/j.ejmech.2024.116762
- Łukasz Zadka, Adam Ustaszewski, Natalia Glatzel-Plucińska, Agnieszka Rusak, Izabela Łaczmańska, Katarzyna Ratajczak-Wielgomas, Alicja Kmiecik, Aleksandra Piotrowska, Katarzyna Haczkiewicz-Leśniak, Agnieszka Gomułkiewicz, Magdalena Kostrzewska-Poczekaj, Piotr Dzięgiel. TYK2 Protein Expression and Its Potential as a Tissue-Based Biomarker for the Diagnosis of Colorectal Cancer. Cancers 2024, 16
(21)
, 3665. https://doi.org/10.3390/cancers16213665
- Xiaofeng Liu, Binyou Wang, Yuan Liu, Yang Yu, Ying Wan, Jianming Wu, Yiwei Wang. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions. Molecular Diversity 2024, 28
(5)
, 3445-3456. https://doi.org/10.1007/s11030-023-10742-3
- Ian M. Catlett, Lu Gao, Yanhua Hu, Subhashis Banerjee, James G. Krueger. Pharmacodynamic Response to Deucravacitinib, an Oral, Selective, Allosteric TYK2 Inhibitor, in a Global, Phase 2, Randomized, Double-Blind, Placebo-Controlled Psoriasis Trial. Dermatology and Therapy 2024, 14
(10)
, 2827-2839. https://doi.org/10.1007/s13555-024-01262-5
- Katherine A. Davies, Peter E. Czabotar, James M. Murphy. Death at a funeral: Activation of the dead enzyme, MLKL, to kill cells by necroptosis. Current Opinion in Structural Biology 2024, 88 , 102891. https://doi.org/10.1016/j.sbi.2024.102891
- Xiaoyan Zheng, Congyu Ke, Sichang Wang, Shenlin Huang. Concise synthesis of pyridopyridazines. Tetrahedron Letters 2024, 149 , 155263. https://doi.org/10.1016/j.tetlet.2024.155263
- Anniina Virtanen, Francesca Romana Spinelli, Jean Baptiste Telliez, John J. O’Shea, Olli Silvennoinen, Massimo Gadina. JAK inhibitor selectivity: new opportunities, better drugs?. Nature Reviews Rheumatology 2024, 20
(10)
, 649-665. https://doi.org/10.1038/s41584-024-01153-1
- Brandon Johnson, Lihong Cheng, Jennifer Koenitzer, Ian M. Catlett, Peter Schafer. Nonclinical evaluations of deucravacitinib and Janus kinase inhibitors in homeostatic and inflammatory pathways. Frontiers in Immunology 2024, 15 https://doi.org/10.3389/fimmu.2024.1437512
- Saad Ahmed, Rohan Yesudian, Hassan Ubaide, Laura C Coates. Rationale and concerns for using JAK inhibitors in axial spondyloarthritis. Rheumatology Advances in Practice 2024, 8
(4)
https://doi.org/10.1093/rap/rkae141
- Mengyi Shan, Xuan Zhao, Peng Sun, Xinhao Qu, Gang Cheng, Lu-Ping Qin. Revisiting Structure-activity Relationships: Unleashing the potential of selective Janus kinase 1 inhibitors. Bioorganic Chemistry 2024, 149 , 107506. https://doi.org/10.1016/j.bioorg.2024.107506
- Giorgia Sprega, Giorgi Kobidze, Alfredo Fabrizio Lo Faro, Barbara Sechi, Paola Peluso, Tivadar Farkas, Francesco Paolo Busardò, Bezhan Chankvetadze. Separation of isotopologues of amphetamine with various degree of deuteration on achiral and polysaccharide-based chiral columns in high-performance liquid chromatography. Journal of Chromatography A 2024, 1730 , 465062. https://doi.org/10.1016/j.chroma.2024.465062
- Bruce Strober, Andrew Blauvelt, Richard B. Warren, Kim A. Papp, April W. Armstrong, Kenneth B. Gordon, Akimichi Morita, Andrew F. Alexis, Mark Lebwohl, Peter Foley, Renata M. Kisa, Elizabeth Colston, Tao Wang, Subhashis Banerjee, Diamant Thaçi. Deucravacitinib in moderate‐to‐severe plaque psoriasis: Pooled safety and tolerability over 52 weeks from two phase 3 trials (
POETYK PSO
‐1 and
PSO
‐2). Journal of the European Academy of Dermatology and Venereology 2024, 38
(8)
, 1543-1554. https://doi.org/10.1111/jdv.19925
- Caixia Hu, Xiaomei Han, Yu Cui, Yan Zhang, Yi Cheng. Safety and efficacy of Deucravacitinib for moderate to severe plaque psoriasis: A meta‐analysis. Skin Research and Technology 2024, 30
(8)
https://doi.org/10.1111/srt.13855
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.