ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Theoretical Study of EMIM+ Adsorption on Silver Electrode Surfaces

View Author Information
SUNCAT Center for Catalysis and Interface Science, SLAC National Accelerator Laboratory, 2675 Sand Hill Road, Menlo Park, California 94025, United States
Central Research Institute, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
§ SUNCAT Center for Catalysis and Interface Science, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
Cite this: J. Phys. Chem. C 2015, 119, 34, 20023–20029
Publication Date (Web):August 5, 2015
https://doi.org/10.1021/acs.jpcc.5b07268
Copyright © 2015 American Chemical Society

    Article Views

    1583

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (6 MB)

    Abstract

    Abstract Image

    Imidazolium ionic liquid additives improve the activity and selectivity for electrochemical CO2 reduction reaction on a variety of catalyst materials. To date, there is no consensus about the mechanism by which it does so. As a first step, we determined the Pourbaix diagram for EMIM+ at the Ag(111)|water interface using density functional theory calculations. The obtained surface Pourbaix diagram shows that adsorbed EMIM+ densely covers the entire silver surface under experimental conditions; we suggest this has important implications for CO2 reduction.

    With the exception of the solvation energy of the EMIM radical in eq 5, which was determined using the implicit solvation model of GAMESS-US, as detailed below.

    Cited By

    This article is cited by 37 publications.

    1. Xiao-Hui Yang, Marco Papasizza, Angel Cuesta, Jun Cheng. Water-In-Salt Environment Reduces the Overpotential for Reduction of CO2 to CO2– in Ionic Liquid/Water Mixtures. ACS Catalysis 2022, 12 (11) , 6770-6780. https://doi.org/10.1021/acscatal.2c00395
    2. Yi-Jung Tu, Jesse G. McDaniel. Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers. The Journal of Physical Chemistry C 2021, 125 (37) , 20204-20218. https://doi.org/10.1021/acs.jpcc.1c05698
    3. Nicolas G. Hörmann, Karsten Reuter. Thermodynamic Cyclic Voltammograms Based on Ab Initio Calculations: Ag(111) in Halide-Containing Solutions. Journal of Chemical Theory and Computation 2021, 17 (3) , 1782-1794. https://doi.org/10.1021/acs.jctc.0c01166
    4. Dmitry V. Vasilyev, Paul J. Dyson. The Role of Organic Promoters in the Electroreduction of Carbon Dioxide. ACS Catalysis 2021, 11 (3) , 1392-1405. https://doi.org/10.1021/acscatal.0c04283
    5. Tianrong Zhan, Anil Kumar, Michael Sevilla, Arun Sridhar, Xiangqun Zeng. Temperature Effects on CO2 Electroreduction Pathways in an Imidazolium-Based Ionic Liquid on Pt Electrode. The Journal of Physical Chemistry C 2020, 124 (48) , 26094-26105. https://doi.org/10.1021/acs.jpcc.0c06065
    6. Anuj K. Pennathur, Matthew J. Voegtle, Sevan Menachekanian, Jahan M. Dawlaty. Strong Propensity of Ionic Liquids in Their Aqueous Solutions for an Organic-Modified Metal Surface. The Journal of Physical Chemistry B 2020, 124 (34) , 7500-7507. https://doi.org/10.1021/acs.jpcb.0c04665
    7. Leily Majidi, Zahra Hemmat, Robert E. Warburton, Khagesh Kumar, Alireza Ahmadiparidari, Liang Hong, Jinglong Guo, Peter Zapol, Robert F. Klie, Jordi Cabana, Jeffrey Greeley, Larry A. Curtiss, Amin Salehi-Khojin. Highly Active Rhenium-, Ruthenium-, and Iridium-Based Dichalcogenide Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions in Aprotic Media. Chemistry of Materials 2020, 32 (7) , 2764-2773. https://doi.org/10.1021/acs.chemmater.9b04117
    8. Xiao-Hui Yang, Angel Cuesta, Jun Cheng. Computational Ag/AgCl Reference Electrode from Density Functional Theory-Based Molecular Dynamics. The Journal of Physical Chemistry B 2019, 123 (48) , 10224-10232. https://doi.org/10.1021/acs.jpcb.9b06650
    9. Andre Kemna, Natalia García Rey, Björn Braunschweig. Mechanistic Insights on CO2 Reduction Reactions at Platinum/[BMIM][BF4] Interfaces from In Operando Spectroscopy. ACS Catalysis 2019, 9 (7) , 6284-6292. https://doi.org/10.1021/acscatal.9b01033
    10. Dmitry Vasilyev, Erfan Shirzadi, Alexander V. Rudnev, Peter Broekmann, Paul J. Dyson. Pyrazolium Ionic Liquid Co-catalysts for the Electroreduction of CO2. ACS Applied Energy Materials 2018, 1 (10) , 5124-5128. https://doi.org/10.1021/acsaem.8b01086
    11. Hyung-Kyu Lim, Youngkook Kwon, Han Seul Kim, Jiwon Jeon, Yong-Hoon Kim, Jung-Ae Lim, Beom-Sik Kim, Jina Choi, and Hyungjun Kim . Insight into the Microenvironments of the Metal–Ionic Liquid Interface during Electrochemical CO2 Reduction. ACS Catalysis 2018, 8 (3) , 2420-2427. https://doi.org/10.1021/acscatal.7b03777
    12. Jonnathan Medina-Ramos, Sang Soo Lee, Timothy T. Fister, Aude A. Hubaud, Robert L. Sacci, David R. Mullins, John L. DiMeglio, Rachel C. Pupillo, Stephanie M. Velardo, Daniel A. Lutterman, Joel Rosenthal, and Paul Fenter . Structural Dynamics and Evolution of Bismuth Electrodes during Electrochemical Reduction of CO2 in Imidazolium-Based Ionic Liquid Solutions. ACS Catalysis 2017, 7 (10) , 7285-7295. https://doi.org/10.1021/acscatal.7b01370
    13. Jeremy T. Feaster, Anna L. Jongerius, Xinyan Liu, Makoto Urushihara, Stephanie A. Nitopi, Christopher Hahn, Karen Chan, Jens K. Nørskov, and Thomas F. Jaramillo . Understanding the Influence of [EMIM]Cl on the Suppression of the Hydrogen Evolution Reaction on Transition Metal Electrodes. Langmuir 2017, 33 (37) , 9464-9471. https://doi.org/10.1021/acs.langmuir.7b01170
    14. Leanne D. Chen, Makoto Urushihara, Karen Chan, and Jens K. Nørskov . Electric Field Effects in Electrochemical CO2 Reduction. ACS Catalysis 2016, 6 (10) , 7133-7139. https://doi.org/10.1021/acscatal.6b02299
    15. Genevieve P. S. Lau, Marcel Schreier, Dmitry Vasilyev, Rosario Scopelliti, Michael Grätzel, and Paul J. Dyson . New Insights Into the Role of Imidazolium-Based Promoters for the Electroreduction of CO2 on a Silver Electrode. Journal of the American Chemical Society 2016, 138 (25) , 7820-7823. https://doi.org/10.1021/jacs.6b03366
    16. Alessia Fortunati, Francesca Risplendi, Michele Re Fiorentin, Giancarlo Cicero, Emmanuele Parisi, Micaela Castellino, Elena Simone, Boyan Iliev, Thomas J. S. Schubert, Nunzio Russo, Simelys Hernández. Understanding the role of imidazolium-based ionic liquids in the electrochemical CO2 reduction reaction. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-00875-9
    17. Mohammadreza Esmaeilirad, Zhen Jiang, Ahmad M. Harzandi, Alireza Kondori, Mahmoud Tamadoni Saray, Carlo U. Segre, Reza Shahbazian-Yassar, Andrew M. Rappe, Mohammad Asadi. Imidazolium-functionalized Mo3P nanoparticles with an ionomer coating for electrocatalytic reduction of CO2 to propane. Nature Energy 2023, 8 (8) , 891-900. https://doi.org/10.1038/s41560-023-01314-8
    18. Feng Wu, Fengshuo Jiang, Jiahao Yang, Weiyan Dai, Donghui Lan, Jing Shen, Zhengjun Fang. Investigation of Molecular Mechanism of Cobalt Porphyrin Catalyzed CO2 Electrochemical Reduction in Ionic Liquid by In-Situ SERS. Molecules 2023, 28 (6) , 2747. https://doi.org/10.3390/molecules28062747
    19. Guilin Li, Chongyang Jiang, Shaojuan Zeng, Kuilin Peng, Lei Yuan, Junjie Chu, Xiangping Zhang. Novel theoretical insight on CO2 electroreduction mechanism induced by aromatic ester-functionalized ionic liquids: A bulk-phase reaction pathway. Journal of Molecular Liquids 2023, 575 , 121392. https://doi.org/10.1016/j.molliq.2023.121392
    20. Yang Fu, Qixian Xie, Lili Wan, Qining Huang, Jingshan Luo. Ethanol assisted cyclic voltammetry treatment of copper for electrochemical CO2 reduction to ethylene. Materials Today Energy 2022, 29 , 101105. https://doi.org/10.1016/j.mtener.2022.101105
    21. Ashok Kumar Ummireddi, Shilendra Kumar Sharma, Raj Ganesh S. Pala. Ammonium ionic liquid cation promotes electrochemical CO 2 reduction to ethylene over formate while inhibiting the hydrogen evolution on a copper electrode. Catalysis Science & Technology 2022, 12 (2) , 519-529. https://doi.org/10.1039/D1CY01584B
    22. Samaneh Sharifi Golru, Elizabeth J. Biddinger. Effect of additives in aqueous electrolytes on CO2 electroreduction. Chemical Engineering Journal 2022, 428 , 131303. https://doi.org/10.1016/j.cej.2021.131303
    23. Xiao-Qiang Li, Guo-Yi Duan, Jun-Wu Chen, Li-Jun Han, Suo-Jiang Zhang, Bao-Hua Xu. Regulating electrochemical CO2RR selectivity at industrial current densities by structuring copper@poly(ionic liquid) interface. Applied Catalysis B: Environmental 2021, 297 , 120471. https://doi.org/10.1016/j.apcatb.2021.120471
    24. Dhritiman Bhattacharyya, Pablo E. Videla, Mauricio Cattaneo, Victor S. Batista, Tianquan Lian, Clifford P. Kubiak. Vibrational Stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces. Chemical Science 2021, 12 (30) , 10131-10149. https://doi.org/10.1039/D1SC01876K
    25. Nicolas Georg Hörmann, Karsten Reuter. Thermodynamic cyclic voltammograms: peak positions and shapes. Journal of Physics: Condensed Matter 2021, 33 (26) , 264004. https://doi.org/10.1088/1361-648X/abf7a1
    26. Fangfang Li, Francesca Mocci, Xiangping Zhang, Xiaoyan Ji, Aatto Laaksonen. Ionic liquids for CO2 electrochemical reduction. Chinese Journal of Chemical Engineering 2021, 31 , 75-93. https://doi.org/10.1016/j.cjche.2020.10.029
    27. Marco Papasizza, Xiaohui Yang, Jun Cheng, Angel Cuesta. Electrocatalytic reduction of CO2 in neat and water-containing imidazolium-based ionic liquids. Current Opinion in Electrochemistry 2020, 23 , 80-88. https://doi.org/10.1016/j.coelec.2020.04.004
    28. Yuanqing Wang, Toru Hayashi, Daoping He, Yamei Li, Fangming Jin, Ryuhei Nakamura. A reduced imidazolium cation layer serves as the active site for electrochemical carbon dioxide reduction. Applied Catalysis B: Environmental 2020, 264 , 118495. https://doi.org/10.1016/j.apcatb.2019.118495
    29. Johanna Gutleben, Catarina Loureiro, Laura Adriana Ramírez Romero, Sudarshan Shetty, René H. Wijffels, Hauke Smidt, Detmer Sipkema. Cultivation of Bacteria From Aplysina aerophoba: Effects of Oxygen and Nutrient Gradients. Frontiers in Microbiology 2020, 11 https://doi.org/10.3389/fmicb.2020.00175
    30. Aswathy Joseph, Suresh Mathew. Imidazolium-based room temperature ionic liquids for electrochemical reduction of carbon dioxide to carbon monoxide. 2020, 343-365. https://doi.org/10.1016/B978-0-12-817386-2.00012-3
    31. Matthias M. Waegele, Charuni M. Gunathunge, Jingyi Li, Xiang Li. How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. The Journal of Chemical Physics 2019, 151 (16) https://doi.org/10.1063/1.5124878
    32. Paula Sebastián‐Pascual, Stefano Mezzavilla, Ifan E. L. Stephens, María Escudero‐Escribano. Structure‐Sensitivity and Electrolyte Effects in CO 2 Electroreduction: From Model Studies to Applications. ChemCatChem 2019, 11 (16) , 3626-3645. https://doi.org/10.1002/cctc.201900552
    33. Michael B. Ross, Phil De Luna, Yifan Li, Cao-Thang Dinh, Dohyung Kim, Peidong Yang, Edward H. Sargent. Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis 2019, 2 (8) , 648-658. https://doi.org/10.1038/s41929-019-0306-7
    34. I. T. McCrum, M. A. Hickner, M. J. Janik. Quaternary Ammonium Cation Specific Adsorption on Platinum Electrodes: A Combined Experimental and Density Functional Theory Study. Journal of The Electrochemical Society 2018, 165 (2) , F114-F121. https://doi.org/10.1149/2.1351802jes
    35. Hyung-Kyu Lim, Hyungjun Kim. The Mechanism of Room-Temperature Ionic-Liquid-Based Electrochemical CO2 Reduction: A Review. Molecules 2017, 22 (4) , 536. https://doi.org/10.3390/molecules22040536
    36. Natalia García Rey, Dana D. Dlott. Effects of water on low-overpotential CO 2 reduction in ionic liquid studied by sum-frequency generation spectroscopy. Physical Chemistry Chemical Physics 2017, 19 (16) , 10491-10501. https://doi.org/10.1039/C7CP00118E
    37. Yawei Li, Qiang Sun. Recent Advances in Breaking Scaling Relations for Effective Electrochemical Conversion of CO 2. Advanced Energy Materials 2016, 6 (17) https://doi.org/10.1002/aenm.201600463

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect