Metal Templates and Boron Sources Controlling Borophene Structures: An Ab Initio Study
Abstract

Interlayer binding of 2D borophene phases are determined as a function of hole density (HD) and metal surfaces Cu, Ag, and Au. The Cu surface prefers formation of monolayers whereas the Au surface shows multilayer stacking. Ag surface enables formation of monolayers with higher HD and bilayers for borophenes with lower HD. The growth pattern of bilayers on metal templates are investigated using ab-initio molecular dynamic simulations. Formation of icosahedral B12 clusters and extension to sheets are also studied on Cu surface. Icosahedral sheet formation by boron atom deposition is found to be a thermodynamically unfavorable process on this surface. Thus, structure of borophene phases could also be tuned by modulating the parameters such as boron source or the metal templates, in addition to the substrate temperature and boron atom deposition rate.
Cited By
This article is cited by 20 publications.
- Yunlei Wang, Haifeng Lv, Xiaojun Wu, Jinlong Yang. First-Principles Particle-Swarm Structure Calculations on Metal Substrate Modulated Monolayer to Bilayer Borophene Crystalline Structures toward Nanoelectronics. ACS Applied Nano Materials 2023, 6
(17)
, 15871-15878. https://doi.org/10.1021/acsanm.3c02788
- Yaser Abdi, Ali Mazaheri, Soheil Hajibaba, Sara Darbari, Seyed Javad Rezvani, Andrea Di Cicco, Francesco Paparoni, Reza Rahighi, Somayeh Gholipour, Alimorad Rashidi, Mahdi Malekshahi Byranvand, Michael Saliba. A Two-Dimensional Borophene Supercapacitor. ACS Materials Letters 2022, 4
(10)
, 1929-1936. https://doi.org/10.1021/acsmaterialslett.2c00475
- Ying Xu, Xiaoyu Xuan, Tingfan Yang, Zhuhua Zhang, Si-Dian Li, Wanlin Guo. Quasi-Freestanding Bilayer Borophene on Ag(111). Nano Letters 2022, 22
(8)
, 3488-3494. https://doi.org/10.1021/acs.nanolett.1c05022
- Maolin Yu, Zhuhua Zhang, Wanlin Guo. Structures, Mechanics, and Electronics of Borophanes. The Journal of Physical Chemistry C 2021, 125
(41)
, 22917-22928. https://doi.org/10.1021/acs.jpcc.1c07275
- Brian Kiraly, Xiaolong Liu, Luqing Wang, Zhuhua Zhang, Andrew J. Mannix, Brandon L. Fisher, Boris I. Yakobson, Mark C. Hersam, Nathan P. Guisinger. Borophene Synthesis on Au(111). ACS Nano 2019, 13
(4)
, 3816-3822. https://doi.org/10.1021/acsnano.8b09339
- Bing Zheng, Jing He, Zhe Wang, Ying Xie, Yin-yin Qian, Jiao Zhang, Yi-nan Tang, Li-ying Cui, Yin-mei Wu, Lin Yang, Hai-tao Yu. Ultra-stable metallic freestanding multilayer borophene with tunable work function. Applied Surface Science 2023, 612 , 155842. https://doi.org/10.1016/j.apsusc.2022.155842
- Rinkumoni Chaliha, D. Sravanakumar Perumalla, Eluvathingal D. Jemmis. An electron counting formula to explain and to predict hydrogenated and metallated borophenes. Chemical Communications 2022, 58
(71)
, 9882-9885. https://doi.org/10.1039/D2CC03218J
- Sagar Ghorai, Eluvathingal D. Jemmis. From a Möbius-aromatic interlocked Mn
2
B
10
H
10
wheel to the metal-doped boranaphthalenes M
2
@B
10
H
8
and M
2
B
5
2D-sheets (M = Mn and Fe): a molecules to materials continuum using DFT studies. Chemical Science 2022, 13
(31)
, 8968-8978. https://doi.org/10.1039/D2SC02244C
- Zhixun Zhang, Mingyang Yang, Yibo Zhang, Ming Zhou. Research and Application of Terahertz Response Mechanism of Few-Layer Borophene. Nanomaterials 2022, 12
(15)
, 2702. https://doi.org/10.3390/nano12152702
- Yuewen Mu, Bao-Tian Wang, Si-Dian Li, Feng Ding. A family of superconducting boron crystals made of stacked bilayer borophenes. Nanoscale 2022, 14
(27)
, 9754-9761. https://doi.org/10.1039/D2NR02013K
- Meng Yang, Hui Jin, Zejun Sun, Rijun Gui. Monoelemental two-dimensional boron nanomaterials beyond theoretical simulations: From experimental preparation, functionalized modification to practical applications. Advances in Colloid and Interface Science 2022, 304 , 102669. https://doi.org/10.1016/j.cis.2022.102669
- Shalu Yadav, Mohd. Abubakar Sadique, Ajeet Kaushik, Pushpesh Ranjan, Raju Khan, Avanish K. Srivastava. Borophene as an emerging 2D flatland for biomedical applications: current challenges and future prospects. Journal of Materials Chemistry B 2022, 10
(8)
, 1146-1175. https://doi.org/10.1039/D1TB02277F
- Eluvathingal D. Jemmis, Sagar Ghorai. Orbital Engineering in Chemistry. Israel Journal of Chemistry 2022, 62
(1-2)
https://doi.org/10.1002/ijch.202100114
- Xiaolong Liu, Qiucheng Li, Qiyuan Ruan, Matthew S. Rahn, Boris I. Yakobson, Mark C. Hersam. Borophene synthesis beyond the single-atomic-layer limit. Nature Materials 2022, 21
(1)
, 35-40. https://doi.org/10.1038/s41563-021-01084-2
- Wei-Jia Chen, Yuan-Yuan Ma, Teng-Teng Chen, Mei-Zhen Ao, Dao-Fu Yuan, Qiang Chen, Xin-Xin Tian, Yue-Wen Mu, Si-Dian Li, Lai-Sheng Wang. B
48
−
: a bilayer boron cluster. Nanoscale 2021, 13
(6)
, 3868-3876. https://doi.org/10.1039/D0NR09214B
- Naiwrit Karmodak, Eluvathingal D. Jemmis, Boris I. Yakobson. Borophenes: Insights and Predictions From Computational Analyses. 2021, 27-49. https://doi.org/10.1007/978-3-030-49999-0_2
- Yanhong Duo, Zhongjian Xie, Lude Wang, Nasir Mahmood Abbasi, Tingqiang Yang, Zihuang Li, Guoxin Hu, Han Zhang. Borophene-based biomedical applications: Status and future challenges. Coordination Chemistry Reviews 2021, 427 , 213549. https://doi.org/10.1016/j.ccr.2020.213549
- Pranay Ranjan, Jang Mee Lee, Prashant Kumar, Ajayan Vinu. Borophene: New Sensation in Flatland. Advanced Materials 2020, 32
(34)
https://doi.org/10.1002/adma.202000531
- Xiaojing Yao, Ding Yi, Xiuyun Zhang. Observation of a Dirac state in borophene hetero-bilayers by Cr intercalation. Journal of Materials Chemistry C 2019, 7
(7)
, 2068-2075. https://doi.org/10.1039/C8TC06553E
- Hongxia Zhong, Kaixiang Huang, Guodong Yu, Shengjun Yuan. Electronic and mechanical properties of few-layer borophene. Physical Review B 2018, 98
(5)
https://doi.org/10.1103/PhysRevB.98.054104