ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Strong Light-Matter Coupling and Hybridization of Molecular Vibrations in a Low-Loss Infrared Microcavity

View Author Information
The Department of Chemistry and the Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
*E-mail: [email protected]. Tel.: 972-3-738-4514. Fax: 972-3-738-4053.
Cite this: J. Phys. Chem. Lett. 2016, 7, 11, 2002–2008
Publication Date (Web):May 9, 2016
https://doi.org/10.1021/acs.jpclett.6b00617
Copyright © 2016 American Chemical Society

    Article Views

    1457

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Hybridized polaritons are generated by simultaneously coupling two vibrational modes of two different organic materials to the resonance of a low-loss infrared optical microcavity. A thin film of poly methyl methacrylate with solvent molecules of dimethylformamide trapped inside provided two spectrally narrow, closely spaced carbonyl stretches with absorption peaks at 1731 and 1678 cm–1. Situating this film in a microcavity based on Ge/ZnS distributed Bragg reflector mirrors produced three distinct polariton branches in the dispersion relation due to hybridization of the vibrational resonances. Two anticrossings were observed with Rabi splittings of 9.6 and 5.2 meV, between the upper-to-middle and middle-to-lower polariton branches, respectively. This system marks the first demonstration of polariton hybridization between a solid and solvent molecules and can open new paths toward chemical reaction modification and energy transfer studies in the mid-infrared spectral range.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 69 publications.

    1. Bo Xiang, Wei Xiong. Molecular Polaritons for Chemistry, Photonics and Quantum Technologies. Chemical Reviews 2024, 124 (5) , 2512-2552. https://doi.org/10.1021/acs.chemrev.3c00662
    2. Rahul Bhuyan, Jürgen Mony, Oleg Kotov, Gabriel W. Castellanos, Jaime Gómez Rivas, Timur O. Shegai, Karl Börjesson. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chemical Reviews 2023, 123 (18) , 10877-10919. https://doi.org/10.1021/acs.chemrev.2c00895
    3. Kenji Hirai, James A. Hutchison, Hiroshi Uji-i. Molecular Chemistry in Cavity Strong Coupling. Chemical Reviews 2023, 123 (13) , 8099-8126. https://doi.org/10.1021/acs.chemrev.2c00748
    4. Blake S. Simpkins, Adam D. Dunkelberger, Igor Vurgaftman. Control, Modulation, and Analytical Descriptions of Vibrational Strong Coupling. Chemical Reviews 2023, 123 (8) , 5020-5048. https://doi.org/10.1021/acs.chemrev.2c00774
    5. Rena Yitzhari, Omree Kapon, Yaakov R. Tischler. Vibrational Strong Light–Matter Coupling in an Open Microcavity Based on Reflective Germanium Coatings. The Journal of Physical Chemistry A 2022, 126 (7) , 1282-1288. https://doi.org/10.1021/acs.jpca.1c09639
    6. Tomohiro Fukushima, Soushi Yoshimitsu, Kei Murakoshi. Vibrational Coupling of Water from Weak to Ultrastrong Coupling Regime via Cavity Mode Tuning. The Journal of Physical Chemistry C 2021, 125 (46) , 25832-25840. https://doi.org/10.1021/acs.jpcc.1c07686
    7. Milo Baraclough, Ian R. Hooper, William L. Barnes. Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics 2021, 8 (10) , 2997-3003. https://doi.org/10.1021/acsphotonics.1c00931
    8. Kalaivanan Nagarajan, Anoop Thomas, Thomas W. Ebbesen. Chemistry under Vibrational Strong Coupling. Journal of the American Chemical Society 2021, 143 (41) , 16877-16889. https://doi.org/10.1021/jacs.1c07420
    9. Blake S. Simpkins, Adam D. Dunkelberger, Jeffrey C. Owrutsky. Mode-Specific Chemistry through Vibrational Strong Coupling (or A Wish Come True). The Journal of Physical Chemistry C 2021, 125 (35) , 19081-19087. https://doi.org/10.1021/acs.jpcc.1c05362
    10. Justin D. Erwin, Ying Wang, Rebecca C. Bradley, James V. Coe. Changing Vibration Coupling Strengths of Liquid Acetonitrile with an Angle-Tuned Etalon. The Journal of Physical Chemistry B 2021, 125 (30) , 8472-8483. https://doi.org/10.1021/acs.jpcb.1c01758
    11. Kishan S. Menghrajani, William L. Barnes. Strong Coupling beyond the Light-Line. ACS Photonics 2020, 7 (9) , 2448-2459. https://doi.org/10.1021/acsphotonics.0c00552
    12. Wassie Mersha Takele, Frank Wackenhut, Lukasz Piatkowski, Alfred J. Meixner, Jacek Waluk. Multimode Vibrational Strong Coupling of Methyl Salicylate to a Fabry–Pérot Microcavity. The Journal of Physical Chemistry B 2020, 124 (27) , 5709-5716. https://doi.org/10.1021/acs.jpcb.0c03815
    13. J. J. Pietron, K. P. Fears, J. C. Owrutsky, B. S. Simpkins. Electrochemical Modulation of Strong Vibration–Cavity Coupling. ACS Photonics 2020, 7 (1) , 165-173. https://doi.org/10.1021/acsphotonics.9b01339
    14. Rahul Deshmukh, Paulo Marques, Anurag Panda, Matthew Y. Sfeir, Stephen R. Forrest, Vinod M. Menon. Modifying the Spectral Weights of Vibronic Transitions via Strong Coupling to Surface Plasmons. ACS Photonics 2020, 7 (1) , 43-48. https://doi.org/10.1021/acsphotonics.9b01357
    15. Iffat Imran, Giulia E. Nicolai, Nicholas D. Stavinski, Justin R. Sparks. Tuning Vibrational Strong Coupling with Co-Resonators. ACS Photonics 2019, 6 (10) , 2405-2412. https://doi.org/10.1021/acsphotonics.9b01040
    16. Kishan S. Menghrajani, Geoffrey R. Nash, William L. Barnes. Vibrational Strong Coupling with Surface Plasmons and the Presence of Surface Plasmon Stop Bands. ACS Photonics 2019, 6 (8) , 2110-2116. https://doi.org/10.1021/acsphotonics.9b00662
    17. Bo Xiang, Raphael F. Ribeiro, Liying Chen, Jiaxi Wang, Matthew Du, Joel Yuen-Zhou, Wei Xiong. State-Selective Polariton to Dark State Relaxation Dynamics. The Journal of Physical Chemistry A 2019, 123 (28) , 5918-5927. https://doi.org/10.1021/acs.jpca.9b04601
    18. Justin D. Erwin, Madeline Smotzer, James V. Coe. Effect of Strongly Coupled Vibration–Cavity Polaritons on the Bulk Vibrational States within a Wavelength-Scale Cavity. The Journal of Physical Chemistry B 2019, 123 (6) , 1302-1306. https://doi.org/10.1021/acs.jpcb.8b09913
    19. Tamás Szidarovszky, Gábor J. Halász, Attila G. Császár, Lorenz S. Cederbaum, Ágnes Vibók. Conical Intersections Induced by Quantum Light: Field-Dressed Spectra from the Weak to the Ultrastrong Coupling Regimes. The Journal of Physical Chemistry Letters 2018, 9 (21) , 6215-6223. https://doi.org/10.1021/acs.jpclett.8b02609
    20. Adam D. Dunkelberger, Roderick B. Davidson, II, Wonmi Ahn, Blake S. Simpkins, Jeffrey C. Owrutsky. Ultrafast Transmission Modulation and Recovery via Vibrational Strong Coupling. The Journal of Physical Chemistry A 2018, 122 (4) , 965-971. https://doi.org/10.1021/acs.jpca.7b10299
    21. Wonmi Ahn, Igor Vurgaftman, Adam D. Dunkelberger, Jeffrey C. Owrutsky, and Blake S. Simpkins . Vibrational Strong Coupling Controlled by Spatial Distribution of Molecules within the Optical Cavity. ACS Photonics 2018, 5 (1) , 158-166. https://doi.org/10.1021/acsphotonics.7b00583
    22. Denis G. Baranov, Martin Wersäll, Jorge Cuadra, Tomasz J. Antosiewicz, and Timur Shegai . Novel Nanostructures and Materials for Strong Light–Matter Interactions. ACS Photonics 2018, 5 (1) , 24-42. https://doi.org/10.1021/acsphotonics.7b00674
    23. Omree Kapon, Rena Yitzhari, Alexander Palatnik, and Yaakov R. Tischler . Vibrational Strong Light–Matter Coupling Using a Wavelength-Tunable Mid-infrared Open Microcavity. The Journal of Physical Chemistry C 2017, 121 (34) , 18845-18853. https://doi.org/10.1021/acs.jpcc.7b06999
    24. András Csehi, Gábor J. Halász, Lorenz S. Cederbaum, Ágnes Vibók. Competition between Light-Induced and Intrinsic Nonadiabatic Phenomena in Diatomics. The Journal of Physical Chemistry Letters 2017, 8 (7) , 1624-1630. https://doi.org/10.1021/acs.jpclett.7b00413
    25. Shaelyn R. Casey and Justin R. Sparks . Vibrational Strong Coupling of Organometallic Complexes. The Journal of Physical Chemistry C 2016, 120 (49) , 28138-28143. https://doi.org/10.1021/acs.jpcc.6b10493
    26. Robrecht M. A. Vergauwe, Jino George, Thibault Chervy, James A. Hutchison, Atef Shalabney, Vladimir Y. Torbeev, and Thomas W. Ebbesen . Quantum Strong Coupling with Protein Vibrational Modes. The Journal of Physical Chemistry Letters 2016, 7 (20) , 4159-4164. https://doi.org/10.1021/acs.jpclett.6b01869
    27. Markus Kowalewski, Kochise Bennett, and Shaul Mukamel . Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings. The Journal of Physical Chemistry Letters 2016, 7 (11) , 2050-2054. https://doi.org/10.1021/acs.jpclett.6b00864
    28. Loïse Attal, Florent Calvo, Cyril Falvo, Pascal Parneix. Coherent state switching using vibrational polaritons in an asymmetric double-well potential. Physical Chemistry Chemical Physics 2024, 26 (9) , 7534-7544. https://doi.org/10.1039/D3CP05568J
    29. Matthew D. McCluskey. Resonant interactions involving local vibrational modes in crystals. Journal of Applied Physics 2023, 134 (20) https://doi.org/10.1063/5.0177629
    30. J. A. Campos-Gonzalez-Angulo, Y. R. Poh, M. Du, J. Yuen-Zhou. Swinging between shine and shadow: Theoretical advances on thermally activated vibropolaritonic chemistry. The Journal of Chemical Physics 2023, 158 (23) https://doi.org/10.1063/5.0143253
    31. Daigo Oue, Kun Ding, J. B. Pendry. Noncontact frictional force between surfaces by peristaltic permittivity modulation. Physical Review A 2023, 107 (6) https://doi.org/10.1103/PhysRevA.107.063501
    32. Yangkyu Kim, Aleksandr Barulin, Sangwon Kim, Luke P. Lee, Inki Kim. Recent advances in quantum nanophotonics: plexcitonic and vibro-polaritonic strong coupling and its biomedical and chemical applications. Nanophotonics 2023, 12 (3) , 413-439. https://doi.org/10.1515/nanoph-2022-0542
    33. Yi Wang, Xinlu Cheng, Hong Zhang. Antisymmetric stretching vibration of sulfur dioxide and carbon disulfide modified by optical cavity. Journal of Molecular Structure 2023, 1272 , 134248. https://doi.org/10.1016/j.molstruc.2022.134248
    34. Sabur A. Barbhuiya, Sajia Yeasmin, Aranya B. Bhattacherjee. Spectral response of vibrational polaritons in an optomechanical cavity. The Journal of Chemical Physics 2022, 157 (2) https://doi.org/10.1063/5.0093680
    35. Adam D. Dunkelberger, Blake S. Simpkins, Igor Vurgaftman, Jeffrey C. Owrutsky. Vibration-Cavity Polariton Chemistry and Dynamics. Annual Review of Physical Chemistry 2022, 73 (1) , 429-451. https://doi.org/10.1146/annurev-physchem-082620-014627
    36. Frank Vollmer, Deshui Yu. Molecular Cavity QED. 2022, 399-446. https://doi.org/10.1007/978-3-031-06858-4_7
    37. Kyriacos Georgiou, Rahul Jayaprakash, Andreas Othonos, David G. Lidzey. Ultralong‐Range Polariton‐Assisted Energy Transfer in Organic Microcavities. Angewandte Chemie 2021, 133 (30) , 16797-16803. https://doi.org/10.1002/ange.202105442
    38. Kyriacos Georgiou, Rahul Jayaprakash, Andreas Othonos, David G. Lidzey. Ultralong‐Range Polariton‐Assisted Energy Transfer in Organic Microcavities. Angewandte Chemie International Edition 2021, 60 (30) , 16661-16667. https://doi.org/10.1002/anie.202105442
    39. Raphael F. Ribeiro, Jorge A. Campos-Gonzalez-Angulo, Noel C. Giebink, Wei Xiong, Joel Yuen-Zhou. Enhanced optical nonlinearities under collective strong light-matter coupling. Physical Review A 2021, 103 (6) https://doi.org/10.1103/PhysRevA.103.063111
    40. M. Balasubrahmaniyam, Cyriaque Genet, Tal Schwartz. Coupling and decoupling of polaritonic states in multimode cavities. Physical Review B 2021, 103 (24) https://doi.org/10.1103/PhysRevB.103.L241407
    41. Jolly Xavier, Deshui Yu, Callum Jones, Ekaterina Zossimova, Frank Vollmer. Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip. Nanophotonics 2021, 10 (5) , 1387-1435. https://doi.org/10.1515/nanoph-2020-0593
    42. Zachary T. Brawley, S. David Storm, Diego A. Contreras Mora, Matthew Pelton, Matthew Sheldon. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films. The Journal of Chemical Physics 2021, 154 (10) https://doi.org/10.1063/5.0039195
    43. Johan F. Triana, José Luis Sanz-Vicario. Polar diatomic molecules in optical cavities: Photon scaling, rotational effects, and comparison with classical fields. The Journal of Chemical Physics 2021, 154 (9) https://doi.org/10.1063/5.0037995
    44. Tamás Szidarovszky, Péter Badankó, Gábor J. Halász, Ágnes Vibók. Nonadiabatic phenomena in molecular vibrational polaritons. The Journal of Chemical Physics 2021, 154 (6) https://doi.org/10.1063/5.0033338
    45. Csaba Fábri, Benjamin Lasorne, Gábor J. Halász, Lorenz S. Cederbaum, Ágnes Vibók. Quantum light-induced nonadiabatic phenomena in the absorption spectrum of formaldehyde: Full- and reduced-dimensionality studies. The Journal of Chemical Physics 2020, 153 (23) https://doi.org/10.1063/5.0035870
    46. Johan F. Triana, Federico J. Hernández, Felipe Herrera. The shape of the electric dipole function determines the sub-picosecond dynamics of anharmonic vibrational polaritons. The Journal of Chemical Physics 2020, 152 (23) https://doi.org/10.1063/5.0009869
    47. Bo Xiang, Raphael F. Ribeiro, Matthew Du, Liying Chen, Zimo Yang, Jiaxi Wang, Joel Yuen-Zhou, Wei Xiong. Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling. Science 2020, 368 (6491) , 665-667. https://doi.org/10.1126/science.aba3544
    48. Tamás Szidarovszky, Gábor J Halász, Ágnes Vibók. Three-player polaritons: nonadiabatic fingerprints in an entangled atom–molecule–photon system. New Journal of Physics 2020, 22 (5) , 053001. https://doi.org/10.1088/1367-2630/ab8264
    49. Felipe Herrera, Jeffrey Owrutsky. Molecular polaritons for controlling chemistry with quantum optics. The Journal of Chemical Physics 2020, 152 (10) https://doi.org/10.1063/1.5136320
    50. Anoop Thomas, Anjali Jayachandran, Lucas Lethuillier-Karl, Robrecht M.A. Vergauwe, Kalaivanan Nagarajan, Eloise Devaux, Cyriaque Genet, Joseph Moran, Thomas W. Ebbesen. Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics 2020, 9 (2) , 249-255. https://doi.org/10.1515/nanoph-2019-0340
    51. Jing Liu, Wei Chen, Jia-Chun Zheng, Yu-Shan Chen, Cheng-Fu Yang. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared. Nanomaterials 2020, 10 (1) , 27. https://doi.org/10.3390/nano10010027
    52. Frank Vollmer, Deshui Yu. Molecular Cavity QED. 2020, 345-383. https://doi.org/10.1007/978-3-030-60235-2_7
    53. Ran Damari, Omri Weinberg, Daniel Krotkov, Natalia Demina, Katherine Akulov, Adina Golombek, Tal Schwartz, Sharly Fleischer. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11130-y
    54. Robrecht M. A. Vergauwe, Anoop Thomas, Kalaivanan Nagarajan, Atef Shalabney, Jino George, Thibault Chervy, Marcus Seidel, Eloïse Devaux, Vladimir Torbeev, Thomas W. Ebbesen. Modification of Enzyme Activity by Vibrational Strong Coupling of Water. Angewandte Chemie 2019, 131 (43) , 15468-15472. https://doi.org/10.1002/ange.201908876
    55. Robrecht M. A. Vergauwe, Anoop Thomas, Kalaivanan Nagarajan, Atef Shalabney, Jino George, Thibault Chervy, Marcus Seidel, Eloïse Devaux, Vladimir Torbeev, Thomas W. Ebbesen. Modification of Enzyme Activity by Vibrational Strong Coupling of Water. Angewandte Chemie International Edition 2019, 58 (43) , 15324-15328. https://doi.org/10.1002/anie.201908876
    56. Federico J. Hernández, Felipe Herrera. Multi-level quantum Rabi model for anharmonic vibrational polaritons. The Journal of Chemical Physics 2019, 151 (14) https://doi.org/10.1063/1.5121426
    57. Kishan S. Menghrajani, Henry A. Fernandez, Geoffrey R. Nash, William L. Barnes. Hybridization of Multiple Vibrational Modes via Strong Coupling Using Confined Light Fields. Advanced Optical Materials 2019, 7 (18) https://doi.org/10.1002/adom.201900403
    58. James V. Coe, Justin D. Erwin, Rebecca C. Bradley, , . Reconstructing fringes for cavity-vibration experiments in FTIR spectrometers. 2019, 1. https://doi.org/10.1117/12.2510462
    59. Manuel Hertzog, Mao Wang, Jürgen Mony, Karl Börjesson. Strong light–matter interactions: a new direction within chemistry. Chemical Society Reviews 2019, 48 (3) , 937-961. https://doi.org/10.1039/C8CS00193F
    60. Arko Graf, Laura Tropf, Jana Zaumseil, Malte C. Gather. Strong light-matter interactions and exciton-polaritons in organic materials. 2019, 281-307. https://doi.org/10.1016/B978-0-08-102284-9.00009-7
    61. Branko Kolaric, Bjorn Maes, Koen Clays, Thomas Durt, Yves Caudano. Strong Light–Matter Coupling as a New Tool for Molecular and Material Engineering: Quantum Approach. Advanced Quantum Technologies 2018, 1 (3) https://doi.org/10.1002/qute.201800001
    62. Raphael F. Ribeiro, Luis A. Martínez-Martínez, Matthew Du, Jorge Campos-Gonzalez-Angulo, Joel Yuen-Zhou. Polariton chemistry: controlling molecular dynamics with optical cavities. Chemical Science 2018, 9 (30) , 6325-6339. https://doi.org/10.1039/C8SC01043A
    63. András Csehi, Gábor J. Halász, Ágnes Vibók. Collective effect of light-induced and natural nonadiabatic phenomena in the dissociation dynamics of the NaI molecule. Chemical Physics 2018, 509 , 91-97. https://doi.org/10.1016/j.chemphys.2017.12.017
    64. Bo Xiang, Raphael F. Ribeiro, Adam D. Dunkelberger, Jiaxi Wang, Yingmin Li, Blake S. Simpkins, Jeffrey C. Owrutsky, Joel Yuen-Zhou, Wei Xiong. Two-dimensional infrared spectroscopy of vibrational polaritons. Proceedings of the National Academy of Sciences 2018, 115 (19) , 4845-4850. https://doi.org/10.1073/pnas.1722063115
    65. Konstantin E. Mochalov, Ivan S. Vaskan, Dmitriy S. Dovzhenko, Yury P. Rakovich, Igor Nabiev. A versatile tunable microcavity for investigation of light–matter interaction. Review of Scientific Instruments 2018, 89 (5) https://doi.org/10.1063/1.5021055
    66. Shinichiro Tsuda, Shuhei Yamaguchi, Yoshiaki Kanamori, Hiroo Yugami. Spectral and angular shaping of infrared radiation in a polymer resonator with molecular vibrational modes. Optics Express 2018, 26 (6) , 6899. https://doi.org/10.1364/OE.26.006899
    67. Vivian F. Crum, Shaelyn R. Casey, Justin R. Sparks. Photon-mediated hybridization of molecular vibrational states. Physical Chemistry Chemical Physics 2018, 20 (2) , 850-857. https://doi.org/10.1039/C7CP04418F
    68. D. S. Dovzhenko, S. V. Ryabchuk, Yu. P. Rakovich, I. R. Nabiev. Light–matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale 2018, 10 (8) , 3589-3605. https://doi.org/10.1039/C7NR06917K
    69. Javier del Pino, Francisco J. Garcia-Vidal, Johannes Feist. Exploiting Vibrational Strong Coupling to Make an Optical Parametric Oscillator Out of a Raman Laser. Physical Review Letters 2016, 117 (27) https://doi.org/10.1103/PhysRevLett.117.277401

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect