ACS Publications. Most Trusted. Most Cited. Most Read
Higginsianins A and B, Two Diterpenoid α-Pyrones Produced by Colletotrichum higginsianum, with in Vitro Cytostatic Activity
My Activity
    Article

    Higginsianins A and B, Two Diterpenoid α-Pyrones Produced by Colletotrichum higginsianum, with in Vitro Cytostatic Activity
    Click to copy article linkArticle link copied!

    View Author Information
    Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126, Napoli, Italy
    Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
    § Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University of Western Brittany, Avenue du Technopole, Plouzané, 29280 Brest, France
    Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70125 Bari, Italy
    # Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 3, 56124 Pisa, Italy
    Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
    *Tel: +39 081 2539178. E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2016, 79, 1, 116–125
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jnatprod.5b00779
    Published December 23, 2015
    Copyright © 2015 The American Chemical Society and American Society of Pharmacognosy

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Two new diterpenoid α-pyrones, named higginsianins A (1) and B (2), were isolated from the mycelium of the fungus Colletotrichum higginsianum grown in liquid culture. They were characterized as 3-[5a,9b-dimethyl-7-methylene-2-(2-methylpropenyl)dodecahydronaphtho[2,1-b]furan-6-ylmethyl]-4-hydroxy-5,6-dimethylpyran-2-one and 4-hydroxy-3-[6-hydroxy-5,8a-dimethyl-2-methylene-5-(4-methylpent-3-enyl)decahydronaphthalen-1-ylmethyl]-5,6-dimethylpyran-2-one, respectively, by using NMR, HRESIMS, and chemical methods. The structure and relative configuration of higginsianin A (1) were confirmed by X-ray diffractometric analysis, while its absolute configuration was assigned by electronic circular dichroism (ECD) experiments and calculations using a solid-state ECD/TDDFT method. The relative and absolute configuration of higginsianin B (2), which did not afford crystals suitable for X-ray analysis, were determined by NMR analysis and by ECD in comparison with higginsianin A. 1 and 2 were the C-8 epimers of subglutinol A and diterpenoid BR-050, respectively. The evaluation of 1 and 2 for antiproliferative activity against a panel of six cancer cell lines revealed that the IC50 values, obtained with cells reported to be sensitive to pro-apoptotic stimuli, are by more than 1 order of magnitude lower than their apoptosis-resistant counterparts (1 vs >80 μM). Finally, three hemisynthetic derivatives of 1 were prepared and evaluated for antiproliferative activity. Two of these possessed IC50 values and differential sensitivity profiles similar to those of 1.

    Copyright © 2015 The American Chemical Society and American Society of Pharmacognosy

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnatprod.5b00779.

    • Spectra of 15 (PDF)

    • Crystallographic data (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 39 publications.

    1. Yunpeng Ji, Yaqian Liu, Weiqiang Guan, Chuning Guo, Hongli Jia, Benke Hong, Houhua Li. Enantioselective Divergent Syntheses of Diterpenoid Pyrones. Journal of the American Chemical Society 2024, 146 (13) , 9395-9403. https://doi.org/10.1021/jacs.4c01788
    2. Marco Masi, Stefany Castaldi, Francisco Sautua, Gennaro Pescitelli, Marcelo Anibal Carmona, Antonio Evidente. Truncatenolide, a Bioactive Disubstituted Nonenolide Produced by Colletotrichum truncatum, the Causal Agent of Anthracnose of Soybean in Argentina: Fungal Antagonism and SAR Studies. Journal of Agricultural and Food Chemistry 2022, 70 (32) , 9834-9844. https://doi.org/10.1021/acs.jafc.2c02502
    3. Yohei Morishita, Kento Tsukada, Kazuma Murakami, Kazuhiro Irie, Teigo Asai. Synthetic Biology-Based Discovery of Diterpenoid Pyrones from the Genome of Eupenicillium shearii. Journal of Natural Products 2022, 85 (2) , 384-390. https://doi.org/10.1021/acs.jnatprod.1c00973
    4. Marco Masi, Alessio Cimmino, Flora Salzano, Roberta Di Lecce, Marcin Górecki, Viola Calabrò, Gennaro Pescitelli, Antonio Evidente. Higginsianins D and E, Cytotoxic Diterpenoids Produced by Colletotrichum higginsianum. Journal of Natural Products 2020, 83 (4) , 1131-1138. https://doi.org/10.1021/acs.jnatprod.9b01161
    5. Jean-Félix Dallery, Géraldine Le Goff, Emilie Adelin, Bogdan I. Iorga, Sandrine Pigné, Richard J. O’Connell, Jamal Ouazzani. Deleting a Chromatin Remodeling Gene Increases the Diversity of Secondary Metabolites Produced by Colletotrichum higginsianum. Journal of Natural Products 2019, 82 (4) , 813-822. https://doi.org/10.1021/acs.jnatprod.8b00796
    6. Rohan R. Merchant, Kevin M. Oberg, Yutong Lin, Alexander J. E. Novak, Jakob Felding, Phil S. Baran. Divergent Synthesis of Pyrone Diterpenes via Radical Cross Coupling. Journal of the American Chemical Society 2018, 140 (24) , 7462-7465. https://doi.org/10.1021/jacs.8b04891
    7. Marianna Carbone, M. Letizia Ciavatta, Véronique Mathieu, Aude Ingels, Robert Kiss, Paola Pascale, Ernesto Mollo, Nicon Ungur, Yue-Wei Guo, Margherita Gavagnin. Marine Terpenoid Diacylguanidines: Structure, Synthesis, and Biological Evaluation of Naturally Occurring Actinofide and Synthetic Analogues. Journal of Natural Products 2017, 80 (5) , 1339-1346. https://doi.org/10.1021/acs.jnatprod.6b00941
    8. Marco Masi, Alessio Cimmino, Angela Boari, Angela Tuzi, Maria Chiara Zonno, Riccardo Baroncelli, Maurizio Vurro, and Antonio Evidente . Colletochlorins E and F, New Phytotoxic Tetrasubstituted Pyran-2-one and Dihydrobenzofuran, Isolated from Colletotrichum higginsianum with Potential Herbicidal Activity. Journal of Agricultural and Food Chemistry 2017, 65 (6) , 1124-1130. https://doi.org/10.1021/acs.jafc.6b05193
    9. Kang Chen, Kainan Song, Xiaoyang Hao, Chen Wang, Liwen Zhang, Qun Yue, Linan Xie, Yuquan Xu. Higginsianin F, one skeletal rearrangement diterpenoid α-pyridone with phytotoxic activity isolated from Colletotrichum higginsianum. Phytochemistry 2025, 235 , 114475. https://doi.org/10.1016/j.phytochem.2025.114475
    10. Antonio Evidente. Advances on anticancer fungal metabolites: sources, chemical and biological activities in the last decade (2012–2023). Natural Products and Bioprospecting 2024, 14 (1) https://doi.org/10.1007/s13659-024-00452-0
    11. Ardalan Pasdaran, Irwin Darren Grice, Azadeh Hamedi. A review of natural products and small‐molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Development Research 2024, 85 (3) https://doi.org/10.1002/ddr.22180
    12. Yingling Lu, Dexiang Tang, Zuoheng Liu, Jing Zhao, Yue Chen, Jinmei Ma, Lijun Luo, Hong Yu. Genomic comparative analysis of Ophiocordyceps unilateralis sensu lato. Frontiers in Microbiology 2024, 15 https://doi.org/10.3389/fmicb.2024.1293077
    13. kang chen, kainan song, Xiaoyang Hao, chen wang, liwen zhang, qun yue, linan xie, yuquan xu. Higginsianin F, One Skeletal Rearrangement Diterpenoid Α‑Pyridone with Phytotoxic Activity Isolated from Colletotrichum Higginsianum. 2024https://doi.org/10.2139/ssrn.4851209
    14. Pierluigi Reveglia, Francisco J. Agudo-Jurado, Eleonora Barilli, Marco Masi, Antonio Evidente, Diego Rubiales. Uncovering Phytotoxic Compounds Produced by Colletotrichum spp. Involved in Legume Diseases Using an OSMAC–Metabolomics Approach. Journal of Fungi 2023, 9 (6) , 610. https://doi.org/10.3390/jof9060610
    15. Marina F. Maximo, Taícia P. Fill, Marcio L. Rodrigues. A Close Look into the Composition and Functions of Fungal Extracellular Vesicles Produced by Phytopathogens. Molecular Plant-Microbe Interactions® 2023, 36 (4) , 228-234. https://doi.org/10.1094/MPMI-09-22-0184-FI
    16. Teigo Asai. Synthetic Biology-Based Natural Product Discovery. 2023, 3-16. https://doi.org/10.1007/978-981-99-1714-3_1
    17. Brian D. Rutter, Thi‐Thu‐Huyen Chu, Jean‐Félix Dallery, Kamil K. Zajt, Richard J. O'Connell, Roger W. Innes. The development of extracellular vesicle markers for the fungal phytopathogen Colletotrichum higginsianum. Journal of Extracellular Vesicles 2022, 11 (5) https://doi.org/10.1002/jev2.12216
    18. Brian D. Rutter, Thi-Thu-Huyen Chu, Kamil K. Zajt, Jean-Félix Dallery, Richard J. O’Connell, Roger W. Innes. Isolation and Characterization of Extracellular Vesicles from the Fungal Phytopathogen Colletotrichum higginsianum. 2022https://doi.org/10.1101/2022.01.07.475419
    19. Magdalena Staszczak. Fungal Secondary Metabolites as Inhibitors of the Ubiquitin–Proteasome System. International Journal of Molecular Sciences 2021, 22 (24) , 13309. https://doi.org/10.3390/ijms222413309
    20. Jia-Cheng Ji, Pan-Pan Wei, Xiao-Yang Han, Zheng-Hui Li, Hong-Lian Ai, Xin-Xiang Lei. Secondary Metabolites of the Endophytic Fungus Chaetomium globosum Isolated From Coptis chinensis. Natural Product Communications 2021, 16 (9) https://doi.org/10.1177/1934578X211044574
    21. Lena Barra, Ikuro Abe. Chemistry of fungal meroterpenoid cyclases. Natural Product Reports 2021, 38 (3) , 566-585. https://doi.org/10.1039/D0NP00056F
    22. Teigo Asai. Synthetic Biology Based Construction of Fungal Diterpenoid Pyrone Library. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (4) , 322-332. https://doi.org/10.5059/yukigoseikyokaishi.79.322
    23. Minghua Jiang, Zhenger Wu, Lan Liu, Senhua Chen. The chemistry and biology of fungal meroterpenoids (2009–2019). Organic & Biomolecular Chemistry 2021, 19 (8) , 1644-1704. https://doi.org/10.1039/D0OB02162H
    24. Kento Tsukada, Shono Shinki, Akiho Kaneko, Kazuma Murakami, Kazuhiro Irie, Masatoshi Murai, Hideto Miyoshi, Shingo Dan, Kumi Kawaji, Hironori Hayashi, Eiichi N. Kodama, Aki Hori, Emil Salim, Takayuki Kuraishi, Naoya Hirata, Yasunari Kanda, Teigo Asai. Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15664-4
    25. Yi-Hua Sheng, Wohn-Jenn Leu, Ching-Nung Chen, Jui-Ling Hsu, Ying-Tung Liu, Lih-Ching Hsu, Duen-Ren Hou, Jih-Hwa Guh. The (+)-Brevipolide H Displays Anticancer Activity against Human Castration-Resistant Prostate Cancer: The Role of Oxidative Stress and Akt/mTOR/p70S6K-Dependent Pathways in G1 Checkpoint Arrest and Apoptosis. Molecules 2020, 25 (12) , 2929. https://doi.org/10.3390/molecules25122929
    26. Jean-Félix Dallery, Marlene Zimmer, Vivek Halder, Mohamed Suliman, Sandrine Pigné, Géraldine Le Goff, Despoina D Gianniou, Ioannis P Trougakos, Jamal Ouazzani, Debora Gasperini, Richard J O’Connell, . Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B. Journal of Experimental Botany 2020, 71 (10) , 2910-2921. https://doi.org/10.1093/jxb/eraa061
    27. Marco Masi, Paola Nocera, Angela Boari, Maria Chiara Zonno, Gennaro Pescitelli, Sabrina Sarrocco, Riccardo Baroncelli, Giovanni Vannacci, Maurizio Vurro, Antonio Evidente. Secondary metabolites produced by Colletotrichum lupini , the causal agent of anthachnose of lupin ( Lupinus spp.). Mycologia 2020, 112 (3) , 533-542. https://doi.org/10.1080/00275514.2020.1732148
    28. Felicia Sangermano, Marco Masi, Maria Vivo, Peravali Ravindra, Alessio Cimmino, Alessandra Pollice, Antonio Evidente, Viola Calabrò. Higginsianins A and B, two fungal diterpenoid α-pyrones with cytotoxic activity against human cancer cells. Toxicology in Vitro 2019, 61 , 104614. https://doi.org/10.1016/j.tiv.2019.104614
    29. Toshihiko Nogawa, Makoto Kawatani, Akiko Okano, Yushi Futamura, Harumi Aono, Takeshi Shimizu, Naoki Kato, Haruhisa Kikuchi, Hiroyuki Osada. Structure and biological activity of Metarhizin C, a stereoisomer of BR-050 from Tolypocladium album RK17-F0007. The Journal of Antibiotics 2019, 72 (12) , 996-1000. https://doi.org/10.1038/s41429-019-0229-1
    30. Amjad Ayad Qatran Al-Khdhairawi, Geoffrey A. Cordell, Noel F. Thomas, Narendra Babu Shivanagere Nagojappa, Jean-Frédéric F. Weber. Natural diterpene pyrones: chemistry and biology. Organic & Biomolecular Chemistry 2019, 17 (40) , 8943-8957. https://doi.org/10.1039/C9OB01501A
    31. Amjad Ayad Qatran Al-Khdhairawi, Geoffrey A. Cordell, Jean-Frédéric F. Weber, Narendra Babu Shivanagere Nagojappa. A Biosynthetic Numbering System for Diterpene Pyrones. Natural Product Communications 2019, 14 (7) https://doi.org/10.1177/1934578X19860366
    32. Jean‐Félix Dallery, Émilie Adelin, Géraldine Le Goff, Sandrine Pigné, Annie Auger, Jamal Ouazzani, Richard J. O'Connell. H3K4 trimethylation by CclA regulates pathogenicity and the production of three families of terpenoid secondary metabolites in Colletotrichum higginsianum. Molecular Plant Pathology 2019, 20 (6) , 831-842. https://doi.org/10.1111/mpp.12795
    33. Jean-Félix Dallery, Marlene Zimmer, Vivek Halder, Mohamed Suliman, Sandrine Pigné, Géraldine Le Goff, Despoina D. Gianniou, Ioannis P. Trougakos, Jamal Ouazzani, Debora Gasperini, Richard J. O’Connell. Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B. 2019https://doi.org/10.1101/651562
    34. Javier Moraga, Wesley Gomes, Cristina Pinedo, Jesús M. Cantoral, James R. Hanson, María Carbú, Carlos Garrido, Rosa Durán-Patrón, Isidro G. Collado. The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews 2019, 18 (1) , 215-239. https://doi.org/10.1007/s11101-018-9590-0
    35. Do-Yeon Kwon, Kiyoun Lee, Hyeri Park, Mi Jung Kim, Jiyong Hong. Synthetic efforts towards the stereoselective synthesis of NF00659B1. Bioorganic & Medicinal Chemistry Letters 2018, 28 (16) , 2746-2750. https://doi.org/10.1016/j.bmcl.2018.02.038
    36. Marco Masi, Maria Chiara Zonno, Alessio Cimmino, Pierluigi Reveglia, Alexander Berestetskiy, Angela Boari, Maurizio Vurro, Antonio Evidente. On the metabolites produced by Colletotrichum gloeosporioides a fungus proposed for the Ambrosia artemisiifolia biocontrol; spectroscopic data and absolute configuration assignment of colletochlorin A. Natural Product Research 2018, 32 (13) , 1537-1547. https://doi.org/10.1080/14786419.2017.1385020
    37. Marco Masi, Alessio Cimmino, Angela Boari, Maria Chiara Zonno, Marcin Górecki, Gennaro Pescitelli, Angela Tuzi, Maurizio Vurro, Antonio Evidente. Colletopyrandione, a new phytotoxic tetrasubstituted indolylidenepyra n -2,4-dione, and colletochlorins G and H, new tetrasubstituted chroman- and isochroman-3,5-diols isolated from Colletotrichum higginsianum. Tetrahedron 2017, 73 (47) , 6644-6650. https://doi.org/10.1016/j.tet.2017.10.018
    38. Maria Fe Andrés, Carmen Elisa Diaz, Cristina Giménez, Raimundo Cabrera, Azucena González-Coloma. Endophytic fungi as novel sources of biopesticides: the Macaronesian Laurel forest, a case study. Phytochemistry Reviews 2017, 16 (5) , 1009-1022. https://doi.org/10.1007/s11101-017-9514-4
    39. Muhammad Torequl Islam. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytotherapy Research 2017, 31 (5) , 691-712. https://doi.org/10.1002/ptr.5800
    40. James R. Hanson. Diterpenoids of terrestrial origin. Natural Product Reports 2017, 34 (10) , 1233-1243. https://doi.org/10.1039/C7NP00040E
    41. Najeeb Ur Rehman, Hidayat Hussain, Sulaiman Al-Shidhani, Satya Kumar Avula, Ghulam Abbas, Muhammad Usman Anwar, Marcin Górecki, Gennaro Pescitelli, Ahmed Al-Harrasi. Incensfuran: isolation, X-ray crystal structure and absolute configuration by means of chiroptical studies in solution and solid state. RSC Advances 2017, 7 (67) , 42357-42362. https://doi.org/10.1039/C7RA07351H
    42. Riccardo Baroncelli, Daniel Buchvaldt Amby, Antonio Zapparata, Sabrina Sarrocco, Giovanni Vannacci, Gaétan Le Floch, Richard J. Harrison, Eric Holub, Serenella A. Sukno, Surapareddy Sreenivasaprasad, Michael R. Thon. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genomics 2016, 17 (1) https://doi.org/10.1186/s12864-016-2917-6

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2016, 79, 1, 116–125
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jnatprod.5b00779
    Published December 23, 2015
    Copyright © 2015 The American Chemical Society and American Society of Pharmacognosy

    Article Views

    1521

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.