ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

In Situ Monitoring of Unique Switching Transitions in the Pressure-Amplifying Flexible Framework Material DUT-49 by High-Pressure 129Xe NMR Spectroscopy

View Author Information
Bioanalytische Chemie, Fachrichtung Chemie und Lebensmittelchemie, and Anorganische Chemie I, Fachrichtung Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstraße 66, 01062 Dresden, Germany
# Department of Structure and Dynamics of Energy Materials and #Department of Sample Environment, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Cite this: J. Phys. Chem. C 2017, 121, 9, 5195–5200
Publication Date (Web):February 15, 2017
https://doi.org/10.1021/acs.jpcc.7b01204
Copyright © 2017 American Chemical Society

    Article Views

    812

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The pronounced flexibility of special metal–organic frameworks (MOFs), so-called soft porous crystals, is attracting increasing research interest. Studies of host–guest interactions in such materials are especially powerful if the measurements are performed in situ. 129Xe NMR spectroscopy is favorable because it provides characteristic, structure-sensitive parameters such as chemical shifts. The combination of high-pressure xenon adsorption with 129Xe NMR spectroscopy was used to elucidate the adsorption-induced phase transitions in the recently discovered pressure-amplifying framework material DUT-49, showing a unique negative gas adsorption (NGA) transition. In the open-pore state, DUT-49op exhibits a hierarchical pore system involving both micro- and mesopores. After reaching a critical relative pressure of ca. 0.15, adsorbed xenon induces mesopore contraction, resulting in a purely microporous contracted-pore phase. This contraction is accompanied by release of xenon from the mesopores. Further increase of the pressure initiates the recovery of the mesopores without any indication of a structural intermediate in the NMR spectra. According to the NMR data, the structural transition induced by xenon is a collective, stepwise phenomenon rather than a continuous process. This is the first time that NGA has been studied by directly monitoring the guest and its interaction with the host framework.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b01204.

    • Detailed data from volumetric Xe adsorption experiments (Figures S1–S3) and in situ PXRD (Figure S4) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Kavipriya Thangavel, Francesco Walenszus, Matthias Mendt, Volodymyr Bon, Stefan Kaskel, Andreas Pöppl. Monitoring the Local Structure and Magnetic Properties of the Dinuclear Cu2-Paddle Wheel Nodes in the Mesoporous Metal–Organic Framework, DUT-49(Cu), upon Adsorption-Induced Breathing Transitions. The Journal of Physical Chemistry C 2023, 127 (17) , 8217-8234. https://doi.org/10.1021/acs.jpcc.2c08905
    2. Francesco Walenszus, Jack D. Evans, Volodymyr Bon, Friedrich Schwotzer, Irena Senkovska, Stefan Kaskel. Integration of Fluorescent Functionality into Pressure-Amplifying Metal–Organic Frameworks. Chemistry of Materials 2021, 33 (20) , 7964-7971. https://doi.org/10.1021/acs.chemmater.1c01804
    3. Mark D. Allendorf, Vitalie Stavila, Matthew Witman, Carl K. Brozek, Christopher H. Hendon. What Lies beneath a Metal–Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. Journal of the American Chemical Society 2021, 143 (18) , 6705-6723. https://doi.org/10.1021/jacs.0c10777
    4. Francisco G. Cirujano, Nuria Martin, Lik H. Wee. Design of Hierarchical Architectures in Metal–Oganic Frameworks for Catalysis and Adsorption. Chemistry of Materials 2020, 32 (24) , 10268-10295. https://doi.org/10.1021/acs.chemmater.0c02973
    5. Daniil M. Polyukhov, Simon Krause, Volodymyr Bon, Artem S. Poryvaev, Stefan Kaskel, Matvey V. Fedin. Structural Transitions of the Metal–Organic Framework DUT-49(Cu) upon Physi- and Chemisorption Studied by in Situ Electron Paramagnetic Resonance Spectroscopy. The Journal of Physical Chemistry Letters 2020, 11 (15) , 5856-5862. https://doi.org/10.1021/acs.jpclett.0c01705
    6. Simon Krause, Florian S. Reuter, Sebastian Ehrling, Volodymyr Bon, Irena Senkovska, Stefan Kaskel, Eike Brunner. Impact of Defects and Crystal Size on Negative Gas Adsorption in DUT-49 Analyzed by In Situ 129Xe NMR Spectroscopy. Chemistry of Materials 2020, 32 (11) , 4641-4650. https://doi.org/10.1021/acs.chemmater.0c01059
    7. Alexander C. Forse, Kristen A. Colwell, Miguel I. Gonzalez, Stefan Benders, Rodolfo M. Torres-Gavosto, Bernhard Blümich, Jeffrey A. Reimer, Jeffrey R. Long. Influence of Pore Size on Carbon Dioxide Diffusion in Two Isoreticular Metal–Organic Frameworks. Chemistry of Materials 2020, 32 (8) , 3570-3576. https://doi.org/10.1021/acs.chemmater.0c00745
    8. Bikash Garai, Volodymyr Bon, Simon Krause, Friedrich Schwotzer, Martin Gerlach, Irena Senkovska, Stefan Kaskel. Tunable Flexibility and Porosity of the Metal–Organic Framework DUT-49 through Postsynthetic Metal Exchange. Chemistry of Materials 2020, 32 (2) , 889-896. https://doi.org/10.1021/acs.chemmater.9b04769
    9. Felicitas Kolbe, Simon Krause, Volodymyr Bon, Irena Senkovska, Stefan Kaskel, Eike Brunner. High-Pressure in Situ 129Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49. Chemistry of Materials 2019, 31 (16) , 6193-6201. https://doi.org/10.1021/acs.chemmater.9b02003
    10. Simon Krause, Jack D. Evans, Volodymyr Bon, Irena Senkovska, Sebastian Ehrling, Ulrich Stoeck, Pascal G. Yot, Paul Iacomi, Philip Llewellyn, Guillaume Maurin, François-Xavier Coudert, Stefan Kaskel. Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks. The Journal of Physical Chemistry C 2018, 122 (33) , 19171-19179. https://doi.org/10.1021/acs.jpcc.8b04549
    11. Hana Bunzen, Felicitas Kolbe, Andreas Kalytta-Mewes, German Sastre, Eike Brunner, Dirk Volkmer. Achieving Large Volumetric Gas Storage Capacity in Metal–Organic Frameworks by Kinetic Trapping: A Case Study of Xenon Loading in MFU-4. Journal of the American Chemical Society 2018, 140 (32) , 10191-10197. https://doi.org/10.1021/jacs.8b04582
    12. Sven M. J. Rogge, Senne Caroes, Ruben Demuynck, Michel Waroquier, Veronique Van Speybroeck, An Ghysels. The Importance of Cell Shape Sampling To Accurately Predict Flexibility in Metal–Organic Frameworks. Journal of Chemical Theory and Computation 2018, 14 (3) , 1186-1197. https://doi.org/10.1021/acs.jctc.7b01134
    13. Raynald Giovine, Christophe Volkringer, Marie-Anne Springuel-Huet, Andrei Nossov, Frédéric Blanc, Julien Trébosc, Thierry Loiseau, Jean-Paul Amoureux, Olivier Lafon, and Frédérique Pourpoint . Study of Xenon Mobility in the Two Forms of MIL-53(Al) Using Solid-State NMR Spectroscopy. The Journal of Physical Chemistry C 2017, 121 (35) , 19262-19268. https://doi.org/10.1021/acs.jpcc.7b06006
    14. Daniel J. Cerasale, Dominic C. Ward, Timothy L. Easun. MOFs in the time domain. Nature Reviews Chemistry 2022, 6 (1) , 9-30. https://doi.org/10.1038/s41570-021-00336-8
    15. Pu Zhao, S.C. Edman Tsang, David Fairen-Jimenez. Structural heterogeneity and dynamics in flexible metal-organic frameworks. Cell Reports Physical Science 2021, 2 (9) , 100544. https://doi.org/10.1016/j.xcrp.2021.100544
    16. Jorge Albalad, Christopher J. Sumby, Daniel Maspoch, Christian J. Doonan. Elucidating pore chemistry within metal–organic frameworks via single crystal X-ray diffraction; from fundamental understanding to application. CrystEngComm 2021, 23 (11) , 2185-2195. https://doi.org/10.1039/D1CE00067E
    17. Simon Krause, Jack D. Evans, Volodymyr Bon, Irena Senkovska, François-Xavier Coudert, Daniel M. Többens, Dirk Wallacher, Nico Grimm, Stefan Kaskel. The role of temperature and adsorbate on negative gas adsorption transitions of the mesoporous metal–organic framework DUT-49. Faraday Discussions 2021, 225 , 168-183. https://doi.org/10.1039/D0FD00013B
    18. Dorothea Wisser, Martin Hartmann. 129 Xe NMR on Porous Materials: Basic Principles and Recent Applications. Advanced Materials Interfaces 2021, 8 (4) https://doi.org/10.1002/admi.202001266
    19. Sebastian Ehrling, Irena Senkovska, Volodymyr Bon, Khoa Dang Nguyen, Hiroki Miura, Stefan Kaskel. Flexibility and Switchable Porosity in Metal-Organic Frameworks: Phenomena, Characterization and Functions. 2021, 328-375. https://doi.org/10.1016/B978-0-08-102688-5.00115-X
    20. Jack D. Evans, Volodymyr Bon, Irena Senkovska, Hui-Chun Lee, Stefan Kaskel. Four-dimensional metal-organic frameworks. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16527-8
    21. Volodymyr Bon, Eike Brunner, Andreas Pöppl, Stefan Kaskel. Unraveling Structure and Dynamics in Porous Frameworks via Advanced In Situ Characterization Techniques. Advanced Functional Materials 2020, 30 (41) https://doi.org/10.1002/adfm.201907847
    22. Simon Krause, Jack D. Evans, Volodymyr Bon, Irena Senkovska, Sebastian Ehrling, Paul Iacomi, Daniel M. Többens, Dirk Wallacher, Manfred S. Weiss, Bin Zheng, Pascal G. Yot, Guillaume Maurin, Philip L. Llewellyn, François-Xavier Coudert, Stefan Kaskel. Engineering micromechanics of soft porous crystals for negative gas adsorption. Chemical Science 2020, 11 (35) , 9468-9479. https://doi.org/10.1039/D0SC03727C
    23. Simon Krause, Nobuhiko Hosono, Susumu Kitagawa. Die Chemie verformbarer poröser Kristalle – Strukturdynamik und Gasadsorptionseigenschaften. Angewandte Chemie 2020, 132 (36) , 15438-15456. https://doi.org/10.1002/ange.202004535
    24. Simon Krause, Nobuhiko Hosono, Susumu Kitagawa. Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angewandte Chemie International Edition 2020, 59 (36) , 15325-15341. https://doi.org/10.1002/anie.202004535
    25. Eike Brunner, Marcus Rauche. Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal–organic frameworks. Chemical Science 2020, 11 (17) , 4297-4304. https://doi.org/10.1039/D0SC00735H
    26. Marko Bertmer. Solid-state NMR of small molecule adsorption in metal–organic frameworks (MOFs). 2020, 1-64. https://doi.org/10.1016/bs.arnmr.2020.07.003
    27. Simon Krause, Jack D. Evans, Volodymyr Bon, Irena Senkovska, Paul Iacomi, Felicitas Kolbe, Sebastian Ehrling, Erik Troschke, Jürgen Getzschmann, Daniel M. Többens, Alexandra Franz, Dirk Wallacher, Pascal G. Yot, Guillaume Maurin, Eike Brunner, Philip L. Llewellyn, François-Xavier Coudert, Stefan Kaskel. Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11565-3
    28. L. Vanduyfhuys, V. Van Speybroeck. Unraveling the thermodynamic conditions for negative gas adsorption in soft porous crystals. Communications Physics 2019, 2 (1) https://doi.org/10.1038/s42005-019-0204-y
    29. Marcus Rauche, Sebastian Ehrling, Simon Krause, Irena Senkovska, Stefan Kaskel, Eike Brunner. New insights into solvent-induced structural changes of 13 C labelled metal–organic frameworks by solid state NMR. Chemical Communications 2019, 55 (62) , 9140-9143. https://doi.org/10.1039/C9CC04298A
    30. François-Xavier Coudert. Soft Porous Crystals: Extraordinary Responses to Stimulation. Bulletin of Japan Society of Coordination Chemistry 2019, 73 (0) , 15-23. https://doi.org/10.4019/bjscc.73.15
    31. Jack D. Evans, Simon Krause, Stefan Kaskel, Martin B. Sweatman, Lev Sarkisov. Exploring the thermodynamic criteria for responsive adsorption processes. Chemical Science 2019, 10 (19) , 5011-5017. https://doi.org/10.1039/C9SC01299K
    32. . Dynamic Frameworks. 2019, 481-496. https://doi.org/10.1002/9783527821099.ch21
    33. Jack D. Evans, Bikash Garai, Helge Reinsch, Weijin Li, Stefano Dissegna, Volodymyr Bon, Irena Senkovska, Roland A. Fischer, Stefan Kaskel, Christoph Janiak, Norbert Stock, Dirk Volkmer. Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews 2019, 380 , 378-418. https://doi.org/10.1016/j.ccr.2018.10.002
    34. Simon Krause, Volodymyr Bon, Hongchu Du, Rafal E Dunin-Borkowski, Ulrich Stoeck, Irena Senkovska, Stefan Kaskel. The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98. Beilstein Journal of Nanotechnology 2019, 10 , 1737-1744. https://doi.org/10.3762/bjnano.10.169
    35. Simon Krause, Volodymyr Bon, Irena Senkovska, Daniel M. Többens, Dirk Wallacher, Renjith S. Pillai, Guillaume Maurin, Stefan Kaskel. The effect of crystallite size on pressure amplification in switchable porous solids. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03979-2
    36. Nicholaus Prasetya, Anastasia A. Teck, Bradley P. Ladewig. Matrimid-JUC-62 and Matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for CO2/N2 separation. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-21263-7
    37. Charlotte Martineau-Corcos. NMR Crystallography: A tool for the characterization of microporous hybrid solids. Current Opinion in Colloid & Interface Science 2018, 33 , 35-43. https://doi.org/10.1016/j.cocis.2018.01.009
    38. Kai Trepte, Sebastian Schwalbe, Jana Schaber, Simon Krause, Irena Senkovska, Stefan Kaskel, Eike Brunner, Jens Kortus, Gotthard Seifert. Theoretical and experimental investigations of 129 Xe NMR chemical shift isotherms in metal–organic frameworks. Physical Chemistry Chemical Physics 2018, 20 (38) , 25039-25043. https://doi.org/10.1039/C8CP04025G

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect