ACS Publications. Most Trusted. Most Cited. Most Read
Can Plasmon Change Reaction Path? Decomposition of Unsymmetrical Iodonium Salts as an Organic Probe
My Activity

Figure 1Loading Img
    Physical Insights into Chemistry, Catalysis, and Interfaces

    Can Plasmon Change Reaction Path? Decomposition of Unsymmetrical Iodonium Salts as an Organic Probe
    Click to copy article linkArticle link copied!

    • Elena Miliutina
      Elena Miliutina
      Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
      Institute of Chemical Technology, Technicka 5, Prague 16628, Czech Republic
    • Olga Guselnikova*
      Olga Guselnikova
      Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
      Institute of Chemical Technology, Technicka 5, Prague 16628, Czech Republic
      *Email: [email protected]
    • Natalia S. Soldatova
      Natalia S. Soldatova
      Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
    • Polina Bainova
      Polina Bainova
      Institute of Chemical Technology, Technicka 5, Prague 16628, Czech Republic
    • Roman Elashnikov
      Roman Elashnikov
      Institute of Chemical Technology, Technicka 5, Prague 16628, Czech Republic
    • Přemysl Fitl
      Přemysl Fitl
      Institute of Chemical Technology, Technicka 5, Prague 16628, Czech Republic
    • Theo Kurten
      Theo Kurten
      Department of Chemistry, University of Helsinki, Helsinki FIN-00014, Finland
      More by Theo Kurten
    • Mekhman S. Yusubov
      Mekhman S. Yusubov
      Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
    • Václav Švorčík
      Václav Švorčík
      Institute of Chemical Technology, Technicka 5, Prague 16628, Czech Republic
    • Rashid R. Valiev
      Rashid R. Valiev
      Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
      Department of Chemistry, University of Helsinki, Helsinki FIN-00014, Finland
    • Mohamed M. Chehimi
      Mohamed M. Chehimi
      University Paris-Est Créteil, 61 Avenue du Général de Gaulle, 94000 Créteil, France
    • Oleksiy Lyutakov
      Oleksiy Lyutakov
      Institute of Chemical Technology, Technicka 5, Prague 16628, Czech Republic
    • Pavel S. Postnikov*
      Pavel S. Postnikov
      Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
      Institute of Chemical Technology, Technicka 5, Prague 16628, Czech Republic
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2020, 11, 14, 5770–5776
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.0c01350
    Published June 30, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Plasmon-assisted transformations of organic compounds represent a novel opportunity for conversion of light to chemical energy at room temperature. However, the mechanistic insights of interaction between plasmon energy and organic molecules is still under debate. Herein, we proposed a comprehensive study of the plasmon-assisted reaction mechanism using unsymmetric iodonium salts (ISs) as an organic probe. The experimental and theoretical analysis allow us to exclude the possible thermal effect or hot electron transfer. We found that plasmon interaction with unsymmetrical ISs led to the intramolecular excitation of electron followed by the regioselective cleavage of C–I bond with the formation of electron-rich radical species, which cannot be explained by the hot electron excitation or thermal effects. The high regioselectivity is explained by the direct excitation of electron to LUMO with the formation of a dissociative excited state according to quantum-chemical modeling, which provides novel opportunities for the fine control of reactivity using plasmon energy.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.0c01350.

    • Characterization of pristine gold-coated fiber (Figure S1), control experiment without light (Figure S2), plasmon-induced grafting of ISs 15 (Figures S3–S7), assignation of SERS peaks (Table S1), characterization of surface by AFM analysis (Figure S8), control experiment with alternative wavelength (Figure S9), control experiment with thermal-induced grafting of IS-1 (Figure S10), description of the samples preparation and measurement techniques, description of the procedure for obtaining of ISs 15 and NMR spectra, calculation details and geometry of ISs 15 (S1, S2, D0) and decomposition pathways, thermal decomposition of IS-1, structures and atomic coordinates (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 31 publications.

    1. Kexun Chen, Hui Wang. Plasmon-Driven Protodecarboxylation of Mercaptobenzoic Acids: A Comparative Study of Regioisomers. The Journal of Physical Chemistry C 2025, 129 (11) , 5422-5436. https://doi.org/10.1021/acs.jpcc.5c00768
    2. Mengqi Sun, Ankai Wang, Min Zhang, Shengli Zou, Hui Wang. Interband and Intraband Hot Carrier-Driven Photocatalysis on Plasmonic Bimetallic Nanoparticles: A Case Study of Au–Cu Alloy Nanoparticles. ACS Nanoscience Au 2024, 4 (5) , 360-373. https://doi.org/10.1021/acsnanoscienceau.4c00035
    3. Emiko Kazuma. Key Factors for Controlling Plasmon-Induced Chemical Reactions on Metal Surfaces. The Journal of Physical Chemistry Letters 2024, 15 (1) , 59-67. https://doi.org/10.1021/acs.jpclett.3c03120
    4. Polina Bainova, Jean-Patrick Joly, Marie Urbanova, Daria Votkina, Mariia Erzina, Barbora Vokata, Andrii Trelin, Premysl Fitl, Gérard Audran, Nicolas Vanthuyne, Jaromír Vinklarek, Václav Svorcik, Pavel Postnikov, Sylvain R. A. Marque, Oleksiy Lyutakov. Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis. ACS Catalysis 2023, 13 (19) , 12859-12867. https://doi.org/10.1021/acscatal.3c02958
    5. Anna Zabelina, Jakub Dedek, Olga Guselnikova, Denis Zabelin, Andrii Trelin, Elena Miliutina, Zdenka Kolska, Jakub Siegel, Vaclav Svorcik, Jiri Vana, Oleksiy Lyutakov. Photoinduced CO2 Conversion under Arctic Conditions─The High Potential of Plasmon Chemistry under Low Temperature. ACS Catalysis 2023, 13 (6) , 3830-3840. https://doi.org/10.1021/acscatal.2c05891
    6. Darya Votkina, Pavel Petunin, Elena Miliutina, Andrii Trelin, Oleksiy Lyutakov, Vaclav Svorcik, Gérard Audran, Jeffrey Havot, Rashid Valiev, Lenara I. Valiulina, Jean-Patrick Joly, Yusuke Yamauchi, Junais Habeeb Mokkath, Joel Henzie, Olga Guselnikova, Sylvain R. A. Marque, Pavel Postnikov. Uncovering the Role of Chemical and Electronic Structures in Plasmonic Catalysis: The Case of Homolysis of Alkoxyamines. ACS Catalysis 2023, 13 (5) , 2822-2833. https://doi.org/10.1021/acscatal.2c04685
    7. Sergio Kogikoski Jr., Anushree Dutta, Ilko Bald. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire. ACS Nano 2021, 15 (12) , 20562-20573. https://doi.org/10.1021/acsnano.1c09176
    8. Hossein Robatjazi Lin Yuan Yigao Yuan Naomi J. Halas . Heterogeneous Plasmonic Photocatalysis: Light-Driven Chemical Reactions Introduce a New Approach to Industrially-Relevant Chemistry. , 363-387. https://doi.org/10.1021/bk-2021-1398.ch016
    9. Qingfeng Zhang, Kexun Chen, Hui Wang. Hot-Hole-Induced Molecular Scissoring: A Case Study of Plasmon-Driven Decarboxylation of Aromatic Carboxylates. The Journal of Physical Chemistry C 2021, 125 (38) , 20958-20971. https://doi.org/10.1021/acs.jpcc.1c07177
    10. Terefe G. Habteyes. Anions as Intermediates in Plasmon Enhanced Photocatalytic Reactions. The Journal of Physical Chemistry C 2020, 124 (49) , 26554-26564. https://doi.org/10.1021/acs.jpcc.0c08831
    11. Hamed Kookhaee, Tefera E. Tesema, Terefe G. Habteyes. Switching a Plasmon-Driven Reaction Mechanism from Charge Transfer to Adsorbate Electronic Excitation Using Surface Ligands. The Journal of Physical Chemistry C 2020, 124 (41) , 22711-22720. https://doi.org/10.1021/acs.jpcc.0c07479
    12. Arghya Sarkar, MaKenna M. Koble, Renee R. Frontiera. Plasmon-Driven Chemistry. Annual Review of Physical Chemistry 2025, 76 (1) , 129-152. https://doi.org/10.1146/annurev-physchem-082423-031814
    13. Szymon Smołka, Taral Patel, Sandra Pluczyk-Małek, Roman Turczyn, Katarzyna Krukiewicz. Iodonium-based pro-adhesive layers for robust adhesion of PEDOT:PSS to surfaces. Science and Technology of Advanced Materials 2024, 25 (1) https://doi.org/10.1080/14686996.2024.2338786
    14. Hui Wang. Plasmon-driven molecular scission. Nanophotonics 2024, 13 (26) , 4683-4721. https://doi.org/10.1515/nanoph-2024-0417
    15. Anastasia Olshtrem, Elena Miliutina, Petr Sajdl, Vasilii Burtsev, Mariia Erzina, Martin Vondracek, Pavel Postnikov, Jan Lancok, Vaclav Svorcik, Sergii Chertopalov, Oleksiy Lyutakov. Plasmon-assisted spatially selective grafting of Ti3C2TX flakes for prevention of MXene oxidation and stability increase. Chemical Engineering Journal 2023, 476 , 146399. https://doi.org/10.1016/j.cej.2023.146399
    16. Tingting Han, Luping Chen, Fengyuan Gao, Song Wang, Jian Li, Guangwen Fan, Hailin Cong, Bing Yu, Youqing Shen. Preparation of thrombin-loaded calcium alginate microspheres with dual-mode imaging and study on their embolic properties in vivo. European Journal of Pharmaceutics and Biopharmaceutics 2023, 189 , 98-108. https://doi.org/10.1016/j.ejpb.2023.06.008
    17. Hui Wang, Kexun Chen. Interfacial Dynamics, Chemistry, and Photochemistry of Molecular Ligands on Plasmonic Nanoparticle Surfaces: Insights From Surface-Enhanced Raman Spectroscopy. 2023, 369-389. https://doi.org/10.1016/B978-0-12-822425-0.00001-4
    18. Olga Guselnikova, Hyunsoo Lim, Hyun‐Jong Kim, Sung Hyun Kim, Alina Gorbunova, Miharu Eguchi, Pavel Postnikov, Takuya Nakanishi, Toru Asahi, Jongbeom Na, Yusuke Yamauchi. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. Small 2022, 18 (25) https://doi.org/10.1002/smll.202107182
    19. O. Guselnikova, J.P. Fraser, N. Soldatova, E. Sviridova, A. Ivanov, R. Rodriguez, A.Y. Ganin, P. Postnikov. The covalent functionalization of few-layered MoTe2 thin films with iodonium salts. Materials Today Chemistry 2022, 24 , 100846. https://doi.org/10.1016/j.mtchem.2022.100846
    20. Kexun Chen, Hui Wang. Plasmon-driven oxidative coupling of aniline-derivative adsorbates: A comparative study of para -ethynylaniline and para -mercaptoaniline. The Journal of Chemical Physics 2022, 156 (20) https://doi.org/10.1063/5.0094890
    21. Samuel Bertolini, Timo Jacob. Valence energy correction for electron reactive force field. Journal of Computational Chemistry 2022, 43 (12) , 870-878. https://doi.org/10.1002/jcc.26844
    22. Roman Elashnikov, Elena Miliutina, Vaclav Svorcik, Oleksiy Lyutakov. Diazonium-Modification of Plasmonic Surfaces Formed by Laser Ablation. 2022, 345-357. https://doi.org/10.1007/978-3-031-04398-7_18
    23. Olga Guselnikova, Natalia S. Soldatova, Pavel S. Postnikov. Iodonium Salts as Reagents for Surface Modification: From Preparation to Reactivity in Surface-Assisted Transformations. 2022, 79-96. https://doi.org/10.1007/978-3-031-04398-7_4
    24. Pengfei Han, Peng Jin, Xu Li, Ya Xu, Kun Li, Shuangyin Wang, Zhou Nie. Photoactivation of ambient oxygen via plasmon-coupled valence-band hybridization in AgPd nanoalloy for reaction pathway alteration. Applied Catalysis B: Environmental 2021, 298 , 120598. https://doi.org/10.1016/j.apcatb.2021.120598
    25. Hiro MINAMIMOTO, Kei MURAKOSHI. Precise Control of Nanoscale Interface for Efficient Electrochemical Reactions. Electrochemistry 2021, 89 (6) , 525-535. https://doi.org/10.5796/electrochemistry.21-00080
    26. Anastasiya Olshtrem, Sergii Chertopalov, Olga Guselnikova, Rashid R Valiev, Miroslav Cieslar, Elena Miliutina, Roman Elashnikov, Premysl Fitl, Pavel Postnikov, Jan Lancok, Vaclav Svorcik, Oleksiy Lyutakov. Plasmon-assisted MXene grafting: tuning of surface termination and stability enhancement. 2D Materials 2021, 8 (4) , 045037. https://doi.org/10.1088/2053-1583/ac27c0
    27. Natalia S. Soldatova, Artem V. Semenov, Kirill K. Geyl, Sergey V. Baykov, Anton A. Shetnev, Anna S. Konstantinova, Mikhail M. Korsakov, Mekhman S. Yusubov, Pavel S. Postnikov. Copper‐Catalyzed Selective N‐Arylation of Oxadiazolones by Diaryliodonium Salts. Advanced Synthesis & Catalysis 2021, 363 (14) , 3566-3576. https://doi.org/10.1002/adsc.202100426
    28. Issam Kherbouche, Danielle MacRae, Théo Geronimi Jourdain, François Lagugné-Labarthet, Azedine Lamouri, Alexandre Chevillot Biraud, Claire Mangeney, Nordin Félidj. Extending nanoscale patterning with multipolar surface plasmon resonances. Nanoscale 2021, 13 (25) , 11051-11057. https://doi.org/10.1039/D1NR02181H
    29. Kexun Chen, Hui Wang. Plasmon-driven photocatalytic molecular transformations on metallic nanostructure surfaces: mechanistic insights gained from plasmon-enhanced Raman spectroscopy. Molecular Systems Design & Engineering 2021, 6 (4) , 250-280. https://doi.org/10.1039/D1ME00016K
    30. Olga Guselnikova, Gérard Audran, Jean-Patrick Joly, Andrii Trelin, Evgeny V. Tretyakov, Vaclav Svorcik, Oleksiy Lyutakov, Sylvain R. A. Marque, Pavel Postnikov. Establishing plasmon contribution to chemical reactions: alkoxyamines as a thermal probe. Chemical Science 2021, 12 (11) , 4154-4161. https://doi.org/10.1039/D0SC06470J
    31. Weihui Ou, Binbin Zhou, Junda Shen, Chenghao Zhao, Yang Yang Li, Jian Lu. Plasmonic metal nanostructures: concepts, challenges and opportunities in photo-mediated chemical transformations. iScience 2021, 24 (2) , 101982. https://doi.org/10.1016/j.isci.2020.101982

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2020, 11, 14, 5770–5776
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.0c01350
    Published June 30, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    1469

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.