ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEFeatured ArticleNEXT

Copper-Catalyzed O-Difluoromethylation of Functionalized Aliphatic Alcohols: Access to Complex Organic Molecules with an OCF2H Group

View Author Information
Enamine, Ltd., 78 Chervonotkatska str., 02094 Kyiv, Ukraine
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv 01601, Ukraine
§ Department of Organic Chemistry, Kiev Polytechnic Institute, Pr. Pobedy 37, 03056 Kiev, Ukraine
Homogeneous Catalysis and Molecular Design Research Group at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łódź, Poland
Cite this: J. Org. Chem. 2016, 81, 14, 5803–5813
Publication Date (Web):May 6, 2016
https://doi.org/10.1021/acs.joc.6b00628
Copyright © 2016 American Chemical Society

    Article Views

    3926

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (856 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A two-step synthetic strategy toward difluoromethyl ethers via a CuI-catalyzed reaction of the alcohols, bearing additional protected functionalities, with FSO2CF2CO2H has been developed. The high potential of the developed protocol has been shown by preparing novel OCF2H-analogues of GABA and l-proline. The described transformation has good functional group compatibility and can serve as a powerful synthetic tool for late-stage preparation of complex OCF2H-containing organic compounds as well as building blocks for drug discovery.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00628.

    • Detailed experimental procedures and characterization data for all new compounds (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 37 publications.

    1. Xinxin Han, Xin Liu, Christophe Len, Le Liu, Dongdong Wang, Yinbin Zhang, Xin-Hua Duan, Mingyou Hu. Photoredox-Catalyzed gem-Difluoromethylenation of Aliphatic Alcohols with 1,1-Difluoroalkenes to Access α,α-Difluoromethylene Ethers. The Journal of Organic Chemistry 2023, 88 (17) , 12744-12754. https://doi.org/10.1021/acs.joc.3c01428
    2. Anaïs Loison, Gilles Hanquet, Fabien Toulgoat, Thierry Billard, Armen Panossian, Frédéric R. Leroux. Ketenimines as Intermediates To Access Difluoromethoxylated Scaffolds. Organic Letters 2022, 24 (45) , 8316-8321. https://doi.org/10.1021/acs.orglett.2c03283
    3. Pavel K. Mykhailiuk. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. The Journal of Organic Chemistry 2022, 87 (11) , 6961-7005. https://doi.org/10.1021/acs.joc.1c02956
    4. Serhii Trofymchuk, Maksym Ya. Bugera, Anton A. Klipkov, Bohdan Razhyk, Sergey Semenov, Karen Tarasenko, Viktoriia S. Starova, Olga A. Zaporozhets, Oksana Yu. Tananaiko, Anatoliy N. Alekseenko, Yurii Pustovit, Oleksandr Kiriakov, Igor I. Gerus, Andrei A. Tolmachev, Pavel K. Mykhailiuk. Deoxofluorination of (Hetero)aromatic Acids. The Journal of Organic Chemistry 2020, 85 (5) , 3110-3124. https://doi.org/10.1021/acs.joc.9b03011
    5. Maksym Bugera, Serhii Trofymchuk, Karen Tarasenko, Olga Zaporozhets, Yurii Pustovit, Pavel K. Mykhailiuk. Deoxofluorination of Aliphatic Carboxylic Acids: A Route to Trifluoromethyl-Substituted Derivatives. The Journal of Organic Chemistry 2019, 84 (24) , 16105-16115. https://doi.org/10.1021/acs.joc.9b02596
    6. Vladimir S. Ostrovskii, Irina P. Beletskaya, Igor D. Titanyuk. Trifluoroacetaldehyde N-Tosylhydrazone as a Precursor of Trifluorodiazoethane in Reactions of Insertion into the Heteroatom–Hydrogen Bond. Organic Letters 2019, 21 (22) , 9080-9083. https://doi.org/10.1021/acs.orglett.9b03471
    7. John J. Irwin, Garrett Gaskins, Teague Sterling, Michael M. Mysinger, and Michael J. Keiser . Predicted Biological Activity of Purchasable Chemical Space. Journal of Chemical Information and Modeling 2018, 58 (1) , 148-164. https://doi.org/10.1021/acs.jcim.7b00316
    8. Yang Geng, Apeng Liang, Xianying Gao, Chengshan Niu, Jingya Li, Dapeng Zou, Yusheng Wu, and Yangjie Wu . CuI-Catalyzed Fluorodesulfurization for the Synthesis of Monofluoromethyl Aryl Ethers. The Journal of Organic Chemistry 2017, 82 (16) , 8604-8610. https://doi.org/10.1021/acs.joc.7b01438
    9. Rongyi Zhang, Qigang Li, Qiqiang Xie, Chuanfa Ni, Jinbo Hu. Difluorocarbene‐Induced Ring‐Opening Difluoromethylation‐Halogenation of Cyclic (Thio)Ethers with TMSCF 2 X (X=Br, Cl)**. Chemistry – A European Journal 2021, 27 (71) , 17773-17779. https://doi.org/10.1002/chem.202103428
    10. Robert Britton, Veronique Gouverneur, Jin-Hong Lin, Michael Meanwell, Chuanfa Ni, Gabriele Pupo, Ji-Chang Xiao, Jinbo Hu. Contemporary synthetic strategies in organofluorine chemistry. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-021-00042-1
    11. Anaïs Loison, Fabien Toulgoat, Thierry Billard, Gilles Hanquet, Armen Panossian, Frédéric R. Leroux. Recent synthetic methods towards the –OCHF2 moiety. Tetrahedron 2021, 99 , 132458. https://doi.org/10.1016/j.tet.2021.132458
    12. Guodong Ju, Guanglian Tu, Yingsheng Zhao. Recent Advances in Transition-Metal-Catalyzed Selective C–H Alkoxycarbonyldifluoromethylation Reactions of Aromatic Substrates. Synthesis 2021, 53 (20) , 3699-3715. https://doi.org/10.1055/a-1522-7460
    13. Jeroen B. I. Sap, Claudio F. Meyer, Natan J. W. Straathof, Ndidi Iwumene, Christopher W. am Ende, Andrés A. Trabanco, Véronique Gouverneur. Late-stage difluoromethylation: concepts, developments and perspective. Chemical Society Reviews 2021, 50 (14) , 8214-8247. https://doi.org/10.1039/D1CS00360G
    14. Dao-Qing Dong, Huan Yang, Jun-Lian Shi, Wen-Jia Si, Zu-Li Wang, Xin-Ming Xu. Promising reagents for difluoroalkylation. Organic Chemistry Frontiers 2020, 7 (17) , 2538-2575. https://doi.org/10.1039/D0QO00567C
    15. Jin‐Hong Lin, Ji‐Chang Xiao*. Extension to the Construction of OR f Motifs ( OCF 2 H , OCFH 2 , OCH 2 CF 3 , OCFHCH 3 ). 2020, 267-288. https://doi.org/10.1002/9783527824342.ch10
    16. Dmitriy M. Volochnyuk, Oleksandr O. Grygorenko. Synthesis of gem ‐Difluorocyclopropanes. 2020, 135-194. https://doi.org/10.1002/9783527824342.ch5
    17. B.L.C. Noir. difluoromethylation. 2020https://doi.org/10.1002/9783527809080.cataz05355
    18. Mahesh Kasthuri, Chengwei Li, Kiran Verma, Olivia Ollinger Russell, Lyndsey Dickson, Louise McCormick, Leda Bassit, Franck Amblard, Raymond F. Schinazi. Synthesis of 4′-Substituted-2′-Deoxy-2′-α-Fluoro Nucleoside Analogs as Potential Antiviral Agents. Molecules 2020, 25 (6) , 1258. https://doi.org/10.3390/molecules25061258
    19. Qiqiang Xie, Jinbo Hu. Chen's Reagent: A Versatile Reagent for Trifluoromethylation, Difluoromethylenation, and Difluoroalkylation in Organic Synthesis †. Chinese Journal of Chemistry 2020, 38 (2) , 202-212. https://doi.org/10.1002/cjoc.201900424
    20. Yuan Cao, Lvqi Jiang, Wenbin Yi. Synthesis of Monofluoromethyl Selenoethers of Aryl and Alkyl from Organoselenocyanate via One‐Pot Reaction. Advanced Synthesis & Catalysis 2019, 361 (18) , 4360-4368. https://doi.org/10.1002/adsc.201900480
    21. Johnny W. Lee, Katarzyna N. Lee, Ming‐Yu Ngai. Synthesis of Tri‐ and Difluoromethoxylated Compounds by Visible‐Light Photoredox Catalysis. Angewandte Chemie 2019, 131 (33) , 11289-11299. https://doi.org/10.1002/ange.201902243
    22. Johnny W. Lee, Katarzyna N. Lee, Ming‐Yu Ngai. Synthesis of Tri‐ and Difluoromethoxylated Compounds by Visible‐Light Photoredox Catalysis. Angewandte Chemie International Edition 2019, 58 (33) , 11171-11181. https://doi.org/10.1002/anie.201902243
    23. Guo-Kai Liu, Xin Li, Wen-Bing Qin, Xiao-Shui Peng, Henry N. C. Wong, Linxing Zhang, Xinhao Zhang. Facile difluoromethylation of aliphatic alcohols with an S -(difluoro-methyl)sulfonium salt: reaction, scope and mechanistic study. Chemical Communications 2019, 55 (52) , 7446-7449. https://doi.org/10.1039/C9CC03487K
    24. Johnny W. Lee, Weijia Zheng, Cristian A. Morales-Rivera, Peng Liu, Ming-Yu Ngai. Catalytic radical difluoromethoxylation of arenes and heteroarenes. Chemical Science 2019, 10 (11) , 3217-3222. https://doi.org/10.1039/C8SC05390A
    25. Al Postigo. Difluoromethylation of Bioactive Compounds. 2019, 243-285. https://doi.org/10.1016/B978-0-12-812958-6.00008-2
    26. Roman M. Bychek, Vadym V. Levterov, Iryna V. Sadkova, Andrey A. Tolmachev, Pavel K. Mykhailiuk. Synthesis of Functionalized Difluorocyclopropanes: Unique Building Blocks for Drug Discovery. Chemistry – A European Journal 2018, 24 (47) , 12291-12297. https://doi.org/10.1002/chem.201705708
    27. Paul Hebeisen, Urs Weiss, André Alker, Bernd Kuhn, Klaus Müller, Fang Wang, G. K. Surya Prakash. Molecular Structure and Crystal Packing of Monofluoromethoxyarenes. European Journal of Organic Chemistry 2018, 2018 (27-28) , 3724-3734. https://doi.org/10.1002/ejoc.201701758
    28. Yang Geng, Mingxiang Zhu, Apeng Liang, Chengshan Niu, Jingya Li, Dapeng Zou, Yusheng Wu, Yangjie Wu. O -Difluorodeuteromethylation of phenols using difluorocarbene precursors and deuterium oxide. Organic & Biomolecular Chemistry 2018, 16 (11) , 1807-1811. https://doi.org/10.1039/C7OB03088F
    29. Yoshitomi Morizawa. Synthesis of Organofluorine Compounds with Raw Materials in Fluoro Chemical Industry. Journal of Synthetic Organic Chemistry, Japan 2018, 76 (4) , 364-369. https://doi.org/10.5059/yukigoseikyokaishi.76.364
    30. Damian E. Yerien, Sebastian Barata‐Vallejo, Al Postigo. Difluoromethylation Reactions of Organic Compounds. Chemistry – A European Journal 2017, 23 (59) , 14676-14701. https://doi.org/10.1002/chem.201702311
    31. Quentin A. Huchet, Nils Trapp, Bernd Kuhn, Björn Wagner, Holger Fischer, Nicole A. Kratochwil, Erick M. Carreira, Klaus Müller. Partially fluorinated alkoxy groups − Conformational adaptors to changing environments. Journal of Fluorine Chemistry 2017, 198 , 34-46. https://doi.org/10.1016/j.jfluchem.2017.02.003
    32. Qiqiang Xie, Chuanfa Ni, Rongyi Zhang, Lingchun Li, Jian Rong, Jinbo Hu. Efficient Difluoromethylation of Alcohols Using TMSCF 2 Br as a Unique and Practical Difluorocarbene Reagent under Mild Conditions. Angewandte Chemie 2017, 129 (12) , 3254-3258. https://doi.org/10.1002/ange.201611823
    33. Qiqiang Xie, Chuanfa Ni, Rongyi Zhang, Lingchun Li, Jian Rong, Jinbo Hu. Efficient Difluoromethylation of Alcohols Using TMSCF 2 Br as a Unique and Practical Difluorocarbene Reagent under Mild Conditions. Angewandte Chemie International Edition 2017, 56 (12) , 3206-3210. https://doi.org/10.1002/anie.201611823
    34. Jian Rong, Chuanfa Ni, Jinbo Hu. Metal‐Catalyzed Direct Difluoromethylation Reactions. Asian Journal of Organic Chemistry 2017, 6 (2) , 139-152. https://doi.org/10.1002/ajoc.201600509
    35. Mei Zhu, Weijun Fu, Zhiqiang Wang, Chen Xu, Baoming Ji. Visible-light-mediated direct difluoromethylation of alkynoates: synthesis of 3-difluoromethylated coumarins. Organic & Biomolecular Chemistry 2017, 15 (43) , 9057-9060. https://doi.org/10.1039/C7OB02366A
    36. Can Liu, Xiao-Yun Deng, Xian-Liang Zeng, Gang Zhao, Jin-Hong Lin, Hongqing Wang, Ji-Chang Xiao. Base-free O-difluoromethylation of 1,3-diones with difluorocarbene. Journal of Fluorine Chemistry 2016, 192 , 27-30. https://doi.org/10.1016/j.jfluchem.2016.10.011
    37. Kostiantyn Levchenko, Olexandr P. Datsenko, Oleh Serhiichuk, Andrei Tolmachev, Viktor O. Iaroshenko, Pavel K. Mykhailiuk. ChemInform Abstract: Copper‐Catalyzed O‐Difluoromethylation of Functionalized Aliphatic Alcohols: Access to Complex Organic Molecules with an OCF 2 H Group.. ChemInform 2016, 47 (48) https://doi.org/10.1002/chin.201648060

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect