Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Color-Tuned Perovskite Films Prepared for Efficient Solar Cell Applications

View Author Information
Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Institute for Advanced Energy Materials, School of Materials Science & Engineering, Shaanxi Normal University, Xi’an 710062, China
*E-mail: [email protected]. Tel: +86-029-81530785.
*E-mail: [email protected]. Tel: +86-029-81530709.
Cite this: J. Phys. Chem. C 2016, 120, 1, 42–47
Publication Date (Web):December 14, 2015
https://doi.org/10.1021/acs.jpcc.5b09393
Copyright © 2015 American Chemical Society

    Article Views

    3450

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Color-tuned perovskite films have been recognized as a promising candidate for building integrated photovoltaics; bright, colorful displays; and component cells in multijunction solar cell applications. In this paper, four representative color-tuned perovskite films with chemical formula CH3NH3PbBrxI3–x (x = 0, 1, 2, and 3) are successfully prepared by using a technique that combines the advantages of direct contact lead halide film with hot methylamine halide powder and intercalcation processes. The energy-dispersive X-ray spectrometry results indicate that the Br/I ratio is controlled as desired. The scanning electron microscopy imaging shows very uniform films with good surface coverage on the substrate. The highest power conversion efficiency of the perovskite solar cells with the four different compositions are 12.76%, 6.84%, 4.12%, and 3.53%, respectively.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b09393.

    • TGA results for MAI and MABr, XRD patterns for four perovsktis, and EDX data and Perovskite film morphology at larger scale (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 102 publications.

    1. Sergey S. Anoshkin, Ivan I. Shishkin, Daria I. Markina, Lev S. Logunov, Hilmi Volkan Demir, Andrey L. Rogach, Anatoly P. Pushkarev, Sergey V. Makarov. Photoinduced Transition from Quasi-Two-Dimensional Ruddlesden–Popper to Three-Dimensional Halide Perovskites for the Optical Writing of Multicolor and Light-Erasable Images. The Journal of Physical Chemistry Letters 2024, 15 (2) , 540-548. https://doi.org/10.1021/acs.jpclett.3c03151
    2. Jie Xu, Suresh Kumar Podapangi, Sathy Harshavardhan Reddy, Luigi Angelo Castriotta, Aldo Di Carlo, Thomas M. Brown. Key Parameters and Thresholds Values for Obtaining High Performance Perovskite Solar Cells Indoors from Full Br Compositional and Bandgap Engineering. ACS Applied Energy Materials 2023, 6 (20) , 10215-10224. https://doi.org/10.1021/acsaem.2c03394
    3. Jun Su, Davide Luise, Ilaria Ciofini, Frédéric Labat. Modeling the Electronic and Optical Properties of Lead-Based Perovskite Materials: Insights from Density Functional Theory and Electrostatic Embedding. The Journal of Physical Chemistry C 2023, 127 (12) , 5968-5981. https://doi.org/10.1021/acs.jpcc.2c08515
    4. T. Keller, N. H. Nickel, J. Rappich. Competition of Iodide/Bromide Ions in the Formation of Methylammonium Lead Halide in Different Solvents. The Journal of Physical Chemistry C 2022, 126 (41) , 17656-17662. https://doi.org/10.1021/acs.jpcc.2c03740
    5. Hsin-An Chen, Ping-Han Tang, Guan-Jie Chen, Chien-Cheng Chang, Chun-Wei Pao. Microstructure Maps of Complex Perovskite Materials from Extensive Monte Carlo Sampling Using Machine Learning Enabled Energy Model. The Journal of Physical Chemistry Letters 2021, 12 (14) , 3591-3599. https://doi.org/10.1021/acs.jpclett.1c00410
    6. Hao Wang, Jia Li, Herlina Arianita Dewi, Nripan Mathews, Subodh Mhaisalkar, Annalisa Bruno. Colorful Perovskite Solar Cells: Progress, Strategies, and Potentials. The Journal of Physical Chemistry Letters 2021, 12 (4) , 1321-1329. https://doi.org/10.1021/acs.jpclett.0c03445
    7. Leilei Gu, Shubo Wang, Xiang Fang, Di Liu, Yibo Xu, Ningyi Yuan, Jianning Ding. High-Performance Large-Area Perovskite Solar Cells Enabled by Confined Space Sublimation. ACS Applied Materials & Interfaces 2020, 12 (30) , 33870-33878. https://doi.org/10.1021/acsami.0c10830
    8. Subham Paramanik, Soumyo Chatterjee, Amlan J. Pal. Noncontact Tunneling in Methylammonium Lead Iodide (CH3NH3PbI3): Evidence of Bipolar Resistive Switching through Defect Migration. ACS Applied Electronic Materials 2020, 2 (5) , 1395-1401. https://doi.org/10.1021/acsaelm.0c00167
    9. Abduljelili Popoola, Mohammed A. Gondal, Luqman E. Oloore, Idris K. Popoola. Laser-Induced Optoelectronic and Crystallographic Tuning of Methyl Ammonium Iodobismuthate Perovskite for Improved Performance of Sandwich-Type Photodetectors. ACS Applied Electronic Materials 2020, 2 (4) , 1145-1153. https://doi.org/10.1021/acsaelm.0c00116
    10. Yoshitaka Sanehira, Naoyuki Shibayama, Youhei Numata, Masashi Ikegami, Tsutomu Miyasaka. Low-Temperature Synthesized Nb-Doped TiO2 Electron Transport Layer Enabling High-Efficiency Perovskite Solar Cells by Band Alignment Tuning. ACS Applied Materials & Interfaces 2020, 12 (13) , 15175-15182. https://doi.org/10.1021/acsami.9b23485
    11. Maham M. S. Karim, Alex M. Ganose, Laura Pieters, W. W. Winnie Leung, Jessica Wade, Lina Zhang, David O. Scanlon, Robert G. Palgrave. Anion Distribution, Structural Distortion, and Symmetry-Driven Optical Band Gap Bowing in Mixed Halide Cs2SnX6 Vacancy Ordered Double Perovskites. Chemistry of Materials 2019, 31 (22) , 9430-9444. https://doi.org/10.1021/acs.chemmater.9b03267
    12. Gang Yeol Yoo, Randi Azmi, Changwook Kim, Woong Kim, Byoung Koun Min, Sung-Yeon Jang, Young Rag Do. Stable and Colorful Perovskite Solar Cells Using a Nonperiodic SiO2/TiO2 Multi-Nanolayer Filter. ACS Nano 2019, 13 (9) , 10129-10139. https://doi.org/10.1021/acsnano.9b03098
    13. Shailesh Rana, Kamlesh Awasthi, Sumit S. Bhosale, Eric Wei-Guang Diau, Nobuhiro Ohta. Temperature-Dependent Electroabsorption and Electrophotoluminescence and Exciton Binding Energy in MAPbBr3 Perovskite Quantum Dots. The Journal of Physical Chemistry C 2019, 123 (32) , 19927-19937. https://doi.org/10.1021/acs.jpcc.9b04567
    14. Hsin-An Chen, Chun-Wei Pao. Fast and Accurate Artificial Neural Network Potential Model for MAPbI3 Perovskite Materials. ACS Omega 2019, 4 (6) , 10950-10959. https://doi.org/10.1021/acsomega.9b00378
    15. R. Geetha Balakrishna, Steven M. Kobosko, Prashant V. Kamat. Mixed Halide Perovskite Solar Cells. Consequence of Iodide Treatment on Phase Segregation Recovery. ACS Energy Letters 2018, 3 (9) , 2267-2272. https://doi.org/10.1021/acsenergylett.8b01450
    16. Kamlesh Awasthi, Kai-Bo Du, Chi-Yung Wang, Chao-Lin Tsai, Morihiko Hamada, Sudhakar Narra, Eric Wei-Guang Diau, Nobuhiro Ohta. Electroabsorption Studies of Multicolored Lead Halide Perovskite Nanocrystalline Solid Films. ACS Photonics 2018, 5 (6) , 2408-2417. https://doi.org/10.1021/acsphotonics.8b00185
    17. Wolf-Alexander Quitsch, Dane W. deQuilettes, Oliver Pfingsten, Alexander Schmitz, Stevan Ognjanovic, Sarthak Jariwala, Susanne Koch, Markus Winterer, David S. Ginger, Gerd Bacher. The Role of Excitation Energy in Photobrightening and Photodegradation of Halide Perovskite Thin Films. The Journal of Physical Chemistry Letters 2018, 9 (8) , 2062-2069. https://doi.org/10.1021/acs.jpclett.8b00212
    18. Liang Li, Na Liu, Ziqi Xu, Qi Chen, Xindong Wang, and Huanping Zhou . Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods. ACS Nano 2017, 11 (9) , 8804-8813. https://doi.org/10.1021/acsnano.7b02867
    19. Farzaneh Arabpour Roghabadi, Vahid Ahmadi, and Karim Oniy Aghmiuni . Organic–Inorganic Halide Perovskite Formation: In Situ Dissociation of Cation Halide and Metal Halide Complexes during Crystal Formation. The Journal of Physical Chemistry C 2017, 121 (25) , 13532-13538. https://doi.org/10.1021/acs.jpcc.7b03311
    20. Chao Huang, Kunyi Wang, Zhongjian Yang, Li Jiang, Renming Liu, Rongling Su, Zhang-Kai Zhou, and Xuehua Wang . Up-Conversion Perovskite Nanolaser with Single Mode and Low Threshold. The Journal of Physical Chemistry C 2017, 121 (18) , 10071-10077. https://doi.org/10.1021/acs.jpcc.7b00875
    21. Saeed Shahbazi, Cheng-Min Tsai, Sudhakar Narra, Chi-Yung Wang, Hau-Shiang Shiu, Shahrara Afshar, Nima Taghavinia, and Eric Wei-Guang Diau . Ag Doping of Organometal Lead Halide Perovskites: Morphology Modification and p-Type Character. The Journal of Physical Chemistry C 2017, 121 (7) , 3673-3679. https://doi.org/10.1021/acs.jpcc.6b09722
    22. Xiaodong Ren, Dong Yang, Zhou Yang, Jiangshan Feng, Xuejie Zhu, Jinzhi Niu, Yucheng Liu, Wangen Zhao, and Shengzhong Frank Liu . Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (3) , 2421-2429. https://doi.org/10.1021/acsami.6b13362
    23. Youyu Jiang, Bangwu Luo, Fangyuan Jiang, Fuben Jiang, Canek Fuentes-Hernandez, Tiefeng Liu, Lin Mao, Sixing Xiong, Zaifang Li, Tao Wang, Bernard Kippelen, and Yinhua Zhou . Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating. Nano Letters 2016, 16 (12) , 7829-7835. https://doi.org/10.1021/acs.nanolett.6b04019
    24. Murugan Vigneshwaran, Takeshi Ohta, Satoshi Iikubo, Gaurav Kapil, Teresa S. Ripolles, Yuhei Ogomi, Tingli Ma, Shyam S. Pandey, Qing Shen, Taro Toyoda, Kenji Yoshino, Takashi Minemoto, and Shuzi Hayase . Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route. Chemistry of Materials 2016, 28 (18) , 6436-6440. https://doi.org/10.1021/acs.chemmater.6b02315
    25. Mona Mittal, Atanu Jana, Sagar Sarkar, Priya Mahadevan, and Sameer Sapra . Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2016, 7 (16) , 3270-3277. https://doi.org/10.1021/acs.jpclett.6b01406
    26. Leilei Gu, Mingzhu Chen, Xianming Liu, Dongnian Chen, Yanbo Gu, Shubo Wang. Halogen Anion Management in Solution‐Processed Perovskite Films for Efficient Solar Cells. Solar RRL 2024, 8 (6) https://doi.org/10.1002/solr.202301001
    27. Xiuxiu Niu, Nengxu Li, Zhenhua Cui, Liang Li, Fengtao Pei, Yisha Lan, Qizhen Song, Yujiang Du, Jing Dou, Zhaoboxun Bao, Lina Wang, Huifen Liu, Kailin Li, Xinran Zhang, Zijian Huang, Lan Wang, Wentao Zhou, Guizhou Yuan, Yihua Chen, Huanping Zhou, Cheng Zhu, Guilin Liu, Yang Bai, Qi Chen. Anion Confinement for Homogeneous Mixed Halide Perovskite Film Growth by Electrospray. Advanced Materials 2023, 35 (45) https://doi.org/10.1002/adma.202305822
    28. Z. Skafi, J. Xu, V. Mottaghitalab, L. Mivehi, B. Taheri, F. Jafarzadeh, S. K. Podapangi, D. Altamura, M. R. Guascito, L. Barba, C. Giannini, A. Rizzo, F. De Rossi, H. J. Lomeri, L. Sorbello, F. Matteocci, F. Brunetti, T. M. Brown. Optimization of Halide Composition and Interfacial Passivation for High-Performing Indoor Flexible Perovskite Solar Cells on PET. 2023, 321-324. https://doi.org/10.1109/NMDC57951.2023.10343740
    29. Shan Gan, Haoxuan Sun, Chen Li, Da Dou, Liang Li. Bifacial perovskite solar cells: a universal component that goes beyond albedo utilization. Science Bulletin 2023, 68 (19) , 2247-2267. https://doi.org/10.1016/j.scib.2023.08.043
    30. Zeynab Skafi, Jie Xu, Vahid Mottaghitalab, Leila Mivehi, Babak Taheri, Farshad Jafarzadeh, Suresh Kumar Podapangi, Davide Altamura, Maria Rachele Guascito, Luisa Barba, Cinzia Giannini, Aurora Rizzo, Francesca De Rossi, Hamed Javanbakht Lomeri, Luca Sorbello, Fabio Matteocci, Francesca Brunetti, Thomas M. Brown. Highly Efficient Flexible Perovskite Solar Cells on Polyethylene Terephthalate Films via Dual Halide and Low‐Dimensional Interface Engineering for Indoor Photovoltaics. Solar RRL 2023, 7 (20) https://doi.org/10.1002/solr.202300324
    31. Ji Yun Chun, Byung Gi Kim, Jin Young Kim, Woongsik Jang, Dong Hwan Wang. Passivation engineering via silica‐encapsulated quantum dots for highly sensitive photodetection. Carbon Energy 2023, 5 (9) https://doi.org/10.1002/cey2.350
    32. Haikuo Guo, Fuhua Hou, Xiaoqi Ren, Xuli Ning, Yulong Wang, Haoran Yang, Jiali Wei, Jingwei Guo, Tiantian Li, Chengjun Zhu, Ying Zhao, Xiaodan Zhang. Recent Progresses on Transparent Electrodes and Active Layers Toward Neutral, Color Semitransparent Perovskite Solar Cells. Solar RRL 2023, 7 (17) https://doi.org/10.1002/solr.202300333
    33. Yichi Zhang, Jiaxin Liu, Xinli Wu, Yi Peng, Zeyao Han, Yousheng Zou. Controllable bandgap-gradient halide perovskite films via dip-coating and halide anion exchange for multispectral photodiodes with high performance. Journal of Materials Chemistry C 2023, 11 (34) , 11580-11588. https://doi.org/10.1039/D3TC02047A
    34. Mona Mittal, Rahul Garg, Atanu Jana. Recent progress in the stabilization of low band-gap black-phase iodide perovskite solar cells. Dalton Transactions 2023, 52 (34) , 11750-11767. https://doi.org/10.1039/D3DT01581E
    35. Jing Yang, Ziyu Wang, Lu Liu, Le Wang, Zhen Chang, Jianxun Li, Kai Wang, Shengzhong (Frank) Liu. 2‐in‐1 Optimization for High Performance Semitransparent Perovskite Solar Cells. Advanced Optical Materials 2023, 11 (15) https://doi.org/10.1002/adom.202203140
    36. Tushar A. Limbani, A. Mahesh. Recent advancements in materials for colored and semi-transparent perovskite solar cell applications. Emergent Materials 2023, 6 (2) , 483-497. https://doi.org/10.1007/s42247-023-00482-3
    37. Seok Joo Yang, Haedam Jin, Jeongbeom Cha, Mi Kyong Kim, Dohun Baek, Hyemi Na, Min Kim. Elucidating degradation mechanisms of mixed cation formamidinium-based perovskite solar cells under device operation conditions. Applied Surface Science 2023, 612 , 155805. https://doi.org/10.1016/j.apsusc.2022.155805
    38. Aleksandra Furasova, Pavel Voroshilov, Daniel Sapori, Konstantin Ladutenko, Daniele Barettin, Anvar Zakhidov, Aldo Di Carlo, Constantin Simovski, Sergey Makarov. Nanophotonics for Perovskite Solar Cells. Advanced Photonics Research 2022, 3 (9) https://doi.org/10.1002/adpr.202100326
    39. Jie Zhang, Cheng Zhang, Yanping Wang, Yinan Zhang, Mingyu Sun, Xi Chen, Min Gu. Nanoscale color control of perovskite solar cells using Fano resonances of aluminum arsenide nanoarrays. AIP Advances 2022, 12 (8) https://doi.org/10.1063/5.0102538
    40. Hyung-Jun Song, Hyunho Lee. Colored Photovoltaics via Printing Technology. Journal of Flexible and Printed Electronics 2022, 1 (1) , 29-44. https://doi.org/10.56767/jfpe.2022.1.1.29
    41. Hosni Meddeb, Maximilian Götz‐Köhler, Nils Neugebohrn, Udayan Banik, Norbert Osterthun, Oleg Sergeev, Dennis Berends, Colleen Lattyak, Kai Gehrke, Martin Vehse. Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications. Advanced Energy Materials 2022, 12 (28) https://doi.org/10.1002/aenm.202200713
    42. Jueming Bing, Laura Granados Caro, Harsh P. Talathi, Nathan L. Chang, David R. Mckenzie, Anita W.Y. Ho-Baillie. Perovskite solar cells for building integrated photovoltaics⁠—glazing applications. Joule 2022, 6 (7) , 1446-1474. https://doi.org/10.1016/j.joule.2022.06.003
    43. Teck Ming Koh, Hao Wang, Yan Fong Ng, Annalisa Bruno, Subodh Mhaisalkar, Nripan Mathews. Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Façades into Power Generators. Advanced Materials 2022, 34 (25) https://doi.org/10.1002/adma.202104661
    44. Shaimaa M. Jassim. Fabrication and Characterization of an Inorganic Lead-Free Double Perovskite Solar Cell. Journal of Electronic Materials 2022, 51 (6) , 2828-2832. https://doi.org/10.1007/s11664-022-09562-2
    45. Silei Wang, Tengteng Li, Qingyan Li, Hongliang Zhao, Chenglong Zheng, Mengyao Li, Jitao Li, Yating Zhang, Jianquan Yao. Inhibition of buried cavities and defects in metal halide perovskite photodetectors via a two-step spin-coating method. Journal of Materials Chemistry C 2022, 10 (20) , 7886-7895. https://doi.org/10.1039/D2TC01033J
    46. Jesús U. Balderas‐Aguilar, Ciro Falcony‐Guajardo, Gonzalo A. Velázquez‐Nevárez, Valeria González‐Pérez, Eduardo Martínez‐Guerra, Francisco S. Aguirre‐Tostado. Luminescence and Structural Characteristics of Lead Halide Perovskite Films Deposited In Situ by a Versatile Multisource Aerosol Assisted Chemical Vapor Deposition (AACVD) Method. Advanced Materials Technologies 2022, 7 (5) https://doi.org/10.1002/admt.202100657
    47. Erfan Shirzadi, Nicolas Tappy, Fatemeh Ansari, Mohammad Khaja Nazeeruddin, Anders Hagfeldt, Paul J. Dyson. Deconvolution of Light‐Induced Ion Migration Phenomena by Statistical Analysis of Cathodoluminescence in Lead Halide‐Based Perovskites. Advanced Science 2022, 9 (13) https://doi.org/10.1002/advs.202103729
    48. Helge Eggers, Saba Gharibzadeh, Stefan Koch, Fabian Schackmar, David B. Ritzer, Tobias Abzieher, Bryce S. Richards, Christof Erban, Ulrich W. Paetzold. Perovskite Solar Cells with Vivid, Angle‐Invariant, and Customizable Inkjet‐Printed Colorization for Building‐Integrated Photovoltaics. Solar RRL 2022, 6 (4) https://doi.org/10.1002/solr.202100897
    49. Shafidah Shafian, Ga Eun Lee, Hyeonggeun Yu, Jeung-hyun Jeong, Kyungkon Kim. High‐Efficiency Vivid Color CIGS Solar Cell Employing Nondestructive Structural Coloration. Solar RRL 2022, 6 (4) https://doi.org/10.1002/solr.202100965
    50. Youhei Numata, Naoyuki Shibayama, Tsutomu Miyasaka. FAPbBr 3 perovskite solar cells with V OC values over 1.5 V by controlled crystal growth using tetramethylenesulfoxide. Journal of Materials Chemistry A 2022, 10 (2) , 672-681. https://doi.org/10.1039/D1TA08964A
    51. Jihyeon Heo, Incheol Jung, Hyunwoo Park, Ju Hwan Han, Hyeonwoo Kim, Hansol Park, Jin‐Seong Park, Hyeongtag Jeon, Kyu‐Tae Lee, Hui Joon Park. Highly Efficient Bifacial Color‐Tunable Perovskite Solar Cells. Advanced Optical Materials 2022, 10 (2) https://doi.org/10.1002/adom.202101696
    52. Giuliana Giuliano, Aurelio Bonasera, Giuseppe Arrabito, Bruno Pignataro. Semitransparent Perovskite Solar Cells for Building Integration and Tandem Photovoltaics: Design Strategies and Challenges. Solar RRL 2021, 5 (12) https://doi.org/10.1002/solr.202100702
    53. Riccardo Ollearo, Junke Wang, Matthew J. Dyson, Christ H. L. Weijtens, Marco Fattori, Bas T. van Gorkom, Albert J. J. M. van Breemen, Stefan C. J. Meskers, René A. J. Janssen, Gerwin H. Gelinck. Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27565-1
    54. Gunhoo Woo, Hocheon Yoo, Taesung Kim. Hybrid Thin-Film Materials Combinations for Complementary Integration Circuit Implementation. Membranes 2021, 11 (12) , 931. https://doi.org/10.3390/membranes11120931
    55. Hyunho Lee, Hyung‐Jun Song. Current status and perspective of colored photovoltaic modules. WIREs Energy and Environment 2021, 10 (6) https://doi.org/10.1002/wene.403
    56. Albert J. J. M. van Breemen, Riccardo Ollearo, Santhosh Shanmugam, Bart Peeters, Laurens C. J. M. Peters, Richard L. van de Ketterij, Ilias Katsouras, Hylke B. Akkerman, Corné H. Frijters, Francesco Di Giacomo, Sjoerd Veenstra, Ronn Andriessen, René A. J. Janssen, Eric A. Meulenkamp, Gerwin H. Gelinck. A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nature Electronics 2021, 4 (11) , 818-826. https://doi.org/10.1038/s41928-021-00662-1
    57. Pavlo Torchyniuk, Oleg V'yunov, Volodymyr Yukhymchuk, Oleksandr Hreshchuk, Serhii Vakarov, Anatolii Belous. PHASE FORMATION PROCESSES OF ORGANIC-INORGANIC CH3NH3PbI3 PEROVSKITES USING A DMF SOLVENT. Ukrainian Chemistry Journal 2021, 87 (8) , 63-81. https://doi.org/10.33609/2708-129X.87.08.2021.63-81
    58. Jitprabhat Ponchai, Ladda Srathongsian, Koth Amratisha, Chirapa Boonthum, Somboon Sahasithiwat, Pipat Ruankham, Pongsakorn Kanjanaboos. Modified colored semi-transparent perovskite solar cells with enhanced stability. Journal of Alloys and Compounds 2021, 875 , 159781. https://doi.org/10.1016/j.jallcom.2021.159781
    59. AbdulJelili Popoola, Mohammed A. Gondal, Luqman E. Oloore, Ismail A. Buliyaminu, Idris K. Popoola, Md. Abdul Aziz. Carbon dopants carriers facilitators as agents for improving hole extraction efficiency of cobalt tetraoxide nanoparticles employed in fabrication of photodetectors. Materials Research Bulletin 2021, 141 , 111331. https://doi.org/10.1016/j.materresbull.2021.111331
    60. Lijun Su, Maria Méndez Màlaga, Miaoli Zhu, Yaoming Xiao, Emilio Palomares Gil. Use of organic bulk-heterojunction solar cells as selective contacts in wide band-gap perovskite solar cells: advantages and limitations. Journal of Materials Chemistry A 2021, 9 (24) , 13979-13985. https://doi.org/10.1039/D1TA03156B
    61. Azhar Fakharuddin, Marius Franckevičius, Andrius Devižis, Andrius Gelžinis, Jevgenij Chmeliov, Paul Heremans, Vidmantas Gulbinas. Double Charge Transfer Dominates in Carrier Localization in Low Bandgap Sites of Heterogeneous Lead Halide Perovskites. Advanced Functional Materials 2021, 31 (15) https://doi.org/10.1002/adfm.202010076
    62. Xinghua Cui, Pengyang Wang, Biao Shi, Ying Zhao, Xiaodan Zhang. Insights into the effect of bromine‐based organic salts on the efficiency and stability of wide bandgap perovskite. Nano Select 2021, 2 (3) , 615-623. https://doi.org/10.1002/nano.202000183
    63. Zahra Heydari, Hamed Abdy, Mohammad Pouya Ghaziani, Mohammadreza Kolahdouz, Ebrahim Asl-Soleimani, Mostafa Masnadi-Shirazi. Effect of CH3NH3I/CH3NH3Br precursors on the structural and surface morphology properties of the electrodeposited methylammonium lead–mixed halide perovskite films. Journal of Solid State Electrochemistry 2021, 25 (2) , 583-590. https://doi.org/10.1007/s10008-020-04830-9
    64. Muhammad Mujahid, Chen Chen, Jian Zhang, Chuannan Li, Yu Duan. Recent advances in semitransparent perovskite solar cells. InfoMat 2021, 3 (1) , 101-124. https://doi.org/10.1002/inf2.12154
    65. Hsin-An Chen, Po-Hsiang Lee, Chun-Wei Pao. Atomistic Structures and Energetics of Perovskite Nucleation Pathway During Sequential Deposition Process. Multiscale Science and Engineering 2020, 2 (4) , 227-234. https://doi.org/10.1007/s42493-020-00044-3
    66. Arnab Banerjee, Goutam Paul. Room-temperature Magnetoresistance in Hybrid Halide Perovskites: Effect of Spin-Orbit Coupling. Physical Review Applied 2020, 14 (6) https://doi.org/10.1103/PhysRevApplied.14.064018
    67. Gaozhu Wu, Qing Zhu, Teng Zhang, Ziqi Zou, Weiping Wang, Yiyan Cao, Lijing Kong, Xuanli Zheng, Yaping Wu, Xu Li, Zhiming Wu, Junyong Kang. Gradient Engineered Light Absorption Layer for Enhanced Carrier Separation Efficiency in Perovskite Solar Cells. Nanoscale Research Letters 2020, 15 (1) https://doi.org/10.1186/s11671-020-03359-0
    68. Jun Du, Yidan An, Donghui Wu, Changlei Wang, Canyan Zhu, Xiaofeng Li, Dong Ma. Easy-to-process and high-performance colorful perovskite solar cells using a multilayer planar filter. Optics Letters 2020, 45 (22) , 6326. https://doi.org/10.1364/OL.410557
    69. Shaimaa M. Jassim, Nabeel A. Bakr, Falah I. Mustafa. Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell. Journal of Materials Science: Materials in Electronics 2020, 31 (19) , 16199-16207. https://doi.org/10.1007/s10854-020-04084-1
    70. Felix Schmidt, Yannick-Serge Zimmermann, Gisele Alves dos Reis Benatto, Boris A. Kolvenbach, Andreas Schäffer, Frederik C. Krebs, Eric D. van Hullebusch, Markus Lenz. Biodeterioration Affecting Efficiency and Lifetime of Plastic-Based Photovoltaics. Joule 2020, 4 (10) , 2088-2100. https://doi.org/10.1016/j.joule.2020.08.015
    71. Raja Chakraborty, Goutam Paul, Amlan J. Pal. Dynamic Response of Alternating-Current-Driven Light-Emitting Diodes Based on Hybrid Halide Perovskites. Physical Review Applied 2020, 14 (2) https://doi.org/10.1103/PhysRevApplied.14.024006
    72. Koth Amratisha, Jitprabhat Ponchai, Paphada Kaewurai, Pimsuda Pansa-ngat, Kusuma Pinsuwan, Pisist Kumnorkaew, Pipat Ruankham, Pongsakorn Kanjanaboos. Layer-by-layer spray coating of a stacked perovskite absorber for perovskite solar cells with better performance and stability under a humid environment. Optical Materials Express 2020, 10 (7) , 1497. https://doi.org/10.1364/OME.391546
    73. Youngsin Park, Atanu Jana, Chang Woo Myung, Taeseung Yoon, Geungsik Lee, Claudius C. Kocher, Guanhua Ying, Vitaly Osokin, Robert A. Taylor, Kwang S. Kim. Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Research 2020, 13 (4) , 932-938. https://doi.org/10.1007/s12274-020-2718-8
    74. Peng Zeng, Wenbin Deng, Mingzhen Liu. Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar RRL 2020, 4 (3) https://doi.org/10.1002/solr.201900485
    75. Lina Meng, Qingbo Wei, Zhou Yang, Dong Yang, Jiangshan Feng, Xiaodong Ren, Yucheng Liu, Shengzhong (Frank) Liu. Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. Journal of Energy Chemistry 2020, 41 , 43-51. https://doi.org/10.1016/j.jechem.2019.04.019
    76. Wenhui Wang, Yutong He, Limin Qi. High-efficiency colorful perovskite solar cells using TiO2 nanobowl arrays as a structured electron transport layer. Science China Materials 2020, 63 (1) , 35-46. https://doi.org/10.1007/s40843-019-9452-1
    77. S.A. Olaleru, J.K. Kirui, D. Wamwangi, K.T. Roro, B. Mwakikunga. Perovskite solar cells: The new epoch in photovoltaics. Solar Energy 2020, 196 , 295-309. https://doi.org/10.1016/j.solener.2019.12.025
    78. Priyanka Tyagi, Tudur W. David, Vasil D. Stoichkov, Jeff Kettle. Multivariate approach for studying the degradation of perovskite solar cells. Solar Energy 2019, 193 , 12-19. https://doi.org/10.1016/j.solener.2019.09.054
    79. Han Liu, Yanyan Wang, Yu Cao, Yuejin Zhu, Ziyang Hu. Formation mechanism of concentric and colorful ring perovskite films. Synthetic Metals 2019, 255 , 116107. https://doi.org/10.1016/j.synthmet.2019.116107
    80. Jitprabhat Ponchai, Paphada Kaewurai, Chirapa Boonthum, Kusuma Pinsuwan, Thidarat Supasai, Somboon Sahasithiwat, Pongsakorn Kanjanaboos. Modifying morphology and defects of low-dimensional, semi-transparent perovskite thin films via solvent type. RSC Advances 2019, 9 (21) , 12047-12054. https://doi.org/10.1039/C9RA00971J
    81. Anishkumar Soman, Aldrin Antony. Colored solar cells with spectrally selective photonic crystal reflectors for application in building integrated photovoltaics. Solar Energy 2019, 181 , 1-8. https://doi.org/10.1016/j.solener.2019.01.058
    82. Enrique Pascual-San José, Antonio Sánchez-Díaz, Marco Stella, Eugenia Martínez-Ferrero, Maria Isabel Alonso, Mariano Campoy-Quiles. Comparing the potential of different strategies for colour tuning in thin film photovoltaic technologies. Science and Technology of Advanced Materials 2018, 19 (1) , 823-835. https://doi.org/10.1080/14686996.2018.1530050
    83. Wei Liu, Zhijie Ma, Shubo Wang, Jun Jiang, Ningyi Yuan, Jianning Ding. Low-temperature bromide modification of SnO2 for highly efficient perovskite solar cells. Journal of Solid State Electrochemistry 2018, 22 (12) , 3751-3759. https://doi.org/10.1007/s10008-018-4066-0
    84. Soghra Mirershadi, Farhad Sattari, Mahmoud Mohamadi Saridaragh. Effects of halogen replacement on the efficiency of luminescent solar concentrator based on methylammonium lead halide perovskite. Solar Energy Materials and Solar Cells 2018, 186 , 365-372. https://doi.org/10.1016/j.solmat.2018.07.008
    85. Jue Gong, Peijun Guo, Savannah E. Benjamin, P. Gregory Van Patten, Richard D. Schaller, Tao Xu. Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. Journal of Energy Chemistry 2018, 27 (4) , 1017-1039. https://doi.org/10.1016/j.jechem.2017.12.005
    86. Yunxia Zhang, Yucheng Liu, Zhou Yang, Shengzhong (Frank) Liu. High-quality perovskite MAPbI3 single crystals for broad-spectrum and rapid response integrate photodetector. Journal of Energy Chemistry 2018, 27 (3) , 722-727. https://doi.org/10.1016/j.jechem.2017.11.002
    87. Lung-Chien Chen, Zong-Liang Tseng, Wei-Wen Chang, Yen Wen Lin. Warm white light-emitting diodes using organic–inorganic halide perovskite materials coated YAG:Ce3+ phosphors. Ceramics International 2018, 44 (4) , 3868-3872. https://doi.org/10.1016/j.ceramint.2017.11.176
    88. Isabel Mesquita, Luísa Andrade, Adélio Mendes. Perovskite solar cells: Materials, configurations and stability. Renewable and Sustainable Energy Reviews 2018, 82 , 2471-2489. https://doi.org/10.1016/j.rser.2017.09.011
    89. Gayoung Kim, Jung Wook Lim, Myunghun Shin, Sun Jin Yun. Bifacial color realization for a-Si:H solar cells using transparent multilayered electrodes. Solar Energy 2018, 159 , 465-474. https://doi.org/10.1016/j.solener.2017.11.019
    90. Zhi Shuo Yan, Ji Ying Long, Yun Gong, Jian Hua Lin. Three in situ -synthesized novel inorganic–organic hybrid materials based on metal (M = Bi, Pb) iodide and organoamine using one-pot reactions: structures, band gaps and optoelectronic properties. New Journal of Chemistry 2018, 42 (1) , 699-707. https://doi.org/10.1039/C7NJ02815F
    91. Holly F. Zarick, Naiya Soetan, William R. Erwin, Rizia Bardhan. Mixed halide hybrid perovskites: a paradigm shift in photovoltaics. Journal of Materials Chemistry A 2018, 6 (14) , 5507-5537. https://doi.org/10.1039/C7TA09122B
    92. Naser Abdi, Yaser Abdi, Zahra Alemipour. Effects of morphology and thickness of Al2O3 scaffold on charge transport in Perovskite-based solar cells. Solar Energy 2017, 153 , 379-382. https://doi.org/10.1016/j.solener.2017.05.090
    93. Foroogh Arkan, Mohammad Izadyar. The investigation of the central metal effects on the porphyrin-based DSSCs performance; molecular approach. Materials Chemistry and Physics 2017, 196 , 142-152. https://doi.org/10.1016/j.matchemphys.2017.04.054
    94. Ke Bi, Dan Wang, Peng Wang, Bin Duan, Tieqiang Zhang, Yinghui Wang, Hanzhuang Zhang, Yu Zhang. Cesium lead halide perovskite quantum dot-based warm white light-emitting diodes with high color rendering index. Journal of Nanoparticle Research 2017, 19 (5) https://doi.org/10.1007/s11051-017-3862-2
    95. A.B. Djurišić, F.Z. Liu, H.W. Tam, M.K. Wong, A. Ng, C. Surya, W. Chen, Z.B. He. Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics 2017, 53 , 1-37. https://doi.org/10.1016/j.pquantelec.2017.05.002
    96. Zhi Shuo Yan, Yun Gong, Jian Hua Lin. Metal Complexes Based on 2‐[5‐(3,5‐Dibromophenyl)‐2 H ‐1,2,4‐triazol‐3‐yl]pyridine and Their Composites with CH 3 NH 3 PbI 3 : Structures, Band Gaps, and Enhanced Optoelectronic Properties. European Journal of Inorganic Chemistry 2017, 2017 (9) , 1256-1265. https://doi.org/10.1002/ejic.201601429
    97. Haining Chen. Two‐Step Sequential Deposition of Organometal Halide Perovskite for Photovoltaic Application. Advanced Functional Materials 2017, 27 (8) https://doi.org/10.1002/adfm.201605654
    98. Muhamad Z. Mokhtar, Mu Chen, Eric Whittaker, Bruce Hamilton, Nicholas Aristidou, Simko Ramadan, Ali Gholinia, Saif A. Haque, Paul O'Brien, Brian R. Saunders. CH 3 NH 3 PbI 3 films prepared by combining 1- and 2-step deposition: how crystal growth conditions affect properties. Physical Chemistry Chemical Physics 2017, 19 (10) , 7204-7214. https://doi.org/10.1039/C7CP00471K
    99. Mauricio E. Calvo. Materials chemistry approaches to the control of the optical features of perovskite solar cells. Journal of Materials Chemistry A 2017, 5 (39) , 20561-20578. https://doi.org/10.1039/C7TA05666D
    100. Tingting Xu, Lixin Chen, Zhanhu Guo, Tingli Ma. Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Physical Chemistry Chemical Physics 2016, 18 (39) , 27026-27050. https://doi.org/10.1039/C6CP04553G
    Load all citations