ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion

View Author Information
ICD/LNIO, UMR 6281, CNRS, Technological University of Troyes, 10004 Troyes, France
Laboratoire de Neurophotonique UMR8250, CNRS, Faculté des sciences biomédicales et fondamentales, Université Paris Descartes, 75270 Paris, France
§ Institut Fresnel, CNRS, Aix Marseille Université, Ecole Centrale Marseille, UMR 7249, 13013 Marseille, France
Cite this: J. Phys. Chem. C 2015, 119, 45, 25518–25528
Publication Date (Web):October 17, 2015
https://doi.org/10.1021/acs.jpcc.5b09294
Copyright © 2015 American Chemical Society

    Article Views

    3538

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image

    Following recent advances in nanoplasmonics related to high-temperature applications, hot-electron processes, nanochemistry, sensing, and active plasmonics, new materials have been introduced, reducing the supremacy of gold and silver in plasmonics. The variety of possible materials in nanoplasmonics is now so wide that selecting the best material for a specific application at a specific wavelength may become a difficult task. In this context, we introduce in this Article two dimensionless parameters acting as figures of merit to simply compare the plasmonic capabilities of different materials. These numbers, which we named Faraday and Joule numbers, aim at quantifying the ability of a nanoparticle to respectively enhance the optical near field and produce heat. The benefit of these numbers compared to previously defined figures of merit is that (i) they possess simple close-form expressions and can be simply calculated without numerical simulations, (ii) they give quantitative estimations in the nonretarded regime, and (iii) they take into account the nature of the surrounding medium. Within this Article, we address a wide variety of materials, namely, gold, silver, aluminum, copper, cobalt, chromium, iron, molybdenum, manganese, nickel, palladium, platinum, rhodium, tantalum, titanium, titanium nitride, tungsten, and zirconium nitride.

    Cited By

    This article is cited by 150 publications.

    1. Lixia Sang, Chong Wang, Yue Zhao, Zhiyong Ren. Thermoplasmonics Effect of Au and Ag Multi-nanoparticles: Influence of Polarized Light Direction, Particle Spacing, and Substrates. The Journal of Physical Chemistry C 2023, 127 (30) , 14666-14678. https://doi.org/10.1021/acs.jpcc.3c02958
    2. Wenwen Luo, Meichen Liu, Yingjiao Ma, Wenxiao Mou, Jia Zhang, Jiyan Li, Zhaoqi Zhu, Hanxue Sun, Weidong Liang, An Li. Carbonized CMPs Hollow Microspheres-Based Hydrogel Composite Membranes with a Hierarchical Architecture for Efficient Solar-Driven Interfacial Evaporation. ACS Applied Materials & Interfaces 2023, 15 (28) , 34044-34054. https://doi.org/10.1021/acsami.3c05612
    3. Ximin Cui, Qifeng Ruan, Xiaolu Zhuo, Xinyue Xia, Jingtian Hu, Runfang Fu, Yang Li, Jianfang Wang, Hongxing Xu. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews 2023, 123 (11) , 6891-6952. https://doi.org/10.1021/acs.chemrev.3c00159
    4. Shuyi Zhu, Shuai Xu, Yujing Guo, Hongwen Zhang, Kun Ma, Junfeng Wang, Qian Zhao, Le Zhou, Weiping Cai. Defect Damping-Enhanced Plasmonic Photothermal Conversion. ACS Nano 2023, 17 (11) , 10300-10312. https://doi.org/10.1021/acsnano.3c00657
    5. Huiming Zhang, Ting Zhu, Ming Li. Quantitative Analysis of the Shape Effect of Thermoplasmonics in Gold Nanostructures. The Journal of Physical Chemistry Letters 2023, 14 (16) , 3853-3860. https://doi.org/10.1021/acs.jpclett.3c00632
    6. Rosen Todorov, Temenuga Hristova-Vasileva, Vesela Katrova, Anna Atanasova. Silver and Gold Containing Compounds of p-Block Elements As Perspective Materials for UV Plasmonics. ACS Omega 2023, 8 (16) , 14321-14341. https://doi.org/10.1021/acsomega.2c05943
    7. Emiliano Cortés, Fedja J. Wendisch, Luca Sortino, Andrea Mancini, Simone Ezendam, Seryio Saris, Leonardo de S. Menezes, Andreas Tittl, Haoran Ren, Stefan A. Maier. Optical Metasurfaces for Energy Conversion. Chemical Reviews 2022, 122 (19) , 15082-15176. https://doi.org/10.1021/acs.chemrev.2c00078
    8. Elizabeth R. Hopper, Christina Boukouvala, Jérémie Asselin, John S. Biggins, Emilie Ringe. Opportunities and Challenges for Alternative Nanoplasmonic Metals: Magnesium and Beyond. The Journal of Physical Chemistry C 2022, 126 (26) , 10630-10643. https://doi.org/10.1021/acs.jpcc.2c01944
    9. Mahmoud Sayed, Jiaguo Yu, Gang Liu, Mietek Jaroniec. Non-Noble Plasmonic Metal-Based Photocatalysts. Chemical Reviews 2022, 122 (11) , 10484-10537. https://doi.org/10.1021/acs.chemrev.1c00473
    10. Mathieu Bastide, Sarra Gam-Derouich, Jean-Christophe Lacroix. Long-Range Plasmon-Induced Anisotropic Growth of an Organic Semiconductor between Isotropic Gold Nanoparticles. Nano Letters 2022, 22 (10) , 4253-4259. https://doi.org/10.1021/acs.nanolett.2c00791
    11. Peiyuan Kang, Yang Wang, Blake A. Wilson, Yaning Liu, Napat Dawkrajai, Jaona Randrianalisoa, Zhenpeng Qin. Nanoparticle Fragmentation below the Melting Point under Single Picosecond Laser Pulse Stimulation. The Journal of Physical Chemistry C 2021, 125 (48) , 26718-26730. https://doi.org/10.1021/acs.jpcc.1c06684
    12. Pratiksha D. Dongare, Yage Zhao, David Renard, Jian Yang, Oara Neumann, Jordin Metz, Lin Yuan, Alessandro Alabastri, Peter Nordlander, Naomi J. Halas. A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients. ACS Nano 2021, 15 (5) , 8761-8769. https://doi.org/10.1021/acsnano.1c01046
    13. Sergey S. Kharintsev, Elena A. Chernykh, Artem V. Shelaev, Sergei G. Kazarian. Nanoscale Sensing Vitrification of 3D Confined Glassy Polymers Through Refractory Thermoplasmonics. ACS Photonics 2021, 8 (5) , 1477-1488. https://doi.org/10.1021/acsphotonics.1c00256
    14. Yatao Ren, Qin Chen, Mingjian He, Xiangzhi Zhang, Hong Qi, Yuying Yan. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications. ACS Nano 2021, 15 (4) , 6105-6128. https://doi.org/10.1021/acsnano.1c00466
    15. Adrien Lalisse, Abeer Al Mohtar, Minh Chau Nguyen, Rémi Carminati, Jérôme Plain, Gilles Tessier. Quantitative Temperature Measurements in Gold Nanorods Using Digital Holography. ACS Applied Materials & Interfaces 2021, 13 (8) , 10313-10320. https://doi.org/10.1021/acsami.0c22420
    16. Rupa Haldavnekar, Sivaprasad Chinnakkannu Vijayakumar, Krishnan Venkatakrishnan, Bo Tan. Prediction of Cancer Stem Cell Fate by Surface-Enhanced Raman Scattering Functionalized Nanoprobes. ACS Nano 2020, 14 (11) , 15468-15491. https://doi.org/10.1021/acsnano.0c06104
    17. James A. Hillier, Sophie Camelio, Wayne Cranton, Alexei V. Nabok, Christopher J. Mellor, Demosthenes C. Koutsogeorgis, Nikolaos Kalfagiannis. When Ellipsometry Works Best: A Case Study With Transparent Conductive Oxides. ACS Photonics 2020, 7 (10) , 2692-2702. https://doi.org/10.1021/acsphotonics.0c00389
    18. Marzia Ferrera, Michele Magnozzi, Maurizio Canepa, Francesco Bisio. Thermoplasmonics of Ag Nanoparticles in a Variable-Temperature Bath. The Journal of Physical Chemistry C 2020, 124 (31) , 17204-17210. https://doi.org/10.1021/acs.jpcc.0c04085
    19. Shuzhe Wang, Sara M. Almenabawy, Nazir P. Kherani, Siu Ning Leung, Paul G. O’Brien. Solar-Driven Interfacial Water Evaporation Using Open-Porous PDMS Embedded with Carbon Nanoparticles. ACS Applied Energy Materials 2020, 3 (4) , 3378-3386. https://doi.org/10.1021/acsaem.9b02399
    20. Yael Gutiérrez, Maria Losurdo, Francisco González, Henry O. Everitt, Fernando Moreno. Nanoplasmonic Photothermal Heating and Near-Field Enhancements: A Comparative Survey of 19 Metals. The Journal of Physical Chemistry C 2020, 124 (13) , 7386-7395. https://doi.org/10.1021/acs.jpcc.0c00757
    21. Constantinos Moularas, Yiannis Georgiou, Katarzyna Adamska, Yiannis Deligiannakis. Thermoplasmonic Heat Generation Efficiency by Nonmonodisperse Core–Shell Ag0@SiO2 Nanoparticle Ensemble. The Journal of Physical Chemistry C 2019, 123 (36) , 22499-22510. https://doi.org/10.1021/acs.jpcc.9b06532
    22. Duncan T. L. Alexander, Daniel Forrer, Enrico Rossi, Elefterios Lidorikis, Stefano Agnoli, Gabriel D. Bernasconi, Jérémy Butet, Olivier J. F. Martin, Vincenzo Amendola. Electronic Structure-Dependent Surface Plasmon Resonance in Single Au–Fe Nanoalloys. Nano Letters 2019, 19 (8) , 5754-5761. https://doi.org/10.1021/acs.nanolett.9b02396
    23. Brock Doiron, Yi Li, Andrei Mihai, Ryan Bower, Neil McN. Alford, Peter K. Petrov, Stefan A. Maier, Rupert F. Oulton. Plasmon-Enhanced Electron Harvesting in Robust Titanium Nitride Nanostructures. The Journal of Physical Chemistry C 2019, 123 (30) , 18521-18527. https://doi.org/10.1021/acs.jpcc.9b03184
    24. Liselotte Jauffred, Akbar Samadi, Henrik Klingberg, Poul Martin Bendix, Lene B. Oddershede. Plasmonic Heating of Nanostructures. Chemical Reviews 2019, 119 (13) , 8087-8130. https://doi.org/10.1021/acs.chemrev.8b00738
    25. Julian Sindram, Kirsten Volk, Paul Mulvaney, Matthias Karg. Silver Nanoparticle Gradient Arrays: Fluorescence Enhancement of Organic Dyes. Langmuir 2019, 35 (26) , 8776-8783. https://doi.org/10.1021/acs.langmuir.9b01027
    26. Alexandre Fafin, Sophie Camelio, Frédéric Pailloux, David Babonneau. Surface Plasmon Resonances and Local Field Enhancement in Aluminum Nanoparticles Embedded in Silicon Nitride. The Journal of Physical Chemistry C 2019, 123 (22) , 13908-13917. https://doi.org/10.1021/acs.jpcc.9b03050
    27. Brock Doiron, Mónica Mota, Matthew P. Wells, Ryan Bower, Andrei Mihai, Yi Li, Lesley F. Cohen, Neil McN. Alford, Peter K. Petrov, Rupert F. Oulton, Stefan A. Maier. Quantifying Figures of Merit for Localized Surface Plasmon Resonance Applications: A Materials Survey. ACS Photonics 2019, 6 (2) , 240-259. https://doi.org/10.1021/acsphotonics.8b01369
    28. Ryosuke Kamakura, Shunsuke Murai, Koji Fujita, Katsuhisa Tanaka. Enhanced Photoluminescence from Organic Dyes Coupled to Periodic Array of Zirconium Nitride Nanoparticles. ACS Photonics 2018, 5 (8) , 3057-3063. https://doi.org/10.1021/acsphotonics.8b00320
    29. Carlos D. S. Brites, Maria Cecilia Fuertes, Paula C. Angelomé, Eduardo D. Martínez, Patrícia P. Lima, Galo J. A. A. Soler-Illia, and Luís D. Carlos . Tethering Luminescent Thermometry and Plasmonics: Light Manipulation to Assess Real-Time Thermal Flow in Nanoarchitectures. Nano Letters 2017, 17 (8) , 4746-4752. https://doi.org/10.1021/acs.nanolett.7b01433
    30. Khaled Metwally, Serge Mensah, and Guillaume Baffou . Isosbestic Thermoplasmonic Nanostructures. ACS Photonics 2017, 4 (6) , 1544-1551. https://doi.org/10.1021/acsphotonics.7b00329
    31. George P. Zograf, Mihail I. Petrov, Dmitry A. Zuev, Pavel A. Dmitriev, Valentin A. Milichko, Sergey V. Makarov, and Pavel A. Belov . Resonant Nonplasmonic Nanoparticles for Efficient Temperature-Feedback Optical Heating. Nano Letters 2017, 17 (5) , 2945-2952. https://doi.org/10.1021/acs.nanolett.7b00183
    32. Gennaro Picardi, Florent J. Colas, Raymond Gillibert, and Marc Lamy de la Chapelle . Spectral Shift of the Plasmon Resonance Between the Optical Extinction and Absorption of Gold and Aluminum Nanodisks. The Journal of Physical Chemistry C 2016, 120 (45) , 26025-26033. https://doi.org/10.1021/acs.jpcc.6b09000
    33. Xin Zhao, M. H. Alizadeh, and Björn M. Reinhard . Harnessing Leaky Modes for Fluorescence Enhancement in Gold-Tipped Silicon Nanowires. The Journal of Physical Chemistry C 2016, 120 (37) , 20555-20562. https://doi.org/10.1021/acs.jpcc.5b11702
    34. Larousse Khosravi Khorashad, Lucas V. Besteiro, Zhiming Wang, Jason Valentine, and Alexander O. Govorov . Localization of Excess Temperature Using Plasmonic Hot Spots in Metal Nanostructures: Combining Nano-Optical Antennas with the Fano Effect. The Journal of Physical Chemistry C 2016, 120 (24) , 13215-13226. https://doi.org/10.1021/acs.jpcc.6b03644
    35. Timothy D. James, Paul Mulvaney, and Ann Roberts . The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures. Nano Letters 2016, 16 (6) , 3817-3823. https://doi.org/10.1021/acs.nanolett.6b01250
    36. Maedeh Simayee, Azam Iraji zad, Ali Esfandiar. Green synthesize of copper nanoparticles on the cotton fabric as a self-regenerating and high-efficient plasmonic solar evaporator. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-40060-5
    37. Sergio Santoro, Marco Aquino, Carlo Rizza, Anna Cupolillo, Danil W. Boukhvalov, Gianluca D'Olimpio, Shir Abramovich, Amit Agarwal, Maya Bar Sadan, Antonio Politano, Efrem Curcio. Plasmonic nanofillers-enabled solar membrane crystallization for mineral recovery. Desalination 2023, 563 , 116730. https://doi.org/10.1016/j.desal.2023.116730
    38. Hajun Yoo, Hyunwoong Lee, Seongmin Im, Sukhyeon Ka, Gwiyeong Moon, Kyungnam Kang, Donghyun Kim. Switching on Versatility: Recent Advances in Switchable Plasmonic Nanostructures. Small Science 2023, 59 https://doi.org/10.1002/smsc.202300048
    39. Shweta Verma, Venkat Suprabath Bitra, R. Singh, B. Tirumala Rao. Optical response of Au films for reproducible Si nano-structuring and its application for efficient micro-drop SERS with portable Raman system. Materials Chemistry and Physics 2023, 306 , 128058. https://doi.org/10.1016/j.matchemphys.2023.128058
    40. Phakamani H. Tsilo, Albertus K. Basson, Zuzingcebo G. Ntombela, Nkosinathi G. Dlamini, Rajasekhar V. S. R. Pullabhotla. Biosynthesis and Characterization of Copper Nanoparticles Using a Bioflocculant Produced by a Yeast Pichia kudriavzevii Isolated from Kombucha Tea SCOBY. Applied Nano 2023, 4 (3) , 226-239. https://doi.org/10.3390/applnano4030013
    41. Bin Yu, Ying Zhang, Yan Wang, Zhonghua Zhang. Recent Advances and Challenges of Metal‐Based Materials for Solar Steam Generation. Advanced Functional Materials 2023, 45 https://doi.org/10.1002/adfm.202307533
    42. Xiaojie Liu, Yanpei Tian, Andrew Caratenuto, Fangqi Chen, Yi Zheng. Biomass‐Based Materials for Sustainably Sourced Solar‐Driven Interfacial Steam Generation. Advanced Engineering Materials 2023, 14 https://doi.org/10.1002/adem.202300778
    43. O. V. Dement’eva, M. E. Kartseva. Noble Metal Nanoparticles in Biomedical Thermoplasmonics. Colloid Journal 2023, 594 https://doi.org/10.1134/S1061933X23700187
    44. Oleksii Omelianovych, Eunhee Park, Van Tuan Nguyen, Sayed Sajid Hussain, Enkhjin Chuluunbat, Ba Thong Trinh, Ilsun Yoon, Ho-Suk Choi, Michael Keidar. Two-dimensional Pd-Cellulose with optimized morphology for the effective solar to steam generation. Desalination 2023, 560 , 116679. https://doi.org/10.1016/j.desal.2023.116679
    45. Sajid Farooq, Diego Rativa, Renato E. de Araujo. Quantitative Analysis of High Performance Plasmonic Metamolecules for Targeted Deep Tissues Applications. Plasmonics 2023, 41 https://doi.org/10.1007/s11468-023-01960-4
    46. Jelena Wohlwend, Georg Haberfehlner, Henning Galinski. Strong Coupling in Two‐Phase Metamaterials Fabricated by Sequential Self‐Assembly. Advanced Optical Materials 2023, 4 https://doi.org/10.1002/adom.202300568
    47. Bei Yang, Deng Pan, Qing Dai. Phonon Polaritons: A New Paradigm for Light‐Controllable Heat Sources. Advanced Optical Materials 2023, 7 https://doi.org/10.1002/adom.202301080
    48. Farah Abuhatab, Omar Khalifa, Husam Al Araj, Shadi W. Hasan. From plasma to plasmonics: toward sustainable and clean water production through membranes. Frontiers of Chemical Science and Engineering 2023, 8 https://doi.org/10.1007/s11705-023-2339-3
    49. Samir Thakur, Sankar Moni Borah, Ashok Singh, Dilip Saikia, Nirab C. Adhikary. Roughness Effect on the Broadband Optical Performance and Extraordinary Local Field Enhancement in Metal Nanostructures. Journal of Electronic Materials 2023, 52 (7) , 4878-4894. https://doi.org/10.1007/s11664-023-10422-w
    50. Shahid Khan, Xinyan Dai, Tariq Ali, Sajid Mahmood, Mahmood ul Haq, Muhammad Sohail Riaz, Yong Hu. Recent advances on photo-thermo-catalysis for carbon dioxide methanation. International Journal of Hydrogen Energy 2023, 48 (64) , 24756-24787. https://doi.org/10.1016/j.ijhydene.2022.09.224
    51. E A Chernykh, S S Kharintsev. Nanoscale Sensing Glass Transition of Nanoconfined Polymers Through Thermoplasmonic. Journal of Physics: Conference Series 2023, 2494 (1) , 012010. https://doi.org/10.1088/1742-6596/2494/1/012010
    52. Xin Zhao, Xiangtong Meng, Hongqi Zou, Yanjun Zhang, Yangjun Ma, Yadong Du, Yuan Shao, Jun Qi, Jieshan Qiu. Nano-enabled solar driven-interfacial evaporation: Advanced design and opportunities. Nano Research 2023, 16 (5) , 6015-6038. https://doi.org/10.1007/s12274-023-5488-2
    53. Meiling Zhang, Jean-Marie Poumirol, Nicolas Chery, Hervé Rinnert, Alaa E. Giba, Rémi Demoulin, Etienne Talbot, Fuccio Cristiano, Teresa Hungria, Vincent Paillard, Fabrice Gourbilleau, Caroline Bonafos. Hyperdoped Si nanocrystals embedded in silica for infrared plasmonics. Nanoscale 2023, 15 (16) , 7438-7449. https://doi.org/10.1039/D3NR00035D
    54. Levi Tegg, Vicki J. Keast. A Review of Alkali Tungsten Bronze Nanoparticles for Applications in Plasmonics. Plasmonics 2023, 18 (1) , 49-71. https://doi.org/10.1007/s11468-022-01749-x
    55. N.H. Shamsudin, S. Shafie, M.Z.A. Ab Kadir, F. Ahmad, Y. Sulaiman, S.A.M. Chachuli, M.C. Razali. Flexible back-illuminated dye sensitised solar cells (DSSCs) with titanium dioxide/silver nanoparticles composite photoanode for improvement of power conversion efficiency. Optik 2023, 272 , 170237. https://doi.org/10.1016/j.ijleo.2022.170237
    56. Ziwei Ye, Zehong Xu, Wenhui Yue, Xinyu Liu, Lingzhi Wang, Jinlong Zhang. Exploiting the LSPR effect for an enhanced photocatalytic hydrogen evolution reaction. Physical Chemistry Chemical Physics 2023, 25 (4) , 2706-2716. https://doi.org/10.1039/D2CP04582F
    57. A R Indhu, L Keerthana, Gnanaprakash Dharmalingam. Plasmonic nanotechnology for photothermal applications – an evaluation. Beilstein Journal of Nanotechnology 2023, 14 , 380-419. https://doi.org/10.3762/bjnano.14.33
    58. Peng‐Fei Wang, Xuewei He, Ze‐Chen Lv, Hucheng Song, Xiaoying Song, Ting‐Feng Yi, Ning Xu, Ping He, Haoshen Zhou. Light‐Driven Polymer‐Based All‐Solid‐State Lithium‐Sulfur Battery Operating at Room Temperature. Advanced Functional Materials 2023, 33 (5) https://doi.org/10.1002/adfm.202211074
    59. Deeptha Ishwar, Rupa Haldavnekar, Krishnan Venkatakrishnan, Bo Tan. Minimally invasive detection of cancer using metabolic changes in tumor-associated natural killer cells with Oncoimmune probes. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32308-x
    60. Túlio de L. Pedrosa, Sajid Farooq, Renato E. de Araujo. Selecting High-Performance Gold Nanorods for Photothermal Conversion. Nanomaterials 2022, 12 (23) , 4188. https://doi.org/10.3390/nano12234188
    61. Srishti, Khushi Khandelwal, Aditya Kumar, Apurba Sinhamahapatra. Progress on TiO2-based materials for solar water interfacial evaporation. Frontiers in Chemical Engineering 2022, 4 https://doi.org/10.3389/fceng.2022.1046019
    62. Vito Coviello, Daniel Forrer, Vincenzo Amendola. Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications. ChemPhysChem 2022, 23 (21) https://doi.org/10.1002/cphc.202200136
    63. James Arthur Hillier, Panos Patsalas, Dimitrios Karfardis, Wayne Cranton, Alexi V. Nabok, Christopher J. Mellor, Demosthenes C. Koutsogeorgis, Nikolaos Kalfagiannis. Reactive laser annealing of indium tin oxide: implications to crystal structure, defect composition, and plasma energy. Optical Materials Express 2022, 12 (11) , 4310. https://doi.org/10.1364/OME.464918
    64. Upama Das, Rajib Biswas, Nirmal Mazumder. Elucidating thermal effects in plasmonic metal nanostructures: a tutorial review. The European Physical Journal Plus 2022, 137 (11) https://doi.org/10.1140/epjp/s13360-022-03449-1
    65. Guohua Liu, Jinliang Xu, Ting Chen, Kaiying Wang. Progress in thermoplasmonics for solar energy applications. Physics Reports 2022, 981 , 1-50. https://doi.org/10.1016/j.physrep.2022.07.002
    66. Ryan Bower, Cillian P. T. McPolin, Alexey V. Krasavin, Anatoly V. Zayats, Peter K. Petrov. Temperature stability of individual plasmonic Au and TiN nanodiscs. Optical Materials Express 2022, 12 (9) , 3471. https://doi.org/10.1364/OME.462582
    67. Sergey S. Kharintsev, Anton V. Kharitonov, Elena A. Chernykh, Alexander M. Alekseev, Nikolai A. Filippov, Sergei G. Kazarian. Designing two-dimensional temperature profiles using tunable thermoplasmonics. Nanoscale 2022, 14 (33) , 12117-12128. https://doi.org/10.1039/D2NR03015B
    68. Elisabetta Fanizza, Rita Mastrogiacomo, Orietta Pugliese, Alexa Guglielmelli, Luciano De Sio, Rachele Castaldo, Maria Scavo, Mariangela Giancaspro, Federica Rizzi, Gennaro Gentile, Fabio Vischio, Livianna Carrieri, Ilaria De Pasquale, Giacomo Mandriota, Francesca Petronella, Chiara Ingrosso, Marino Lavorgna, Roberto Comparelli, Marinella Striccoli, Maria Curri, Nicoletta Depalo. NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion. Nanomaterials 2022, 12 (15) , 2545. https://doi.org/10.3390/nano12152545
    69. Shir Abramovich, Debasis Dutta, Carlo Rizza, Sergio Santoro, Marco Aquino, Anna Cupolillo, Jessica Occhiuzzi, Mauro Francesco La Russa, Barun Ghosh, Daniel Farias, Andrea Locatelli, Danil W. Boukhvalov, Amit Agarwal, Efrem Curcio, Maya Bar Sadan, Antonio Politano. NiSe and CoSe Topological Nodal‐Line Semimetals: A Sustainable Platform for Efficient Thermoplasmonics and Solar‐Driven Photothermal Membrane Distillation. Small 2022, 18 (31) https://doi.org/10.1002/smll.202201473
    70. Sergio Santoro, Ahmet H. Avci, Antonio Politano, Efrem Curcio. The advent of thermoplasmonic membrane distillation. Chemical Society Reviews 2022, 51 (14) , 6087-6125. https://doi.org/10.1039/D0CS00097C
    71. Bei Yang, Chenyu Li, Zhifeng Wang, Qing Dai. Thermoplasmonics in Solar Energy Conversion: Materials, Nanostructured Designs, and Applications. Advanced Materials 2022, 34 (26) https://doi.org/10.1002/adma.202107351
    72. Zhixian Wang, Hao Huang, Shiqi Huang, Panlong Lin, Diankun Pan, Hua Wang, Jieming Huang, Luoxin Wang. Continuous and efficient purification of seawater using suspended photothermal nanocomposite fabrics with self-floatation. Reactive and Functional Polymers 2022, 175 , 105270. https://doi.org/10.1016/j.reactfunctpolym.2022.105270
    73. Lin Wang, Yijun Feng, Ze Li, Guohua Liu. Nanoscale thermoplasmonic welding. iScience 2022, 25 (6) , 104422. https://doi.org/10.1016/j.isci.2022.104422
    74. Cristina Rodríguez-Seco, Yue-Sheng Wang, Karim Zaghib, Dongling Ma. Photoactive nanomaterials enabled integrated photo-rechargeable batteries. Nanophotonics 2022, 11 (8) , 1443-1484. https://doi.org/10.1515/nanoph-2021-0782
    75. Rupa Haldavnekar, Swarna Ganesh, Krishnan Venkatakrishnan, Bo Tan. Cancer Stem Cell DNA Enabled Real‐Time Genotyping with Self‐Functionalized Quantum Superstructures—Overcoming the Barriers of Noninvasive cfDNA Cancer Diagnostics. Small Methods 2022, 6 (4) https://doi.org/10.1002/smtd.202101467
    76. Ramu Pasupathi Sugavaneshwar, Ørjan Sele Handegård, Anh Tung Doan, Thien Duc Ngo, Toan Phuoc Tran, Hai Dang Ngo, Thang Duy Dao, Satoshi Ishii, Shigeki Otani, Tadaaki Nagao. Optical Properties and Optimization of LaB 6 Thin Films for Photothermal Applications. Advanced Optical Materials 2022, 10 (8) https://doi.org/10.1002/adom.202101787
    77. Fırat Anğay, Sophie Camelio, Dominique Eyidi, Bärbel Krause, Gregory Abadias. Structure, electrical, and optical properties of reactively sputter-deposited Ta—Al—N thin films. Journal of Applied Physics 2022, 131 (10) https://doi.org/10.1063/5.0082537
    78. Rosen Todorov, Temenuga Hristova-Vasileva, Vesela Katrova, Anna Atanasova, Georgi Milushev. Electronic structure and plasmonic activity in co-evaporated Ag-In bimetallic alloys. Journal of Alloys and Compounds 2022, 897 , 163253. https://doi.org/10.1016/j.jallcom.2021.163253
    79. Ridha Djellabi, Laila Noureen, Van-Duong Dao, Daniela Meroni, Ermelinda Falletta, Dionysios D. Dionysiou, Claudia L. Bianchi. Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chemical Engineering Journal 2022, 431 , 134024. https://doi.org/10.1016/j.cej.2021.134024
    80. John Andersson, Justas Svirelis, Gustav Ferrand-Drake del Castillo, Takumi Sannomiya, Andreas Dahlin. Surface plasmon resonance sensing with thin films of palladium and platinum – quantitative and real-time analysis. Physical Chemistry Chemical Physics 2022, 24 (7) , 4588-4594. https://doi.org/10.1039/D1CP05381G
    81. Si Yin Tee, Khin Yin Win, Shermin S. Goh, Choon Peng Teng, Karen Yuanting Tang, Michelle D. Regulacio, Zibiao Li, Enyi Ye. Introduction to Photothermal Nanomaterials. 2022, 1-32. https://doi.org/10.1039/9781839165177-00001
    82. Tabitha Jones, Gemma Davison, Hyeon-Ho Jeong, Tung-Chun Lee. Engineered Gold Nanoparticles for Photothermal Applications. 2022, 33-80. https://doi.org/10.1039/9781839165177-00033
    83. Mamoru Tamura, Takuya Iida, Kenji Setoura. Plasmonic nanoscale temperature shaping on a single titanium nitride nanostructure. Nanoscale 2022, 57 https://doi.org/10.1039/D2NR02442J
    84. Céline Molinaro, Amine Khitous, Laurent Noel, Olivier Soppera. Nanochemistry by Thermoplasmonic Effects. 2022, 71-91. https://doi.org/10.1007/978-3-031-16518-4_3
    85. Huige Chen, Run Shi, Tierui Zhang. Nanostructured Photothermal Materials for Environmental and Catalytic Applications. Molecules 2021, 26 (24) , 7552. https://doi.org/10.3390/molecules26247552
    86. Kenji Setoura, Syoji Ito. Quantifying the durability of transition metal nitrides in thermoplasmonics at the single-nanoparticle level. AIP Advances 2021, 11 (11) https://doi.org/10.1063/5.0074139
    87. Cheon Woo Moon, Min-Ju Choi, Jerome Kartham Hyun, Ho Won Jang. Enhancing photoelectrochemical water splitting with plasmonic Au nanoparticles. Nanoscale Advances 2021, 3 (21) , 5981-6006. https://doi.org/10.1039/D1NA00500F
    88. Martino Giaquinto, Sofia Principe, Alberto Micco, Giovanni Vito Persiano, Armando Ricciardi, Andrea Cusano. Analysis of Thermo-Plasmonic Lab-on-Fiber Probes in liquid environments. Smart Materials and Structures 2021, https://doi.org/10.1088/1361-665X/ac2ef6
    89. Si Yin Tee, Enyi Ye, Choon Peng Teng, Yuki Tanaka, Karen Yuanting Tang, Khin Yin Win, Ming-Yong Han. Advances in photothermal nanomaterials for biomedical, environmental and energy applications. Nanoscale 2021, 13 (34) , 14268-14286. https://doi.org/10.1039/D1NR04197E
    90. Cristina Gellini, Alessandro Feis. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. Photoacoustics 2021, 23 , 100281. https://doi.org/10.1016/j.pacs.2021.100281
    91. Joaquim Junior Isidio de Lima, Ary Allan Souza Lins, Andressa Mara Menezes Alexandre, Paulo Soares Filho, Vitaly Felix Rodriguez-Esquerre, , , . Visible and infrared broadband plasmonic absorber. 2021, 10. https://doi.org/10.1117/12.2595773
    92. Caio V.P. Vital, Sajid Farooq, Renato E. de Araujo, Diego Rativa, Luis A. Gómez-Malagón. Numerical assessment of transition metal nitrides nanofluids for improved performance of direct absorption solar collectors. Applied Thermal Engineering 2021, 190 , 116799. https://doi.org/10.1016/j.applthermaleng.2021.116799
    93. G. Abbas, M. Afzaal, F. D. Nunes, M. Y. Naz, N. M. AbdEl-Salam, K. A. Ibrahim, H. F. Mohamed, Y. Khan. Numerical analysis of optical properties and equivalent electrical circuits of chemically synthesized silver and gold nanospheres. AIP Advances 2021, 11 (4) https://doi.org/10.1063/5.0044679
    94. Qiurui Zhang, Guozhi Jia, Wei Zhang, Zejia Zhao. Infrared plasma photothermal conversion of Cu2-xS/cellulose nanofilms prepared by sequential reaction. Results in Physics 2021, 22 , 103942. https://doi.org/10.1016/j.rinp.2021.103942
    95. R Todorov, T Hristova-Vasileva, A Atanasova, V Katrova, V Strijkova, G Milushev, E Milanov. Optical properties of thin Ag - In films prepared by interdiffusion in bimetallic nanolayered stacks. Journal of Physics: Conference Series 2021, 1762 (1) , 012023. https://doi.org/10.1088/1742-6596/1762/1/012023
    96. Jinxing Chen, Zuyang Ye, Fan Yang, Yadong Yin. Plasmonic Nanostructures for Photothermal Conversion. Small Science 2021, 1 (2) https://doi.org/10.1002/smsc.202000055
    97. Tianpeng Ding, Yi Zhou, Wei Li Ong, Ghim Wei Ho. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Materials Today 2021, 42 , 178-191. https://doi.org/10.1016/j.mattod.2020.10.022
    98. Xindian Li, Dongyang Wang, Yun Zhang, Luntao Liu, Wenshou Wang. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Research 2020, 13 (11) , 3025-3032. https://doi.org/10.1007/s12274-020-2967-6
    99. Manuel R Gonçalves, Hayk Minassian, Armen Melikyan. Plasmonic resonators: fundamental properties and applications. Journal of Physics D: Applied Physics 2020, 53 (44) , 443002. https://doi.org/10.1088/1361-6463/ab96e9
    100. Katherine Hansen, Amartya Dutta, Melissa Cardona, Chen Yang. Zirconium Nitride for Plasmonic Cloaking of Visible Nanowire Photodetectors. Plasmonics 2020, 15 (5) , 1231-1241. https://doi.org/10.1007/s11468-020-01145-3
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect