ACS Publications. Most Trusted. Most Cited. Most Read
Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite
My Activity

Figure 1Loading Img
    Letter

    Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse 31400, France
    Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
    § University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
    *E-mail: [email protected]. Phone: +33 (0) 562 17 28 62. (P.P.)
    *E-mail: [email protected]. Phone: +44-1865-272250. (R.J.N.)
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2017, 8, 8, 1851–1855
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.7b00524
    Published April 10, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We have accurately determined the exciton binding energy and reduced mass of single crystals of methylammonium lead triiodide using magneto-reflectivity at very high magnetic fields. The single crystal has excellent optical properties with a narrow line width of ∼3 meV for the excitonic transitions and a 2s transition that is clearly visible even at zero magnetic field. The exciton binding energy of 16 ± 2 meV in the low-temperature orthorhombic phase is almost identical to the value found in polycrystalline samples, crucially ruling out any possibility that the exciton binding energy depends on the grain size. In the room-temperature tetragonal phase, an upper limit for the exciton binding energy of 12 ± 4 meV is estimated from the evolution of 1s–2s splitting at high magnetic field.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.7b00524.

    • Crystal growth procedure, X-ray characterization of single-crystal MAPbI3, representative fits of differential reflectivity spectra, and temperature dependence of line width of differential reflectivity. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 167 publications.

    1. Yifan Wu, Weibin Chu, Bipeng Wang, Oleg V. Prezhdo. Atomistic Origin of Microsecond Carrier Lifetimes at Perovskite Grain Boundaries: Machine Learning-Assisted Nonadiabatic Molecular Dynamics. Journal of the American Chemical Society 2025, Article ASAP.
    2. Mirosław Mączka, Jan K. Zaręba, Andrzej Nowok, Nikodem Sokołowski, Adam Sieradzki, Anna Gągor, Maciej Ptak. Two-Dimensional Lead Iodide Perovskites with Extremely Reduced Dielectric Confinement: Embedded Self-Erasing Second-Harmonic Generation Switching, Thermochromism, and Photoluminescence. Chemistry of Materials 2024, 36 (21) , 10758-10772. https://doi.org/10.1021/acs.chemmater.4c02394
    3. Chunyi Zhao, Jingwen Bao, Yan Gao, Xianchang Yan, Fengke Sun, Hui Cheng, Longwen Chen, Haifeng Lv, Guanxin Yao, Xianyi Zhang, Wenming Tian, Shengye Jin, Xiaojun Wu, Qi Sun, Zhou Lu. Layer Distortion Engineering for Spontaneous Charge Separation in Two-Dimensional Perovskites. ACS Energy Letters 2024, 9 (10) , 4994-5001. https://doi.org/10.1021/acsenergylett.4c02099
    4. Michal Baranowski, Andrzej Nowok, Krzysztof Galkowski, Mateusz Dyksik, Alessandro Surrente, Duncan Maude, Marios Zacharias, George Volonakis, Samuel D. Stranks, Jacky Even, Miroslaw Maczka, Robin Nicholas, Paulina Plochocka. Polaronic Mass Enhancement and Polaronic Excitons in Metal Halide Perovskites. ACS Energy Letters 2024, 9 (6) , 2696-2702. https://doi.org/10.1021/acsenergylett.4c00905
    5. Yong Jiao, Zhenhua Lin, Xing Guo, Long Zhou, YuLin Yang, Xiangang Hu, Zhaosheng Hu, Xue Zhao, Juanxiu Xiao, Tao Li, Yue Hao, Jingjing Chang. Compositional Engineering of Hybrid Organic–Inorganic Lead-Halide Perovskite and PVDF-Graphene for High-Performance Triboelectric Nanogenerators. ACS Applied Materials & Interfaces 2024, 16 (3) , 3532-3541. https://doi.org/10.1021/acsami.3c17203
    6. Anthony Ruth, Halyna Okrepka, Prashant Kamat, Masaru Kuno. Thermodynamic Band Gap Model for Photoinduced Phase Segregation in Mixed-Halide Perovskites. The Journal of Physical Chemistry C 2023, 127 (37) , 18547-18559. https://doi.org/10.1021/acs.jpcc.3c04708
    7. Jianhui Fu, Sankaran Ramesh, Jia Wei Melvin Lim, Tze Chien Sum. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chemical Reviews 2023, 123 (13) , 8154-8231. https://doi.org/10.1021/acs.chemrev.2c00843
    8. Giulia Biffi, Yeongsu Cho, Roman Krahne, Timothy C. Berkelbach. Excitons and Their Fine Structure in Lead Halide Perovskite Nanocrystals from Atomistic GW/BSE Calculations. The Journal of Physical Chemistry C 2023, 127 (4) , 1891-1898. https://doi.org/10.1021/acs.jpcc.2c07111
    9. Mariia P. Mamaeva, Anna Yu. Samsonova, Aleksei O. Murzin, Olga A. Lozhkina, Anna A. Murashkina, Nikita I. Selivanov, Yury V. Kapitonov. Ultrafast Random Lasing in MAPbI3 Halide Perovskite Single Crystals. The Journal of Physical Chemistry C 2022, 126 (46) , 19816-19821. https://doi.org/10.1021/acs.jpcc.2c06114
    10. Kezhou Fan, Christopher Chang Sing Chan, Ligang Yuan, Keyou Yan, Kam Sing Wong. New Insights into Hot-Charge Relaxation in Lead Halide Perovskite: Dynamical Bandgap Change, Hot-Biexciton Effect, and Photo-Bleaching Shift. ACS Photonics 2022, 9 (7) , 2304-2314. https://doi.org/10.1021/acsphotonics.2c00287
    11. Erik Kirstein, Dmitri R. Yakovlev, Evgeny A. Zhukov, Julian Höcker, Vladimir Dyakonov, Manfred Bayer. Spin Dynamics of Electrons and Holes Interacting with Nuclei in MAPbI3 Perovskite Single Crystals. ACS Photonics 2022, 9 (4) , 1375-1384. https://doi.org/10.1021/acsphotonics.2c00096
    12. Lu Qiao, Wei-Hai Fang, Run Long. Dual Passivation of Point Defects at Perovskite Grain Boundaries with Ammonium Salts Greatly Inhibits Nonradiative Charge Recombination. The Journal of Physical Chemistry Letters 2022, 13 (4) , 954-961. https://doi.org/10.1021/acs.jpclett.1c04038
    13. Dariusz M. Niedzwiedzki, Hao Zhou, Pratim Biswas. Exciton Binding Energy of MAPbI3 Thin Film Elucidated via Analysis and Modeling of Perovskite Absorption and Photoluminescence Properties Using Various Methodologies. The Journal of Physical Chemistry C 2022, 126 (2) , 1046-1054. https://doi.org/10.1021/acs.jpcc.1c09598
    14. Hongxia Zhong, Chunbao Feng, Hai Wang, Dan Han, Guodong Yu, Wenqi Xiong, Yunhai Li, Mao Yang, Gang Tang, Shengjun Yuan. Structure–Composition–Property Relationships in Antiperovskite Nitrides: Guiding a Rational Alloy Design. ACS Applied Materials & Interfaces 2021, 13 (41) , 48516-48524. https://doi.org/10.1021/acsami.1c10137
    15. Jie Zhang, Kaiyu Wang, Qing Yao, Ye Yuan, Jianxu Ding, Weiwei Zhang, Haiqing Sun, Chenyu Shang, Changqian Li, Tianliang Zhou, Shuping Pang. Carrier Diffusion and Recombination Anisotropy in the MAPbI3 Single Crystal. ACS Applied Materials & Interfaces 2021, 13 (25) , 29827-29834. https://doi.org/10.1021/acsami.1c07056
    16. Dibyendu Ghosh, Md. Yusuf Ali, Anima Ghosh, Arnab Mandal, Sayan Bhattacharyya. Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance. The Journal of Physical Chemistry C 2021, 125 (10) , 5485-5493. https://doi.org/10.1021/acs.jpcc.0c11122
    17. Barbara Wilk, Senol Öz, Eros Radicchi, Feray Ünlü, Taimoor Ahmad, Artur P. Herman, Francesca Nunzi, Sanjay Mathur, Robert Kudrawiec, Konrad Wojciechowski. Green Solvent-Based Perovskite Precursor Development for Ink-Jet Printed Flexible Solar Cells. ACS Sustainable Chemistry & Engineering 2021, 9 (10) , 3920-3930. https://doi.org/10.1021/acssuschemeng.0c09208
    18. Mateusz Dyksik, Shuli Wang, Watcharaphol Paritmongkol, Duncan K. Maude, William A. Tisdale, Michal Baranowski, Paulina Plochocka. Tuning the Excitonic Properties of the 2D (PEA)2(MA)n−1PbnI3n+1 Perovskite Family via Quantum Confinement. The Journal of Physical Chemistry Letters 2021, 12 (6) , 1638-1643. https://doi.org/10.1021/acs.jpclett.0c03731
    19. Morihiko Hamada, Shailesh Rana, Efat Jokar, Kamlesh Awasthi, Eric Wei-Guang Diau, Nobuhiro Ohta. Temperature-Dependent Electroabsorption Spectra and Exciton Binding Energy in a Perovskite CH3NH3PbI3 Nanocrystalline Film. ACS Applied Energy Materials 2020, 3 (12) , 11830-11840. https://doi.org/10.1021/acsaem.0c01983
    20. Mateusz Dyksik, Herman Duim, Xiangzhou Zhu, Zhuo Yang, Masaki Gen, Yoshimitsu Kohama, Sampson Adjokatse, Duncan K. Maude, Maria Antonietta Loi, David A. Egger, Michal Baranowski, Paulina Plochocka. Broad Tunability of Carrier Effective Masses in Two-Dimensional Halide Perovskites. ACS Energy Letters 2020, 5 (11) , 3609-3616. https://doi.org/10.1021/acsenergylett.0c01758
    21. Vincent Obiozo Eze, Geoffrey Ryan Adams, Lucas Braga Carani, Ryan James Simpson, Okenwa I. Okoli. Enhanced Inorganic CsPbIBr2 Perovskite Film for a Sensitive and Rapid Response Self-Powered Photodetector. The Journal of Physical Chemistry C 2020, 124 (38) , 20643-20653. https://doi.org/10.1021/acs.jpcc.0c04144
    22. Jaemin Kong, Hanyu Wang, Jason A. Röhr, Zachary S. Fishman, Yuanyuan Zhou, Mingxing Li, Mircea Cotlet, Geunjin Kim, Christopher Karpovich, Francisco Antonio, Nitin P. Padture, André D. Taylor. Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS Applied Energy Materials 2020, 3 (8) , 7231-7238. https://doi.org/10.1021/acsaem.0c00854
    23. Natalia Spitha, Daniel D. Kohler, Matthew P. Hautzinger, Jing Li, Song Jin, John C. Wright. Discerning between Exciton and Free-Carrier Behaviors in Ruddlesden–Popper Perovskite Quantum Wells through Kinetic Modeling of Photoluminescence Dynamics. The Journal of Physical Chemistry C 2020, 124 (31) , 17430-17439. https://doi.org/10.1021/acs.jpcc.0c06345
    24. T. Thu Ha Do, Andrés Granados del Águila, Dong Zhang, Jun Xing, Sheng Liu, M. A. Prosnikov, Weibo Gao, Kai Chang, Peter C. M. Christianen, Qihua Xiong. Bright Exciton Fine-Structure in Two-Dimensional Lead Halide Perovskites. Nano Letters 2020, 20 (7) , 5141-5148. https://doi.org/10.1021/acs.nanolett.0c01364
    25. Junsang Cho, Jeffrey T. DuBose, An Ngoc Thien Le, Prashant V. Kamat. Suppressed Halide Ion Migration in 2D Lead Halide Perovskites. ACS Materials Letters 2020, 2 (6) , 565-570. https://doi.org/10.1021/acsmaterialslett.0c00124
    26. Oskar Schuster, Peter Wientjes, Shreetu Shrestha, Ievgen Levchuk, Mykhailo Sytnyk, Gebhard J. Matt, Andres Osvet, Miroslaw Batentschuk, Wolfgang Heiss, Christoph J. Brabec, Thomas Fauster, Daniel Niesner. Looking beyond the Surface: The Band Gap of Bulk Methylammonium Lead Iodide. Nano Letters 2020, 20 (5) , 3090-3097. https://doi.org/10.1021/acs.nanolett.9b05068
    27. Guangjun Nan, David Beljonne, Xu Zhang, Claudio Quarti. Organic Cations Protect Methylammonium Lead Iodide Perovskites against Small Exciton-Polaron Formation. The Journal of Physical Chemistry Letters 2020, 11 (8) , 2983-2991. https://doi.org/10.1021/acs.jpclett.0c00673
    28. Junsang Cho, Jeffrey T. DuBose, Prashant V. Kamat. Charge Carrier Recombination Dynamics of Two-Dimensional Lead Halide Perovskites. The Journal of Physical Chemistry Letters 2020, 11 (7) , 2570-2576. https://doi.org/10.1021/acs.jpclett.0c00392
    29. Boubacar Traore, Laurent Pedesseau, Jean-Christophe Blancon, Sergei Tretiak, Aditya D. Mohite, Jacky Even, Claudine Katan, Mikaël Kepenekian. Importance of Vacancies and Doping in the Hole-Transporting Nickel Oxide Interface with Halide Perovskites. ACS Applied Materials & Interfaces 2020, 12 (5) , 6633-6640. https://doi.org/10.1021/acsami.9b19457
    30. M. Bilal Faheem, Bilawal Khan, Chao Feng, M. Umar Farooq, Fazal Raziq, Yequan Xiao, Yanbo Li. All-Inorganic Perovskite Solar Cells: Energetics, Key Challenges, and Strategies toward Commercialization. ACS Energy Letters 2020, 5 (1) , 290-320. https://doi.org/10.1021/acsenergylett.9b02338
    31. Michal Baranowski, Szymon J. Zelewski, Mikael Kepenekian, Boubacar Traoré, Joanna M. Urban, Alessandro Surrente, Krzysztof Galkowski, Duncan K. Maude, Agnieszka Kuc, Edward P. Booker, Robert Kudrawiec, Samuel D. Stranks, Paulina Plochocka. Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden–Popper Perovskites. ACS Energy Letters 2019, 4 (10) , 2386-2392. https://doi.org/10.1021/acsenergylett.9b01435
    32. Katherine E. Shulenberger, Matthew N. Ashner, Seung Kyun Ha, Franziska Krieg, Maksym V. Kovalenko, William A. Tisdale, Moungi G. Bawendi. Setting an Upper Bound to the Biexciton Binding Energy in CsPbBr3 Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5680-5686. https://doi.org/10.1021/acs.jpclett.9b02015
    33. Jiyu Tian, David B. Cordes, Claudio Quarti, David Beljonne, Alexandra M. Z. Slawin, Eli Zysman-Colman, Finlay D. Morrison. Stable 6H Organic–Inorganic Hybrid Lead Perovskite and Competitive Formation of 6H and 3C Perovskite Structure with Mixed A Cations. ACS Applied Energy Materials 2019, 2 (8) , 5427-5437. https://doi.org/10.1021/acsaem.9b00419
    34. Paul Bouteyre, Hai Son Nguyen, Jean-Sébastien Lauret, Gaëlle Trippé-Allard, Géraud Delport, Ferdinand Lédée, Hiba Diab, Ali Belarouci, Christian Seassal, Damien Garrot, Fabien Bretenaker, Emmanuelle Deleporte. Room-Temperature Cavity Polaritons with 3D Hybrid Perovskite: Toward Large-Surface Polaritonic Devices. ACS Photonics 2019, 6 (7) , 1804-1811. https://doi.org/10.1021/acsphotonics.9b00625
    35. Shahab Ahmad, Aditya Sadhanala, Robert L. Z. Hoye, Virgil Andrei, Mohammad Hadi Modarres, Baodan Zhao, Jan Rongé, Richard Friend, Michael De Volder. Triple-Cation-Based Perovskite Photocathodes with AZO Protective Layer for Hydrogen Production Applications. ACS Applied Materials & Interfaces 2019, 11 (26) , 23198-23206. https://doi.org/10.1021/acsami.9b04963
    36. Xiaoxuan Chen, Yue Wang, Jizhong Song, Xiaoming Li, Jiayue Xu, Haibo Zeng, Handong Sun. Temperature Dependent Reflectance and Ellipsometry Studies on a CsPbBr3 Single Crystal. The Journal of Physical Chemistry C 2019, 123 (16) , 10564-10570. https://doi.org/10.1021/acs.jpcc.9b01406
    37. Yutong Wang, Wei-Hai Fang, Run Long, Oleg V. Prezhdo. Symmetry Breaking at MAPbI3 Perovskite Grain Boundaries Suppresses Charge Recombination: Time-Domain ab Initio Analysis. The Journal of Physical Chemistry Letters 2019, 10 (7) , 1617-1623. https://doi.org/10.1021/acs.jpclett.9b00763
    38. Hyunho Lee, Donghyun Ko, Changhee Lee. Direct Evidence of Ion-Migration-Induced Degradation of Ultrabright Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces 2019, 11 (12) , 11667-11673. https://doi.org/10.1021/acsami.8b22217
    39. Ajay Kumar Jena, Ashish Kulkarni, Tsutomu Miyasaka. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews 2019, 119 (5) , 3036-3103. https://doi.org/10.1021/acs.chemrev.8b00539
    40. Krzysztof Galkowski, Alessandro Surrente, Michal Baranowski, Baodan Zhao, Zhuo Yang, Aditya Sadhanala, Sebastian Mackowski, Samuel D. Stranks, Paulina Plochocka. Excitonic Properties of Low-Band-Gap Lead–Tin Halide Perovskites. ACS Energy Letters 2019, 4 (3) , 615-621. https://doi.org/10.1021/acsenergylett.8b02243
    41. Nathaniel P. Gallop, Oleg Selig, Giulia Giubertoni, Huib J. Bakker, Yves L. A. Rezus, Jarvist M. Frost, Thomas L. C. Jansen, Robert Lovrincic, Artem A. Bakulin. Rotational Cation Dynamics in Metal Halide Perovskites: Effect on Phonons and Material Properties. The Journal of Physical Chemistry Letters 2018, 9 (20) , 5987-5997. https://doi.org/10.1021/acs.jpclett.8b02227
    42. Dylan H. Arias, David T. Moore, Jao van de Lagemaat, Justin C. Johnson. Direct Measurements of Carrier Transport in Polycrystalline Methylammonium Lead Iodide Perovskite Films with Transient Grating Spectroscopy. The Journal of Physical Chemistry Letters 2018, 9 (19) , 5710-5717. https://doi.org/10.1021/acs.jpclett.8b02245
    43. Giacomo Giorgi, Koichi Yamashita, Maurizia Palummo. Nature of the Electronic and Optical Excitations of Ruddlesden–Popper Hybrid Organic–Inorganic Perovskites: The Role of the Many-Body Interactions. The Journal of Physical Chemistry Letters 2018, 9 (19) , 5891-5896. https://doi.org/10.1021/acs.jpclett.8b02653
    44. M. Baranowski, J. M. Urban, N. Zhang, A. Surrente, D. K. Maude, Zahra Andaji-Garmaroudi, S. D. Stranks, P. Plochocka. Static and Dynamic Disorder in Triple-Cation Hybrid Perovskites. The Journal of Physical Chemistry C 2018, 122 (30) , 17473-17480. https://doi.org/10.1021/acs.jpcc.8b05222
    45. Chuanpeng Jiang, Yuling Xie, Richard R. Lunt, Thomas W. Hamann, and Pengpeng Zhang . Elucidating the Impact of Thin Film Texture on Charge Transport and Collection in Perovskite Solar Cells. ACS Omega 2018, 3 (3) , 3522-3529. https://doi.org/10.1021/acsomega.8b00026
    46. Benjamin T. Diroll, Peijun Guo, and Richard D. Schaller . Unique Optical Properties of Methylammonium Lead Iodide Nanocrystals Below the Bulk Tetragonal-Orthorhombic Phase Transition. Nano Letters 2018, 18 (2) , 846-852. https://doi.org/10.1021/acs.nanolett.7b04099
    47. Tufan Ghosh, Sigalit Aharon, Lioz Etgar, and Sanford Ruhman . Free Carrier Emergence and Onset of Electron–Phonon Coupling in Methylammonium Lead Halide Perovskite Films. Journal of the American Chemical Society 2017, 139 (50) , 18262-18270. https://doi.org/10.1021/jacs.7b09508
    48. Z. Yang, A. Surrente, K. Galkowski, A. Miyata, O. Portugall, R. J. Sutton, A. A. Haghighirad, H. J. Snaith, D. K. Maude, P. Plochocka, and R. J. Nicholas . Impact of the Halide Cage on the Electronic Properties of Fully Inorganic Cesium Lead Halide Perovskites. ACS Energy Letters 2017, 2 (7) , 1621-1627. https://doi.org/10.1021/acsenergylett.7b00416
    49. Luting Liu, Yi Liu, Xinye Luo, Lu Ouyang, Qingquan Liu, Weijie Zhang, Hai Yang. Enhancing Spin-Orbit coupling in covalent organic polymers to facilitate intersystem crossing for uranium (VI) photoreduction. Journal of Colloid and Interface Science 2025, 686 , 336-347. https://doi.org/10.1016/j.jcis.2025.01.229
    50. Shaobing Xiong, Xiaoxiao Zang, Hongbo Wu, Di Li, Sheng Jiang, Liming Ding, Bo Li, Mats Fahlman, Qinye Bao. Double-side improved charge extraction via 2D perovskite for efficient inverted perovskite solar cells. Nano Energy 2025, 134 , 110538. https://doi.org/10.1016/j.nanoen.2024.110538
    51. Zeeshan Muhammad, Arooj Rashid. Exciton binding energies and polaron interplay in the optically excited state of organic–inorganic lead halide perovskites. Materials Advances 2025, 6 (1) , 13-38. https://doi.org/10.1039/D4MA00454J
    52. Vidya S Menon, Ananthanarayanan Krishnamoorthy. Nanoengineering of solution processed metal oxide interfacial layers for perovskite solar cells: impact on device performance and stability. 2025, 371-397. https://doi.org/10.1016/B978-0-443-21691-6.00016-0
    53. Mateusz Dyksik, Michal Baranowski, Joshua J. P. Thompson, Zhuo Yang, Martha Rivera Medina, Maria Antonietta Loi, Ermin Malic, Paulina Plochocka. Steric Engineering of Exciton Fine Structure in 2D Perovskites. Advanced Energy Materials 2024, 14 https://doi.org/10.1002/aenm.202404769
    54. Xudong Xiao, Kyaw Zin Latt, Jue Gong, Taewoo Kim, Justin G. Connell, Yuzi Liu, H. Christopher Fry, John E. Pearson, Owen S. Wostoupal, Mengyuan Li, Calvin Soldan, Zhenzhen Yang, Richard D. Schaller, Benjamin T. Diroll, Saw Wai Hla, Tao Xu. Light-induced Kondo-like exciton-spin interaction in neodymium(II) doped hybrid perovskite. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-50196-1
    55. S. Takahashi, S. Kusaba, K. Watanabe, T. Taniguchi, K. Yanagi, K. Tanaka. 3D hydrogen-like screening effect on excitons in hBN-encapsulated monolayer transition metal dichalcogenides. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-77625-x
    56. Donghyeon Lee, Sua Park, Shinhyun Kim, Min-cheol Kim. Recent Studies on Degradation Mechanism of Organic-inorganic Hybrid Perovskite Materials for Photovoltaics. Journal of the Korean Solar Energy Society 2024, 44 (4) , 77-95. https://doi.org/10.7836/kses.2024.44.4.077
    57. Ajay K. Poonia, Parashurama Salunkhe, Angshuman Nag, K. V. Adarsh. Emerging collective quantum phenomena of excitons in metal-halide perovskites. MRS Bulletin 2024, 17 https://doi.org/10.1557/s43577-024-00765-y
    58. Leila Ebrahimkhani, Javad Nematollahi, Valiollah Mirkhani, Majid Moghadam, Shahram Tangestaninejad, Iraj Mohammadpoor-Baltork. Investigation of structural, electronic, and optical properties of halide perovskites with different amide cations: A first-principles approach. Materials Today Communications 2024, 143 , 110008. https://doi.org/10.1016/j.mtcomm.2024.110008
    59. Abhirami Eattath Anil Kumar, Shantikumar Nair, Laxman Raju Thoutam. The Prospects and Challenges for Ambi‐polar Vacancy‐Ordered Double‐Perovskite Cs 2 SnI 6 Toward Realization of High‐Efficiency Air‐Stable Solar‐Cells. Solar RRL 2024, 8 (12) https://doi.org/10.1002/solr.202400275
    60. Sunkyu Kim, Wonjong Lee, Zobia Irshad, Siwon Yun, Hyeji Han, Muhammad Adnan, Hyo Sik Chang, Jongchul Lim. Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films. Energies 2024, 17 (9) , 2062. https://doi.org/10.3390/en17092062
    61. Ghadah Abdulrahman AlZaidy, Hamdah T.A. Alanazi. Review—Recent Advancements in Perovskites Solar Cell Materials and the Investigation of Transition Metal Oxide-Based Nanocomposites for Usage in Perovskites Solar Cells. ECS Journal of Solid State Science and Technology 2024, 13 (5) , 055006. https://doi.org/10.1149/2162-8777/ad4c95
    62. Naomy Chepngetich, Gloria M. Mumbi, Getnet Meheretu M., Koech K. Richard, Geoffrey K. Yegon, Sarah C. Chepkwony, Charles Rono K., Dahiru Sanni, Abdulhakeem Bello, Esidor Ntsoenzok. Recent trends on the application of phytochemical-based compounds as additives in the fabrication of perovskite solar cells. Energy Advances 2024, 3 (4) , 741-764. https://doi.org/10.1039/D4YA00025K
    63. Natalia E. Kopteva, Dmitri R. Yakovlev, Erik Kirstein, Evgeny A. Zhukov, Dennis Kudlacik, Ina V. Kalitukha, Victor F. Sapega, Oleh Hordiichuk, Dmitry N. Dirin, Maksym V. Kovalenko, Andreas Baumann, Julian Höcker, Vladimir Dyakonov, Scott A. Crooker, Manfred Bayer. Weak Dispersion of Exciton Landé Factor with Band Gap Energy in Lead Halide Perovskites: Approximate Compensation of the Electron and Hole Dependences. Small 2024, 20 (16) https://doi.org/10.1002/smll.202300935
    64. Duncan K. Maude, Paulina Plochocka, Zhuo Yang. Analytical model for a hydrogen atom in a magnetic field: Implications for the diamagnetic shift. Physical Review B 2024, 109 (15) https://doi.org/10.1103/PhysRevB.109.155201
    65. Dmitri R. Yakovlev, Scott A. Crooker, Marina A. Semina, Janina Rautert, Johannes Mund, Dmitry N. Dirin, Maksym V. Kovalenko, Manfred Bayer. Exciton–Polaritons in CsPbBr 3 Crystals Revealed by Optical Reflectivity in High Magnetic Fields and Two‐Photon Spectroscopy. physica status solidi (RRL) – Rapid Research Letters 2024, 18 (3) https://doi.org/10.1002/pssr.202300407
    66. Katarzyna Posmyk, Mateusz Dyksik, Alessandro Surrente, Duncan K. Maude, Natalia Zawadzka, Adam Babiński, Maciej R. Molas, Watcharaphol Paritmongkol, Mirosław Mączka, William A. Tisdale, Paulina Plochocka, Michał Baranowski. Exciton Fine Structure in 2D Perovskites: The Out‐of‐Plane Excitonic State. Advanced Optical Materials 2024, 12 (8) https://doi.org/10.1002/adom.202300877
    67. Kameron R. Hansen, John S. Colton, Luisa Whittaker‐Brooks. Measuring the Exciton Binding Energy: Learning from a Decade of Measurements on Halide Perovskites and Transition Metal Dichalcogenides. Advanced Optical Materials 2024, 12 (3) https://doi.org/10.1002/adom.202301659
    68. Yan Lv, Yuxiao Wang, Xueying Ma, Yao Xu, Lin Wang, Xiaoyong Wang, Min Xiao, Chunfeng Zhang. Magneto-optical effects in lead halide perovskites. Advances in Physics: X 2023, 8 (1) https://doi.org/10.1080/23746149.2023.2258951
    69. Shi Jing, Wang Liyuan, Sanam SaeidNahaei. Efficient Post-Processing techniques for enhancing performance of PeLEDs. Solid-State Electronics 2023, 210 , 108802. https://doi.org/10.1016/j.sse.2023.108802
    70. Dan Liu, Haipeng Di, Jiwei Ren, Wei Jiang, Haibin Li, Chen Zhao, Deyu Xin, Zhenning Xing, Xiaojia Zheng, Yiying Zhao. X‐Site Substituted 2D Cs 2 Pb(SCN) 2 Br 2 Perovskites for X‐Ray Detection. Small 2023, 19 (50) https://doi.org/10.1002/smll.202304201
    71. Feng Jiang, Zhennan Wu, Min Lu, Yanbo Gao, Xin Li, Xue Bai, Yuan Ji, Yu Zhang. Broadband Emission Origin in Metal Halide Perovskites: Are Self‐Trapped Excitons or Ions?. Advanced Materials 2023, 35 (51) https://doi.org/10.1002/adma.202211088
    72. Vidya Sudhakaran Menon, Ananthanarayanan Krishnamoorthy. Hole Selectivity of n‐Type Molybdenum Oxide Carrier Selective Layer for Commercial and Emerging Thin‐Film Photovoltaics: A Critical Analysis of Interface Energetics and Ensuant Device Physics. Energy Technology 2023, 11 (11) https://doi.org/10.1002/ente.202300608
    73. Jinshuai Zhang, Jiepeng Song, Qing Zhang. Large‐Scale Perovskite Single Crystal Growth and Surface Patterning Technologies. Small Science 2023, 3 (11) https://doi.org/10.1002/smsc.202300085
    74. Feifei Ren, Huiwen Xiang, Ke Zhao, Chengyan Liu. Impacts of PbI 2 on high-efficiency perovskite solar cells: exploring intercalation orientations and defects. Journal of Materials Chemistry C 2023, 11 (39) , 13281-13289. https://doi.org/10.1039/D3TC02770H
    75. Mohammad Moaddeli, Mansour Kanani, Anna Grünebohm. Electronic and structural properties of mixed-cation hybrid perovskites studied using an efficient spin–orbit included DFT-1/2 approach. Physical Chemistry Chemical Physics 2023, 25 (37) , 25511-25525. https://doi.org/10.1039/D3CP02472E
    76. Siyu Liu, Huifang Geng, Huaxiu Geng, Zhuanzhuan Huang, Shibin Deng, Xi Shen, Richeng Yu, Kaibo Zheng, Sophie E. Canton, Xuewen Fu. Probing the Multiexcitonic Dynamics in CsPbI 3 Nanocrystals across the Temperature‐Induced Reversible Phase Transitions. Advanced Energy Materials 2023, 13 (30) https://doi.org/10.1002/aenm.202301097
    77. Jing Pan, Lijun Su, Liyong Du, Xin Guan, Guanghua Zhang, Sanam SaeidNahaei. Applying a time-saving and cost-effective postprocessing method to achieve a high-quality perovskite light emitting diode. Optical Materials 2023, 140 , 113889. https://doi.org/10.1016/j.optmat.2023.113889
    78. Congyu Wang, Hengyu Guo, Peng Wang, Jiawei Li, Yihan Sun, Dun Zhang. An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay. Advanced Materials 2023, 35 (17) https://doi.org/10.1002/adma.202209895
    79. Zhan Wei, Ling Ding, Na Sun, Le-Yang Dang, Hao-Ran Sun, Jie-Cai Han, Jia-Qi Zhu, Gui-Gen Wang. Lead-free CsBi3I10 perovskite based photo-enhanced triboelectric nanogenerator. Nano Energy 2023, 108 , 108209. https://doi.org/10.1016/j.nanoen.2023.108209
    80. Liangyan Xiao, Linwei Huang, Weihaojia Su, Tianjun Wang, Haiying Liu, Zhongchao Wei, Haihua Fan. Efficiency Enhancement Strategies for Stable Bismuth-Based Perovskite and Its Bioimaging Applications. International Journal of Molecular Sciences 2023, 24 (5) , 4711. https://doi.org/10.3390/ijms24054711
    81. Katarzyna Posmyk, Mateusz Dyksik, Alessandro Surrente, Katarzyna Zalewska, Maciej Śmiertka, Ewelina Cybula, Watcharaphol Paritmongkol, William A. Tisdale, Paulina Plochocka, Michał Baranowski. Fine Structure Splitting of Phonon-Assisted Excitonic Transition in (PEA)2PbI4 Two-Dimensional Perovskites. Nanomaterials 2023, 13 (6) , 1119. https://doi.org/10.3390/nano13061119
    82. Jinho Lee. Perovskite and organic bulk heterojunction integrated solar cells: a mini review. Journal of the Korean Physical Society 2023, 82 (3) , 229-235. https://doi.org/10.1007/s40042-023-00733-w
    83. Jian He, Qingrui Wang, Yumeng Xu, Xing Guo, Long Zhou, Jie Su, Zhenhua Lin, Jincheng Zhang, Yue Hao, Jingjing Chang. Synergistic Effect of Surface p‐Doping and Passivation Improves the Efficiency, Stability, and Reduces Lead Leakage in All‐Inorganic CsPbIBr 2 ‐Based Perovskite Solar Cells. Small 2023, 19 (6) https://doi.org/10.1002/smll.202205962
    84. Shunran Li, Zhenghong Dai, Conrad A. Kocoj, Eric I. Altman, Nitin P. Padture, Peijun Guo. Photothermally induced, reversible phase transition in methylammonium lead triiodide. Matter 2023, 6 (2) , 460-474. https://doi.org/10.1016/j.matt.2022.11.004
    85. E. Wondu, Z.C. Lule, J. Kim. Fabrication of thermoplastic polyurethane composites with a high dielectric constant and thermal conductivity using a hybrid filler of CNT@BaTiO3. Materials Today Chemistry 2023, 27 , 101287. https://doi.org/10.1016/j.mtchem.2022.101287
    86. Eyob Wondu, Zelalem Chernet Lule, Jooheon Kim. Improvement of dielectric constant and mechanical properties of thermoplastic polyurethanes using surface modified strontium titanate. Polymer Composites 2023, 44 (1) , 168-177. https://doi.org/10.1002/pc.27036
    87. Anna Yu. Samsonova, Vsevolod I. Yudin, Anna V. Shurukhina, Yury V. Kapitonov. Excitonic Enhancement and Excited Excitonic States in CsPbBr3 Halide Perovskite Single Crystals. Materials 2023, 16 (1) , 185. https://doi.org/10.3390/ma16010185
    88. Vincent Obiozo Eze, Lucas Braga Carani, Haimanti Majumder, M. Jasim Uddin, Okenwa I. Okoli. Inorganic cesium lead mixed halide based perovskite solar materials modified with functional silver iodide. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-11729-0
    89. J Lakshmi Prasanna, Ekta Goel, Amarjit Kumar, Atul Kumar. Reduced interfacial recombination in perovskite solar cells by structural engineering simulation. Journal of Optics 2022, 24 (11) , 115901. https://doi.org/10.1088/2040-8986/ac95a8
    90. Weijie Zhang, Zhaozhang Deng, Jiyong Deng, Chak-Tong Au, Yunfeng Liao, Hai Yang, Qingquan Liu. Regulating the exciton binding energy of covalent triazine frameworks for enhancing photocatalysis. Journal of Materials Chemistry A 2022, 10 (42) , 22419-22427. https://doi.org/10.1039/D2TA06479K
    91. Xiaohong Zhang, Ling Xu, Yuan Li, Sanam SaeidNahaei. Considering the effectiveness of a unique combined annealing-based postprocessing method on the optoelectronic properties of MAPbBr3-based light emitting diodes. Solid State Communications 2022, 356 , 114965. https://doi.org/10.1016/j.ssc.2022.114965
    92. Cheng Wang, Weibin Chu, Feihong Ye, Zhenwei Ou, Zhe Li, Quanbing Guo, Zhuo Zheng, Zhiping Wang, Xiaoze Liu, Guojia Fang, Oleg Prezhdo, Ti Wang, Hongxing Xu. Polar methylammonium organic cations detune state coupling and extend hot-carrier lifetime in lead halide perovskites. Chem 2022, 8 (11) , 3051-3063. https://doi.org/10.1016/j.chempr.2022.07.005
    93. G. Garcia-Arellano, K. Boujdaria, M. Chamarro, C. Testelin. Landé g factors in tetragonal halide perovskite: A multiband k . p model. Physical Review B 2022, 106 (16) https://doi.org/10.1103/PhysRevB.106.165201
    94. Yi Yuan, Pankaj Kumar, Jenner H. L. Ngai, Xiguang Gao, Xu Li, Haitao Liu, Jinliang Wang, Yuning Li. Wide Bandgap Polymer Donor with Acrylate Side Chains for Non‐Fullerene Acceptor‐Based Organic Solar Cells. Macromolecular Rapid Communications 2022, 43 (20) , 2200325. https://doi.org/10.1002/marc.202200325
    95. Mateusz Dyksik. Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy. International Journal of Molecular Sciences 2022, 23 (20) , 12531. https://doi.org/10.3390/ijms232012531
    96. Rishikanta Mayengbam, Julaiba Tahsina Mazumder. Revealing the ground‐state geometry, optoelectronic, mechanical and thermodynamic behaviors, and efficiency of formamidinium mixed halide perovskites for solar cell applications. International Journal of Energy Research 2022, 5 https://doi.org/10.1002/er.8422
    97. Eyob Wondu, Zelalem Chernet Lule, Jooheon Kim. Fabrication of high dielectric properties and higher thermal conductivity thermoplastic polyurethane composites with CNT-covered SrTiO3. Polymer Testing 2022, 110 , 107576. https://doi.org/10.1016/j.polymertesting.2022.107576
    98. R. S. Nazarov, I. A. Solovev, A. O. Murzin, N. I. Selivanov, J. Even, A. V. Emeline, Yu. V. Kapitonov. Photon echo from free excitons in a CH 3 NH 3 PbI 3 halide perovskite single crystal. Physical Review B 2022, 105 (24) https://doi.org/10.1103/PhysRevB.105.245202
    99. Guadalupe Garcia-Arellano, Gaëlle Trippé-Allard, Thomas Campos, Frédérick Bernardot, Laurent Legrand, Damien Garrot, Emmanuelle Deleporte, Christophe Testelin, Maria Chamarro. Unexpected Anisotropy of the Electron and Hole Landé g-Factors in Perovskite CH3NH3PbI3 Polycrystalline Films. Nanomaterials 2022, 12 (9) , 1399. https://doi.org/10.3390/nano12091399
    100. Shamik Datta, Md Maruf Hossain, Samiha Nuzhat, Ananya Debnath, Hasina Huq. Performance study of an optimized lead-free Cs 3 Sb 2 I 9 -based perovskite solar cell using SCAPS-1D. 2022, 80-85. https://doi.org/10.1109/GreenTech52845.2022.9772038
    Load all citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2017, 8, 8, 1851–1855
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.7b00524
    Published April 10, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    5437

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.