ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Factors Favoring Ferroelectricity in Hafnia: A First-Principles Computational Study

View Author Information
Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
*E-mail: [email protected] (R.R.).
Cite this: J. Phys. Chem. C 2017, 121, 8, 4139–4145
Publication Date (Web):February 2, 2017
https://doi.org/10.1021/acs.jpcc.6b11972
Copyright © 2017 American Chemical Society

Article Views

3103

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Abstract Image

The surprising ferroelectricity displayed by hafnia thin films has been attributed to a metastable polar orthorhombic (Pca21) phase. Nevertheless, the conditions under which this (or another competing) ferroelectric phase may be stabilized remain unresolved. It has been hypothesized that a variety of factors, including strain, grain size, electric field, impurities and dopants, may contribute to the observed ferroelectricity. Here, we use first-principles computations to examine the influence of mechanical and electrical boundary conditions (i.e., strain and electric field) on the relative stability of a variety of relevant nonpolar and polar phases of hafnia. We find that although strain or electric field, independently, do not lead to a ferroelectric phase, the combined influence of in-plane equibiaxial deformation and electric field results in the emergence of the polar Pca21 structure as the equilibrium phase. The results provide insights for better controlling the ferroelectric characteristics of hafnia thin films by adjusting the growth conditions and electrical history.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b11972.

  • Data on relative permmitivity and the spontaneous polarization of different phases of hafnia used to construct Figure 3 (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 130 publications.

  1. Chih-Yu Teng, Chia-Chieh Cheng, Kai-Shin Li, Chenming Hu, Jhih-Min Lin, Bi-Hsuan Lin, Mau-Tsu Tang, Yuan-Chieh Tseng. Optimizing the Ferroelectric Properties of Hf1–xZrxO2 Films via Crystal Orientation. ACS Applied Electronic Materials 2023, 5 (2) , 1114-1122. https://doi.org/10.1021/acsaelm.2c01582
  2. Kisung Chae, Andrew C. Kummel, Kyeongjae Cho. Tetravalent Doping in Fluorite-Based Ferroelectric Oxides for Reduced Voltage Operations. ACS Applied Materials & Interfaces 2022, 14 (25) , 29007-29013. https://doi.org/10.1021/acsami.2c05886
  3. Alireza Kashir, Mehrdad Ghiasabadi Farahani, Stanislav Kamba, Manoj Yadav, Hyunsang Hwang. Hf1–xZrxO2/ZrO2 Nanolaminate Thin Films as a High-κ Dielectric. ACS Applied Electronic Materials 2021, 3 (12) , 5632-5640. https://doi.org/10.1021/acsaelm.1c01105
  4. Ignasi Fina, Florencio Sánchez. Epitaxial Ferroelectric HfO2 Films: Growth, Properties, and Devices. ACS Applied Electronic Materials 2021, 3 (4) , 1530-1549. https://doi.org/10.1021/acsaelm.1c00110
  5. Alireza Kashir, Hyungwoo Kim, Seungyeol Oh, Hyunsang Hwang. Large Remnant Polarization in a Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Film through Bulk and Interface Engineering. ACS Applied Electronic Materials 2021, 3 (2) , 629-638. https://doi.org/10.1021/acsaelm.0c00671
  6. Anastasia Chouprik, Roman Kirtaev, Maxim Spiridonov, Andrey M. Markeev, Dmitrii Negrov. Nanoscale Tailoring of Ferroelectricity in a Thin Dielectric Film. ACS Applied Materials & Interfaces 2020, 12 (50) , 56195-56202. https://doi.org/10.1021/acsami.0c16741
  7. Shelby S. Fields, Sean W. Smith, Philip J. Ryan, Samantha T. Jaszewski, Ian A. Brummel, Alejandro Salanova, Giovanni Esteves, Steve L. Wolfley, Michael D. Henry, Paul S. Davids, Jon F. Ihlefeld. Phase-Exchange-Driven Wake-Up and Fatigue in Ferroelectric Hafnium Zirconium Oxide Films. ACS Applied Materials & Interfaces 2020, 12 (23) , 26577-26585. https://doi.org/10.1021/acsami.0c03570
  8. Rohit Batra, Huan Doan Tran, Brienne Johnson, Brandon Zoellner, Paul A. Maggard, Jacob L. Jones, George A. Rossetti, Jr., Rampi Ramprasad. Search for Ferroelectric Binary Oxides: Chemical and Structural Space Exploration Guided by Group Theory and Computations. Chemistry of Materials 2020, 32 (9) , 3823-3832. https://doi.org/10.1021/acs.chemmater.9b05324
  9. Yu Feng, Jiagang Wu, Qingguo Chi, Weili Li, Yang Yu, Weidong Fei. Defects and Aliovalent Doping Engineering in Electroceramics. Chemical Reviews 2020, 120 (3) , 1710-1787. https://doi.org/10.1021/acs.chemrev.9b00507
  10. Pavan Nukala, Jordi Antoja-Lleonart, Yingfen Wei, Lluis Yedra, Brahim Dkhil, Beatriz Noheda. Direct Epitaxial Growth of Polar (1 – x)HfO2–(x)ZrO2 Ultrathin Films on Silicon. ACS Applied Electronic Materials 2019, 1 (12) , 2585-2593. https://doi.org/10.1021/acsaelm.9b00585
  11. P. Fan, Y. K. Zhang, Q. Yang, J. Jiang, L. M. Jiang, M. Liao, Y. C. Zhou. Origin of the Intrinsic Ferroelectricity of HfO2 from ab Initio Molecular Dynamics. The Journal of Physical Chemistry C 2019, 123 (35) , 21743-21750. https://doi.org/10.1021/acs.jpcc.9b04106
  12. Saúl Estandía, Nico Dix, Jaume Gazquez, Ignasi Fina, Jike Lyu, Matthew F. Chisholm, Josep Fontcuberta, Florencio Sánchez. Engineering Ferroelectric Hf0.5Zr0.5O2 Thin Films by Epitaxial Stress. ACS Applied Electronic Materials 2019, 1 (8) , 1449-1457. https://doi.org/10.1021/acsaelm.9b00256
  13. Rohit Batra, Ghanshyam Pilania, Blas P. Uberuaga, Rampi Ramprasad. Multifidelity Information Fusion with Machine Learning: A Case Study of Dopant Formation Energies in Hafnia. ACS Applied Materials & Interfaces 2019, 11 (28) , 24906-24918. https://doi.org/10.1021/acsami.9b02174
  14. Rohit Batra, Huan Doan Tran, Chiho Kim, James Chapman, Lihua Chen, Anand Chandrasekaran, Rampi Ramprasad. General Atomic Neighborhood Fingerprint for Machine Learning-Based Methods. The Journal of Physical Chemistry C 2019, 123 (25) , 15859-15866. https://doi.org/10.1021/acs.jpcc.9b03925
  15. Christopher Künneth, Robin Materlik, Max Falkowski, Alfred Kersch. Impact of Four-Valent Doping on the Crystallographic Phase Formation for Ferroelectric HfO2 from First-Principles: Implications for Ferroelectric Memory and Energy-Related Applications. ACS Applied Nano Materials 2018, 1 (1) , 254-264. https://doi.org/10.1021/acsanm.7b00124
  16. Rohit Batra, Tran Doan Huan, George A. Rossetti, Jr., and Rampi Ramprasad . Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration. Chemistry of Materials 2017, 29 (21) , 9102-9109. https://doi.org/10.1021/acs.chemmater.7b02835
  17. Xinyan Li, Hai Zhong, Ting Lin, Fanqi Meng, Ang Gao, Zhuohui Liu, Dong Su, Kuijuan Jin, Chen Ge, Qinghua Zhang, Lin Gu. Polarization Switching and Correlated Phase Transitions in Fluorite‐Structure ZrO 2 Nanocrystals. Advanced Materials 2023, 376 https://doi.org/10.1002/adma.202207736
  18. Shenglong Zhang, Shilei Yi, Jia-Yue Yang, Jian Liu, Linhua Liu. Correlation between spontaneous polarization and thermal conductivity in ferroelectric HfO2 from first principles. International Journal of Heat and Mass Transfer 2023, 207 , 123971. https://doi.org/10.1016/j.ijheatmasstransfer.2023.123971
  19. Younghwan Lee, Hyun Woo Jeong, Se Hyun Kim, Kun Yang, Min Hyuk Park. Effect of stress on fluorite-structured ferroelectric thin films for semiconductor devices. Materials Science in Semiconductor Processing 2023, 160 , 107411. https://doi.org/10.1016/j.mssp.2023.107411
  20. Ik‐Jyae Kim, Jang‐Sik Lee. Ferroelectric Transistors for Memory and Neuromorphic Device Applications. Advanced Materials 2023, 35 (22) https://doi.org/10.1002/adma.202206864
  21. Ju Yong Park, Dong Hyun Lee, Geun Hyeong Park, Jaewook Lee, Younghwan Lee, Min Hyuk Park. A perspective on the physical scaling down of hafnia-based ferroelectrics. Nanotechnology 2023, 34 (20) , 202001. https://doi.org/10.1088/1361-6528/acb945
  22. Sebastian Bichelmaier, Jesús Carrete, Ralf Wanzenböck, Florian Buchner, Georg K. H. Madsen. Neural-network-backed effective harmonic potential study of the ambient pressure phases of hafnia. Physical Review B 2023, 107 (18) https://doi.org/10.1103/PhysRevB.107.184111
  23. Wanwang Yang, Chenxi Yu, Haolin Li, Mengqi Fan, Xujin Song, Haili Ma, Zheng Zhou, Pengying Chang, Peng Huang, Fei Liu, Xiaoyan Liu, Jinfeng Kang. Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications. Journal of Semiconductors 2023, 44 (5) , 053101. https://doi.org/10.1088/1674-4926/44/5/053101
  24. Tengfei Cao, Guodong Ren, Ding-Fu Shao, Evgeny Y. Tsymbal, Rohan Mishra. Stabilizing polar phases in binary metal oxides by hole doping. Physical Review Materials 2023, 7 (4) https://doi.org/10.1103/PhysRevMaterials.7.044412
  25. Shelby S. Fields, Samantha T. Jaszewski, Megan K. Lenox, Jon F. Ihlefeld. Asymmetric Electrode Work Function Customization via Top Electrode Replacement in Ferroelectric and Field‐Induced Ferroelectric Hafnium Zirconium Oxide Thin Films. Advanced Materials Interfaces 2023, 10 (8) , 2202232. https://doi.org/10.1002/admi.202202232
  26. Li-Yang Ma, Shi Liu. Structural Polymorphism Kinetics Promoted by Charged Oxygen Vacancies in HfO 2 . Physical Review Letters 2023, 130 (9) https://doi.org/10.1103/PhysRevLett.130.096801
  27. Guo-Liang Yuan, Chen-Hao Wang, Wen-Bin Tang, Rui Zhang, Xu-Bing Lu, , . Structure, performance regulation and typical device applications of HfO<sub>2</sub>-based ferroelectric films. Acta Physica Sinica 2023, 72 (9) , 097703. https://doi.org/10.7498/aps.72.20222221
  28. Jon F. Ihlefeld, Samantha T. Jaszewski, Shelby S. Fields. A Perspective on ferroelectricity in hafnium oxide: Mechanisms and considerations regarding its stability and performance. Applied Physics Letters 2022, 121 (24) , 240502. https://doi.org/10.1063/5.0129546
  29. Shelby S. Fields, Truong Cai, Samantha T. Jaszewski, Alejandro Salanova, Takanori Mimura, Helge H. Heinrich, Michael David Henry, Kyle P. Kelley, Brian W. Sheldon, Jon F. Ihlefeld. Origin of Ferroelectric Phase Stabilization via the Clamping Effect in Ferroelectric Hafnium Zirconium Oxide Thin Films. Advanced Electronic Materials 2022, 8 (12) , 2200601. https://doi.org/10.1002/aelm.202200601
  30. Mangla Nand, Shilpa Tripathi, Parasmani Rajput, Manvendra Kumar, Yogesh Kumar, Satish K. Mandal, Rajashri Urkude, Mukul Gupta, Anit Dawar, Sunil Ojha, S.K. Rai, S.N. Jha. Different polymorphs of Y doped HfO2 epitaxial thin films: Insights into structural, electronic and optical properties. Journal of Alloys and Compounds 2022, 928 , 167099. https://doi.org/10.1016/j.jallcom.2022.167099
  31. Yanping Shao, Wanting Yang, Yuanyao Wang, Yuhui Deng, Ningtao Liao, Bingyan Zhu, Xin Lin, Limei Jiang, Jie Jiang, Qiong Yang, Xiangli Zhong. Synergistic effect of Si concentration and distribution on ferroelectric properties optimization of Si:HfO 2 ferroelectric thin films. Journal of Physics: Condensed Matter 2022, 34 (41) , 415401. https://doi.org/10.1088/1361-648X/ac8513
  32. Weiwei Gao, Jijun Zhao, James R. Chelikowsky. Out-of-plane polarization and topological magnetic vortices in multiferroic CrPSe 3 . Physical Review Materials 2022, 6 (10) https://doi.org/10.1103/PhysRevMaterials.6.L101402
  33. Jiawei Huang, Yihao Hu, Shi Liu. Origin of ferroelectricity in magnesium-doped zinc oxide. Physical Review B 2022, 106 (14) https://doi.org/10.1103/PhysRevB.106.144106
  34. Junshuai Chai, Hao Xu, Jinjuan Xiang, Yuanyuan Zhang, Lixing Zhou, Shujing Zhao, Fengbin Tian, Jiahui Duan, Kai Han, Xiaolei Wang, Jun Luo, Wenwu Wang, Tianchun Ye, Yuzheng Guo. First-principles study of oxygen vacancy defects in orthorhombic Hf 0.5 Zr 0.5 O 2 /SiO 2 /Si gate stack. Journal of Applied Physics 2022, 132 (10) , 105301. https://doi.org/10.1063/5.0106750
  35. Biyao Zhao, Yunting Yan, Jinshun Bi, Gaobo Xu, Yannan Xu, Xueqin Yang, Linjie Fan, Mengxin Liu. Improved Ferroelectric Properties in Hf0.5Zr0.5O2 Thin Films by Microwave Annealing. Nanomaterials 2022, 12 (17) , 3001. https://doi.org/10.3390/nano12173001
  36. Uwe Schroeder, Terence Mittmann, Monica Materano, Patrick D. Lomenzo, Patrick Edgington, Young H. Lee, Meshari Alotaibi, Anthony R. West, Thomas Mikolajick, Alfred Kersch, Jacob L. Jones. Temperature‐Dependent Phase Transitions in Hf x Zr 1‐x O 2 Mixed Oxides: Indications of a Proper Ferroelectric Material. Advanced Electronic Materials 2022, 8 (9) , 2200265. https://doi.org/10.1002/aelm.202200265
  37. Francesco Delodovici, Paolo Barone, Silvia Picozzi. Finite-size effects on ferroelectricity in rhombohedral HfO 2 . Physical Review B 2022, 106 (11) https://doi.org/10.1103/PhysRevB.106.115438
  38. Guo-Dong Zhao, Xingen Liu, Wei Ren, Xiaona Zhu, Shaofeng Yu. Symmetry of ferroelectric switching and domain walls in hafnium dioxide. Physical Review B 2022, 106 (6) https://doi.org/10.1103/PhysRevB.106.064104
  39. Jianwen Chen, Wei Zhao, Wenjing Song, Wang Cao, Jianwen Ding. Enhanced ferroelectricity by strain gradient in few-layer HfO 2 thin films. Europhysics Letters 2022, 139 (4) , 46003. https://doi.org/10.1209/0295-5075/ac7540
  40. Ho Leung Chan, Shelby S Fields, Tristan O'Neill, Yueyun Chen, William A Hubbard, Jon F Ihlefeld, B C Regan. Determining the Polarization Fraction of Thin Film Ferroelectric HZO with STEM EBIC. Microscopy and Microanalysis 2022, 28 (S1) , 2270-2271. https://doi.org/10.1017/S1431927622008728
  41. Ali El Boutaybi, Thomas Maroutian, Ludovic Largeau, Sylvia Matzen, Philippe Lecoeur. Stabilization of the epitaxial rhombohedral ferroelectric phase in ZrO 2 by surface energy. Physical Review Materials 2022, 6 (7) https://doi.org/10.1103/PhysRevMaterials.6.074406
  42. Writam Banerjee, Alireza Kashir, Stanislav Kamba. Hafnium Oxide (HfO 2 ) – A Multifunctional Oxide: A Review on the Prospect and Challenges of Hafnium Oxide in Resistive Switching and Ferroelectric Memories. Small 2022, 18 (23) , 2107575. https://doi.org/10.1002/smll.202107575
  43. Hai Zhong, Mingqiang Li, Qinghua Zhang, Lihong Yang, Ri He, Fang Liu, Zhuohui Liu, Ge Li, Qinchao Sun, Donggang Xie, Fanqi Meng, Qiang Li, Meng He, Er‐jia Guo, Can Wang, Zhicheng Zhong, Xinqiang Wang, Lin Gu, Guozhen Yang, Kuijuan Jin, Peng Gao, Chen Ge. Large‐Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity. Advanced Materials 2022, 34 (24) , 2109889. https://doi.org/10.1002/adma.202109889
  44. Seunghun Kang, Woo-Sung Jang, Anna N. Morozovska, Owoong Kwon, Yeongrok Jin, Young-Hoon Kim, Hagyoul Bae, Chenxi Wang, Sang-Hyeok Yang, Alex Belianinov, Steven Randolph, Eugene A. Eliseev, Liam Collins, Yeehyun Park, Sanghyun Jo, Min-Hyoung Jung, Kyoung-June Go, Hae Won Cho, Si-Young Choi, Jae Hyuck Jang, Sunkook Kim, Hu Young Jeong, Jaekwang Lee, Olga S. Ovchinnikova, Jinseong Heo, Sergei V. Kalinin, Young-Min Kim, Yunseok Kim. Highly enhanced ferroelectricity in HfO 2 -based ferroelectric thin film by light ion bombardment. Science 2022, 376 (6594) , 731-738. https://doi.org/10.1126/science.abk3195
  45. Suraj S. Cheema, Nirmaan Shanker, Shang-Lin Hsu, Yoonsoo Rho, Cheng-Hsiang Hsu, Vladimir A. Stoica, Zhan Zhang, John W. Freeland, Padraic Shafer, Costas P. Grigoropoulos, Jim Ciston, Sayeef Salahuddin. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 2022, 376 (6593) , 648-652. https://doi.org/10.1126/science.abm8642
  46. Sesha Sai Behara, Anton Van der Ven. Ferroelectric HfO 2 and the importance of strain. Physical Review Materials 2022, 6 (5) https://doi.org/10.1103/PhysRevMaterials.6.054403
  47. Eduardo Barriuso, Panagiotis Koutsogiannis, David Serrate, Javier Herrero-Martín, Ricardo Jiménez, César Magén, Miguel Algueró, Pedro A. Algarabel, José A. Pardo. Direct Epitaxial Growth of Polar Hf0.5Zr0.5O2 Films on Corundum. Nanomaterials 2022, 12 (7) , 1232. https://doi.org/10.3390/nano12071232
  48. Haiyan Chen, Xuefan Zhou, Lin Tang, Yonghong Chen, Hang Luo, Xi Yuan, Chris R. Bowen, Dou Zhang. HfO 2 -based ferroelectrics: From enhancing performance, material design, to applications. Applied Physics Reviews 2022, 9 (1) , 011307. https://doi.org/10.1063/5.0066607
  49. Ziqi Li, Dayu Zhou, Jingjing Wang, Nana Sun, Weiqi Zhang. Ferroelectricity in hafnium oxide films doped with magnesium by chemical solution deposition. Journal of Applied Physics 2022, 131 (7) , 074101. https://doi.org/10.1063/5.0077616
  50. Thomas Szyjka, Lutz Baumgarten, Oliver Rehm, Claudia Richter, Yury Matveyev, Christoph Schlueter, Thomas Mikolajick, Uwe Schroeder, Martina Müller. From Doping to Dilution: Local Chemistry and Collective Interactions of La in HfO 2. physica status solidi (RRL) – Rapid Research Letters 2022, 118 , 2100582. https://doi.org/10.1002/pssr.202100582
  51. Dong Hyun Lee, Geun Taek Yu, Ju Yong Park, Se Hyun Kim, Kun Yang, Geun Hyeong Park, Jin Ju Ryu, Je In Lee, Gun Hwan Kim, Min Hyuk Park. Effect of residual impurities on polarization switching kinetics in atomic-layer-deposited ferroelectric Hf0.5Zr0.5O2 thin films. Acta Materialia 2022, 222 , 117405. https://doi.org/10.1016/j.actamat.2021.117405
  52. 祺 祝. Ferroelectric Properties of Rhombohedral in Epitaxically Grown Hf0.5Zr0.5O2 Films. Applied Physics 2022, 12 (01) , 1-7. https://doi.org/10.12677/APP.2022.121001
  53. Patrick D. Lomenzo, Monica Materano, Terence Mittmann, Pratyush Buragohain, Alexei Gruverman, Takanori Kiguchi, Thomas Mikolajick, Uwe Schroeder. Harnessing Phase Transitions in Antiferroelectric ZrO 2 Using the Size Effect. Advanced Electronic Materials 2022, 8 (1) , 2100556. https://doi.org/10.1002/aelm.202100556
  54. Halid Mulaosmanovic, Evelyn T Breyer, Stefan Dünkel, Sven Beyer, Thomas Mikolajick, Stefan Slesazeck. Ferroelectric field-effect transistors based on HfO 2 : a review. Nanotechnology 2021, 32 (50) , 502002. https://doi.org/10.1088/1361-6528/ac189f
  55. Troy Tharpe, Xu-Qian Zheng, Philip X.-L. Feng, Roozbeh Tabrizian. Resolving Mechanical Properties and Morphology Evolution of Free‐Standing Ferroelectric Hf 0.5 Zr 0.5 O 2. Advanced Engineering Materials 2021, 23 (12) , 2101221. https://doi.org/10.1002/adem.202101221
  56. Adrian Acosta, J. Mark P. Martirez, Norleakvisoth Lim, Jane P. Chang, Emily A. Carter. Relationship between ferroelectric polarization and stoichiometry of HfO 2 surfaces. Physical Review Materials 2021, 5 (12) https://doi.org/10.1103/PhysRevMaterials.5.124417
  57. Qiang Chen, Yuke Zhang, Wenyan Liu, Jie Jiang, Qiong Yang, Limei Jiang. Ferroelectric switching behavior of nanoscale Hf0.5Zr0.5O2 grains. International Journal of Mechanical Sciences 2021, 212 , 106828. https://doi.org/10.1016/j.ijmecsci.2021.106828
  58. Takanori Mimura, Takao Shimizu, Osami Sakata, Hiroshi Funakubo. Thickness dependence of phase stability in epitaxial ( Hf x Zr 1 − x ) O 2 films. Physical Review Materials 2021, 5 (11) https://doi.org/10.1103/PhysRevMaterials.5.114407
  59. Ri He, Hongyu Wu, Shi Liu, Houfang Liu, Zhicheng Zhong. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. Physical Review B 2021, 104 (18) https://doi.org/10.1103/PhysRevB.104.L180102
  60. Alireza Kashir, Hyunsang Hwang. A CMOS-compatible morphotropic phase boundary. Nanotechnology 2021, 32 (44) , 445706. https://doi.org/10.1088/1361-6528/ac1716
  61. Shelby S. Fields, Sean W. Smith, Samantha T. Jaszewski, Takanori Mimura, Diane A. Dickie, Giovanni Esteves, M. David Henry, Steve L. Wolfley, Paul S. Davids, Jon F. Ihlefeld. Wake-up and fatigue mechanisms in ferroelectric Hf 0.5 Zr 0.5 O 2 films with symmetric RuO 2 electrodes. Journal of Applied Physics 2021, 130 (13) , 134101. https://doi.org/10.1063/5.0064145
  62. Bin Lai, Yuanyao Wang, Yanping Shao, Yuhui Deng, Wanting Yang, Limei Jiang, Yuke Zhang. Study on the phase transition dynamics of HfO 2 -based ferroelectric films under ultrafast electric pulse. Journal of Physics: Condensed Matter 2021, 33 (40) , 405402. https://doi.org/10.1088/1361-648X/ac14f9
  63. Can Huang, Yuke Zhang, Shuaizhi Zheng, Qiong Yang, Min Liao. Interface Effects Induced by a Zr O 2 Seed Layer on the Phase Stability and Orientation of Hf O 2 Ferroelectric Thin Films: A First-Principles Study. Physical Review Applied 2021, 16 (4) https://doi.org/10.1103/PhysRevApplied.16.044048
  64. S. F. Lombardo, M. Tian, K. Chae, J. Hur, N. Tasneem, S. Yu, K. Cho, A. C. Kummel, J. Kacher, A. I. Khan. Local epitaxial-like templating effects and grain size distribution in atomic layer deposited Hf 0.5 Zr 0.5 O 2 thin film ferroelectric capacitors. Applied Physics Letters 2021, 119 (9) , 092901. https://doi.org/10.1063/5.0057782
  65. Alireza Kashir, Mehrdad Ghiasabadi Farahani, Hyunsang Hwang. Towards an ideal high-κ HfO 2 –ZrO 2 -based dielectric. Nanoscale 2021, 13 (32) , 13631-13640. https://doi.org/10.1039/D1NR02272E
  66. D. Banerjee, C. C. Dey, Ravi Kumar, R. Sewak, S. N. Jha, D. Bhattacharyya, R. Acharya, P. K. Pujari. Probing the solute-drag effect and its role in stabilizing the orthorhombic phase in bulk La-doped HfO 2 by X-ray and gamma ray spectroscopy. Physical Chemistry Chemical Physics 2021, 23 (30) , 16258-16267. https://doi.org/10.1039/D1CP00096A
  67. Jibao Wu. Effects of strain on the electronic, optical, and ferroelectric transition properties of HfO 2 : ab initio simulation study. Journal of Physics: Condensed Matter 2021, 33 (29) , 295501. https://doi.org/10.1088/1361-648X/ac0024
  68. Anastasia Chouprik, Dmitrii Negrov, Evgeny Y. Tsymbal, Andrei Zenkevich. Defects in ferroelectric HfO 2. Nanoscale 2021, 13 (27) , 11635-11678. https://doi.org/10.1039/D1NR01260F
  69. Huimin Qiao, Chenxi Wang, Woo Seok Choi, Min Hyuk Park, Yunseok Kim. Ultra-thin ferroelectrics. Materials Science and Engineering: R: Reports 2021, 145 , 100622. https://doi.org/10.1016/j.mser.2021.100622
  70. Dong Hyun Lee, Younghwan Lee, Kun Yang, Ju Yong Park, Se Hyun Kim, Pothala Reddi Sekhar Reddy, Monica Materano, Halid Mulaosmanovic, Thomas Mikolajick, Jacob L. Jones, Uwe Schroeder, Min Hyuk Park. Domains and domain dynamics in fluorite-structured ferroelectrics. Applied Physics Reviews 2021, 8 (2) , 021312. https://doi.org/10.1063/5.0047977
  71. Francesco Delodovici, Paolo Barone, Silvia Picozzi. Trilinear-coupling-driven ferroelectricity in HfO 2 . Physical Review Materials 2021, 5 (6) https://doi.org/10.1103/PhysRevMaterials.5.064405
  72. Xianghan Xu, Fei-Ting Huang, Yubo Qi, Sobhit Singh, Karin M. Rabe, Dimuthu Obeysekera, Junjie Yang, Ming-Wen Chu, Sang-Wook Cheong. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nature Materials 2021, 20 (6) , 826-832. https://doi.org/10.1038/s41563-020-00897-x
  73. Hei Man Yau, Xinxin Chen, Chi Man Wong, Deyang Chen, Jiyan Dai. Orientation control of phase transition and ferroelectricity in Al-doped HfO2 thin films. Materials Characterization 2021, 176 , 111114. https://doi.org/10.1016/j.matchar.2021.111114
  74. Shinji Migita, Hiroyuki Ota, Shutaro Asanuma, Yukinori Morita, Akira Toriumi. Accelerated ferroelectric phase transformation in HfO 2 /ZrO 2 nanolaminates. Applied Physics Express 2021, 14 (5) , 051006. https://doi.org/10.35848/1882-0786/abfa75
  75. Shelby S. Fields, Sean W. Smith, Chris M. Fancher, Michael David Henry, Steve L. Wolfley, Maria G. Sales, Samantha T. Jaszewski, Mark A. Rodriguez, Giovanni Esteves, Paul S. Davids, Stephen J. McDonnell, Jon F. Ihlefeld. Metal Nitride Electrode Stress and Chemistry Effects on Phase and Polarization Response in Ferroelectric Hf 0.5 Zr 0.5 O 2 Thin Films. Advanced Materials Interfaces 2021, 8 (10) , 2100018. https://doi.org/10.1002/admi.202100018
  76. Md. Mehedi Hasan, Chang Won Ahn, Tae Heon Kim, Jin Jang. Solution processed high performance ferroelectric Hf 0.5 Zr 0.5 O 2 thin film transistor on glass substrate. Applied Physics Letters 2021, 118 (15) , 152901. https://doi.org/10.1063/5.0035653
  77. Xiaofei Li, Chen Li, Zhiyu Xu, Yongsheng Li, Yihao Yang, Haihua Hu, Zhizheng Jiang, Jiayi Wang, Jiaxin Ren, Chunyan Zheng, Chaojing Lu, Zheng Wen. Ferroelectric Properties and Polarization Fatigue of La:HfO 2 Thin‐Film Capacitors. physica status solidi (RRL) – Rapid Research Letters 2021, 15 (4) , 2000481. https://doi.org/10.1002/pssr.202000481
  78. Alireza Kashir, Hyunsang Hwang. Ferroelectric and Dielectric Properties of Hf 0.5 Zr 0.5 O 2 Thin Film Near Morphotropic Phase Boundary. physica status solidi (a) 2021, 218 (8) , 2000819. https://doi.org/10.1002/pssa.202000819
  79. Takanori Mimura, Takao Shimizu, Osami Sakata, Hiroshi Funakubo. Large thermal hysteresis of ferroelectric transition in HfO 2 -based ferroelectric films. Applied Physics Letters 2021, 118 (11) , 112903. https://doi.org/10.1063/5.0040934
  80. Shelby S. Fields, David H. Olson, Samantha T. Jaszewski, Chris M. Fancher, Sean W. Smith, Diane A. Dickie, Giovanni Esteves, M. David Henry, Paul S. Davids, Patrick E. Hopkins, Jon F. Ihlefeld. Compositional and phase dependence of elastic modulus of crystalline and amorphous Hf 1- x Zr x O 2 thin films. Applied Physics Letters 2021, 118 (10) , 102901. https://doi.org/10.1063/5.0044702
  81. Yun-Wen Chen, Sheng-Ting Fan, C W Liu. Energy preference of uniform polarization switching for HfO 2 by first-principle study. Journal of Physics D: Applied Physics 2021, 54 (8) , 085304. https://doi.org/10.1088/1361-6463/abc3ec
  82. Kuei-Wen Huang, Sheng-Han Yi, Yu-Sen Jiang, Wei-Chung Kao, Yu-Tung Yin, David Beck, Vladimir Korolkov, Roger Proksch, Jay Shieh, Miin-Jang Chen. Sub-7-nm textured ZrO2 with giant ferroelectricity. Acta Materialia 2021, 205 , 116536. https://doi.org/10.1016/j.actamat.2020.116536
  83. Hyungwoo Kim, Alireza Kashir, Seungyeol Oh, Hyunsang Hwang. A new approach to achieving strong ferroelectric properties in TiN/Hf 0.5 Zr 0.5 O 2 /TiN devices. Nanotechnology 2021, 32 (5) , 055703. https://doi.org/10.1088/1361-6528/abc115
  84. Terence Mittmann, Michail Michailow, Patrick D. Lomenzo, Jan Gärtner, Max Falkowski, Alfred Kersch, Thomas Mikolajick, Uwe Schroeder. Stabilizing the ferroelectric phase in HfO 2 -based films sputtered from ceramic targets under ambient oxygen. Nanoscale 2021, 13 (2) , 912-921. https://doi.org/10.1039/D0NR07699F
  85. Max Falkowski, Alfred Kersch. Ab initio interphase characteristics in HfO 2 and ZrO 2 and nucleation of the polar phase. Applied Physics Letters 2021, 118 (3) , 032905. https://doi.org/10.1063/5.0029610
  86. Alireza Kashir, Seungyeol Oh, Hyunsang Hwang. Defect Engineering to Achieve Wake‐up Free HfO 2 ‐Based Ferroelectrics. Advanced Engineering Materials 2021, 23 (1) , 2000791. https://doi.org/10.1002/adem.202000791
  87. Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu. Deep learning of accurate force field of ferroelectric HfO 2 . Physical Review B 2021, 103 (2) https://doi.org/10.1103/PhysRevB.103.024108
  88. Ju Yong Park, Kun Yang, Dong Hyun Lee, Se Hyun Kim, Younghwan Lee, P. R. Sekhar Reddy, Jacob L. Jones, Min Hyuk Park. A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials–device integration perspective. Journal of Applied Physics 2020, 128 (24) , 240904. https://doi.org/10.1063/5.0035542
  89. Y. Qi, Karin M. Rabe. Phase competition in HfO 2 with applied electric field from first principles. Physical Review B 2020, 102 (21) https://doi.org/10.1103/PhysRevB.102.214108
  90. Yubo Qi, Sobhit Singh, Claudia Lau, Fei-Ting Huang, Xianghan Xu, Frederick J. Walker, Charles H. Ahn, Sang-Wook Cheong, Karin M. Rabe. Stabilization of Competing Ferroelectric Phases of HfO 2 under Epitaxial Strain. Physical Review Letters 2020, 125 (25) https://doi.org/10.1103/PhysRevLett.125.257603
  91. Jian Liu, Shi Liu, Jia-Yue Yang, Linhua Liu. Electric Auxetic Effect in Piezoelectrics. Physical Review Letters 2020, 125 (19) https://doi.org/10.1103/PhysRevLett.125.197601
  92. Solyee Im, Seung-Youl Kang, Yeriaron Kim, Jeong Hun Kim, Jong-Pil Im, Sung-Min Yoon, Seung Eon Moon, Jiyong Woo. Ferroelectric Switching in Trilayer Al2O3/HfZrOx/Al2O3 Structure. Micromachines 2020, 11 (10) , 910. https://doi.org/10.3390/mi11100910
  93. Hyun-Jae Lee, Minseong Lee, Kyoungjun Lee, Jinhyeong Jo, Hyemi Yang, Yungyeom Kim, Seung Chul Chae, Umesh Waghmare, Jun Hee Lee. Scale-free ferroelectricity induced by flat phonon bands in HfO 2. Science 2020, 369 (6509) , 1343-1347. https://doi.org/10.1126/science.aba0067
  94. Weitong Ding, Yuke Zhang, Lingling Tao, Qiong Yang, Yichun Zhou. The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: A first-principle study. Acta Materialia 2020, 196 , 556-564. https://doi.org/10.1016/j.actamat.2020.07.012
  95. Jike Lyu, Ignasi Fina, Florencio Sánchez. Fatigue and retention in the growth window of ferroelectric Hf 0.5 Zr 0.5 O 2 thin films. Applied Physics Letters 2020, 117 (7) , 072901. https://doi.org/10.1063/5.0017738
  96. Min Hyuk Park, Dong Hyun Lee, Kun Yang, Ju-Yong Park, Geun Taek Yu, Hyeon Woo Park, Monica Materano, Terence Mittmann, Patrick D. Lomenzo, Thomas Mikolajick, Uwe Schroeder, Cheol Seong Hwang. Review of defect chemistry in fluorite-structure ferroelectrics for future electronic devices. Journal of Materials Chemistry C 2020, 8 (31) , 10526-10550. https://doi.org/10.1039/D0TC01695K
  97. Kisung Chae, Jeongwoon Hwang, Evgueni Chagarov, Andrew Kummel, Kyeongjae Cho. Stability of ferroelectric and antiferroelectric hafnium–zirconium oxide thin films. Journal of Applied Physics 2020, 128 (5) , 054101. https://doi.org/10.1063/5.0011547
  98. Sajad Yazdani, Raana Kashfi-Sadabad, Mayra Daniela Morales-Acosta, Raul David Montaño, Tuoc Ngoc Vu, Huan Doan Tran, Menghan Zhou, Yufei Liu, Jian He, Michael Thompson Pettes. Thermal transport in phase-stabilized lithium zirconate phosphates. Applied Physics Letters 2020, 117 (1) , 011903. https://doi.org/10.1063/5.0013716
  99. Yuke Zhang, Qiong Yang, Lingling Tao, Evgeny Y. Tsymbal, Vitaly Alexandrov. Effects of Strain and Film Thickness on the Stability of the Rhombohedral Phase of Hf O 2 . Physical Review Applied 2020, 14 (1) https://doi.org/10.1103/PhysRevApplied.14.014068
  100. Sheng-Ting Fan, Yun-Wen Chen, C W Liu. Strain effect on the stability in ferroelectric HfO 2 simulated by first-principles calculations. Journal of Physics D: Applied Physics 2020, 53 (23) , 23LT01. https://doi.org/10.1088/1361-6463/ab7fd4
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect