ACS Publications. Most Trusted. Most Cited. Most Read
Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry
My Activity
    Article

    Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry
    Click to copy article linkArticle link copied!

    View Author Information
    Molecular Biomarkers Core, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
    Nutrition and Metabolic Health Group, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
    § Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
    NUTRIM, School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Centre, 6200 MD Maastricht, Netherlands
    *Complete address: Molecular Biomarkers Core, Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Bâtiment H, 1015 Lausanne, Switzerland. E-mail: [email protected]. Phone: +41 21 632 6114. Fax: +41 21 632 6499.
    Other Access OptionsSupporting Information (1)

    Journal of Proteome Research

    Cite this: J. Proteome Res. 2016, 15, 2, 389–399
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jproteome.5b00901
    Published December 1, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The overall impact of proteomics on clinical research and its translation has lagged behind expectations. One recognized caveat is the limited size (subject numbers) of (pre)clinical studies performed at the discovery stage, the findings of which fail to be replicated in larger verification/validation trials. Compromised study designs and insufficient statistical power are consequences of the to-date still limited capacity of mass spectrometry (MS)-based workflows to handle large numbers of samples in a realistic time frame, while delivering comprehensive proteome coverages. We developed a highly automated proteomic biomarker discovery workflow. Herein, we have applied this approach to analyze 1000 plasma samples from the multicentered human dietary intervention study “DiOGenes”. Study design, sample randomization, tracking, and logistics were the foundations of our large-scale study. We checked the quality of the MS data and provided descriptive statistics. The data set was interrogated for proteins with most stable expression levels in that set of plasma samples. We evaluated standard clinical variables that typically impact forthcoming results and assessed body mass index-associated and gender-specific proteins at two time points. We demonstrate that analyzing a large number of human plasma samples for biomarker discovery with MS using isobaric tagging is feasible, providing robust and consistent biological results.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jproteome.5b00901.

    • Figure S1. Representation of the number of missing values observed in the data set. Figure S2. Correlation of protein quantitative data between both measurement replicates performed on two identical RP-LC MS/MS systems. Figure S3. Boxplots illustrating empirical distributions of different individual proteins. Figures S4–5. Center differences prior to the weight maintenance period: PC score plot. Age and height at screening, weight, BMI, waist-hip ratio at CD1, total of weight loss after the low-caloric diet, triglycerides, total cholesterol, HDL at CD1, Matsuda index, insulogenic index, HOMA-IR and HOMA-IS at CD1 were used as parameters. Figures S6–8. Center differences prior to the weight maintenance period: boxplots of fitted values by center. Figure S9. Center differences based on BMI at CD1. Figure S10. PC score plots for CD3/CD1 measurements across subjects and evaluation of age and gender influence. Figure S11. Boxplots of proteins differentiating genders at CD1. Figure S12. Boxplots of proteins differentiating genders at CD3. Table S1. Ranksum test assessing association between the center’s label and a given continuous value. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 81 publications.

    1. Philipp E. Geyer, Daniel Hornburg, Maria Pernemalm, Stefanie M. Hauck, Krishnan K. Palaniappan, Vincent Albrecht, Laura F. Dagley, Robert L. Moritz, Xiaobo Yu, Fredrik Edfors, Yves Vandenbrouck, Johannes B. Mueller-Reif, Zhi Sun, Virginie Brun, Sara Ahadi, Gilbert S. Omenn, Eric W. Deutsch, Jochen M. Schwenk. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. Journal of Proteome Research 2024, 23 (12) , 5279-5295. https://doi.org/10.1021/acs.jproteome.4c00586
    2. Furkan M. Torun, Sebastian Virreira Winter, Sophia Doll, Felix M. Riese, Artem Vorobyev, Johannes B. Mueller-Reif, Philipp E. Geyer, Maximilian T. Strauss. Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data. Journal of Proteome Research 2023, 22 (2) , 359-367. https://doi.org/10.1021/acs.jproteome.2c00473
    3. Marco Tognetti, Kamil Sklodowski, Sebastian Müller, Dominique Kamber, Jan Muntel, Roland Bruderer, Lukas Reiter. Biomarker Candidates for Tumors Identified from Deep-Profiled Plasma Stem Predominantly from the Low Abundant Area. Journal of Proteome Research 2022, 21 (7) , 1718-1735. https://doi.org/10.1021/acs.jproteome.2c00122
    4. Runsheng Zheng, Natalia Govorukhina, Tabiwang N. Arrey, Christopher Pynn, Ate van der Zee, György Marko-Varga, Rainer Bischoff, Alexander Boychenko. Online-2D NanoLC-MS for Crude Serum Proteome Profiling: Assessing Sample Preparation Impact on Proteome Composition. Analytical Chemistry 2021, 93 (28) , 9663-9668. https://doi.org/10.1021/acs.analchem.1c01291
    5. Loïc Dayon, Charlotte Macron, Sabine Lahrichi, Antonio Núñez Galindo, Michael Affolter. Proteomics of Human Milk: Definition of a Discovery Workflow for Clinical Research Studies. Journal of Proteome Research 2021, 20 (5) , 2283-2290. https://doi.org/10.1021/acs.jproteome.0c00816
    6. Tong Zhang, Matthew J. Gaffrey, Matthew E. Monroe, Dennis G. Thomas, Karl K. Weitz, Paul D. Piehowski, Vladislav A. Petyuk, Ronald J. Moore, Brian D. Thrall, Wei-Jun Qian. Block Design with Common Reference Samples Enables Robust Large-Scale Label-Free Quantitative Proteome Profiling. Journal of Proteome Research 2020, 19 (7) , 2863-2872. https://doi.org/10.1021/acs.jproteome.0c00310
    7. Vera Ignjatovic, Philipp E. Geyer, Krishnan K. Palaniappan, Jessica E. Chaaban, Gilbert S. Omenn, Mark S. Baker, Eric W. Deutsch, Jochen M. Schwenk. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. Journal of Proteome Research 2019, 18 (12) , 4085-4097. https://doi.org/10.1021/acs.jproteome.9b00503
    8. Yan Chen, Joel M. Guenther, Jennifer W. Gin, Leanne Jade G. Chan, Zak Costello, Tadeusz L. Ogorzalek, Huu M. Tran, Jacquelyn M. Blake-Hedges, Jay D. Keasling, Paul D. Adams, Héctor García Martín, Nathan J. Hillson, Christopher J. Petzold. Automated “Cells-To-Peptides” Sample Preparation Workflow for High-Throughput, Quantitative Proteomic Assays of Microbes. Journal of Proteome Research 2019, 18 (10) , 3752-3761. https://doi.org/10.1021/acs.jproteome.9b00455
    9. Jihyeon Lee, Hyunsoo Kim, Areum Sohn, Injoon Yeo, Youngsoo Kim. Cost-Effective Automated Preparation of Serum Samples for Reproducible Quantitative Clinical Proteomics. Journal of Proteome Research 2019, 18 (5) , 2337-2345. https://doi.org/10.1021/acs.jproteome.9b00023
    10. Dylan J. Harney, Amy T. Hutchison, Luke Hatchwell, Sean J. Humphrey, David E. James, Samantha Hocking, Leonie K. Heilbronn, Mark Larance. Proteomic Analysis of Human Plasma during Intermittent Fasting. Journal of Proteome Research 2019, 18 (5) , 2228-2240. https://doi.org/10.1021/acs.jproteome.9b00090
    11. Loïc Dayon, Ornella Cominetti, Jérôme Wojcik, Antonio Núñez Galindo, Aikaterini Oikonomidi, Hugues Henry, Eugenia Migliavacca, Martin Kussmann, Gene L. Bowman, Julius Popp. Proteomes of Paired Human Cerebrospinal Fluid and Plasma: Relation to Blood–Brain Barrier Permeability in Older Adults. Journal of Proteome Research 2019, 18 (3) , 1162-1174. https://doi.org/10.1021/acs.jproteome.8b00809
    12. John Corthésy, Konstantinos Theofilatos, Seferina Mavroudi, Charlotte Macron, Ornella Cominetti, Mona Remlawi, Francesco Ferraro, Antonio Núñez Galindo, Martin Kussmann, Spiridon Likothanassis, Loïc Dayon. An Adaptive Pipeline To Maximize Isobaric Tagging Data in Large-Scale MS-Based Proteomics. Journal of Proteome Research 2018, 17 (6) , 2165-2173. https://doi.org/10.1021/acs.jproteome.8b00110
    13. Jiayi Lan, Antonio Núñez Galindo, James Doecke, Christopher Fowler, Ralph N. Martins, Stephanie R. Rainey-Smith, Ornella Cominetti, Loïc Dayon. Systematic Evaluation of the Use of Human Plasma and Serum for Mass-Spectrometry-Based Shotgun Proteomics. Journal of Proteome Research 2018, 17 (4) , 1426-1435. https://doi.org/10.1021/acs.jproteome.7b00788
    14. Aoife M. Curran, Colleen Fogarty Draper, Marie-Pier Scott-Boyer, Armand Valsesia, Helen M. Roche, Miriam F. Ryan, Michael J. Gibney, Martina Kutmon, Chris T. Evelo, Susan L. Coort, Arne Astrup, Wim H. Saris, Lorraine Brennan, and Jim Kaput . Sexual Dimorphism, Age, and Fat Mass Are Key Phenotypic Drivers of Proteomic Signatures. Journal of Proteome Research 2017, 16 (11) , 4122-4133. https://doi.org/10.1021/acs.jproteome.7b00501
    15. Tobias Konz, Eugenia Migliavacca, Loïc Dayon, Gene Bowman, Aikaterini Oikonomidi, Julius Popp, and Serge Rezzi . ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome. Journal of Proteome Research 2017, 16 (5) , 2080-2090. https://doi.org/10.1021/acs.jproteome.7b00055
    16. Kuen‐Tyng Lin, Gul Muneer, Pei‐Rong Huang, Ciao‐Syuan Chen, Yu‐Ju Chen. Mass Spectrometry‐Based Proteomics for Next‐Generation Precision Oncology. Mass Spectrometry Reviews 2025, 69 https://doi.org/10.1002/mas.21932
    17. Ornella Cominetti, Loïc Dayon. Unravelling disease complexity: integrative analysis of multi-omic data in clinical research. Expert Review of Proteomics 2025, 22 (4) , 149-162. https://doi.org/10.1080/14789450.2025.2491357
    18. Virendra S. Gomase, Suchita P. Dhamane, Pavan G. Kakade. Immunoproteomics: A Review of Techniques, Applications, and Advancements. Protein & Peptide Letters 2024, 31 (11) , 827-849. https://doi.org/10.2174/0109298665333029240926092919
    19. Estefanía Núñez, María Gómez-Serrano, Enrique Calvo, Elena Bonzon-Kulichenko, Marco Trevisan-Herraz, José Manuel Rodríguez, Fernando García-Marqués, Ricardo Magni, Enrique Lara-Pezzi, José Luis Martín-Ventura, Emilio Camafeita, Jesús Vázquez. A Multiplexed Quantitative Proteomics Approach to the Human Plasma Protein Signature. Biomedicines 2024, 12 (9) , 2118. https://doi.org/10.3390/biomedicines12092118
    20. Yan Wang, Huiting Sun, Nan Sheng, Kai He, Wenjv Hou, Ziqi Zhao, Qixing Yang, Lan Huang. ESMSec: Prediction of Secreted Proteins in Human Body Fluids Using Protein Language Models and Attention. International Journal of Molecular Sciences 2024, 25 (12) , 6371. https://doi.org/10.3390/ijms25126371
    21. Katelyn A. Perez, Daniel W. Deppe, Aidan Filas, Sasha A. Singh, Elena Aikawa. Multimodal Analytical Tools to Enhance Mechanistic Understanding of Aortic Valve Calcification. The American Journal of Pathology 2024, 194 (4) , 539-550. https://doi.org/10.1016/j.ajpath.2023.06.017
    22. Jeevandran Sundarasekar, Geethaa Sahgal. Role of Genomics and Proteomics in Drug Discovery. 2024, 207-246. https://doi.org/10.1007/978-981-97-1148-2_11
    23. Jim Kaput, Jacqueline Pontes Monteiro, Melissa J. Morine, Martin Kussmann. Personalized nutrition. 2024, 540-561. https://doi.org/10.1016/B978-0-12-824010-6.00003-4
    24. Martin Kussmann. Mass spectrometry as a lens into molecular human nutrition and health. European Journal of Mass Spectrometry 2023, 29 (5-6) , 370-379. https://doi.org/10.1177/14690667231193555
    25. Beatrice Zoanni, Maura Brioschi, Alice Mallia, Erica Gianazza, Sonia Eligini, Marina Carini, Giancarlo Aldini, Cristina Banfi. Novel insights about albumin in cardiovascular diseases: Focus on heart failure. Mass Spectrometry Reviews 2023, 42 (4) , 1113-1128. https://doi.org/10.1002/mas.21743
    26. Jacqueline Pontes Monteiro, Melissa J. Morine, Fabio V. Ued, Jim Kaput. Identifying and Analyzing Topic Clusters in a Nutri-, Food-, and Diet-Proteomic Corpus Using Machine Reading. Nutrients 2023, 15 (2) , 270. https://doi.org/10.3390/nu15020270
    27. Christina D. King, Kathryn L. Kapp, Albert B. Arul, Min Ji Choi, Renã A.S. Robinson. Advancements in automation for plasma proteomics sample preparation. Molecular Omics 2022, 18 (9) , 828-839. https://doi.org/10.1039/D2MO00122E
    28. Ornella Cominetti, Antonio Núñez Galindo, John Corthésy, Jérôme Carayol, Natacha Germain, Bogdan Galusca, Bruno Estour, Jörg Hager, Nele Gheldof, Loïc Dayon. Proteomics reveals unique plasma signatures in constitutional thinness. PROTEOMICS – Clinical Applications 2022, 16 (5) https://doi.org/10.1002/prca.202100114
    29. Etienne Dubois, Antonio Núñez Galindo, Loïc Dayon, Ornella Cominetti. Assessing normalization methods in mass spectrometry-based proteome profiling of clinical samples. Biosystems 2022, 215-216 , 104661. https://doi.org/10.1016/j.biosystems.2022.104661
    30. Claudia Gaither, Robert Popp, René P. Zahedi, Christoph H. Borchers. Multiple Reaction Monitoring-Mass Spectrometry Enables Robust Quantitation of Plasma Proteins Regardless of Whole Blood Processing Delays That May Occur in the Clinic. Molecular & Cellular Proteomics 2022, 21 (5) , 100212. https://doi.org/10.1016/j.mcpro.2022.100212
    31. Erdenetsetseg Nokhoijav, Andrea Guba, Ajneesh Kumar, Balázs Kunkli, Gergő Kalló, Miklós Káplár, Sándor Somodi, Ildikó Garai, Adrienne Csutak, Noémi Tóth, Miklós Emri, József Tőzsér, Éva Csősz. Metabolomic Analysis of Serum and Tear Samples from Patients with Obesity and Type 2 Diabetes Mellitus. International Journal of Molecular Sciences 2022, 23 (9) , 4534. https://doi.org/10.3390/ijms23094534
    32. Loïc Dayon, Ornella Cominetti, Michael Affolter. Proteomics of human biological fluids for biomarker discoveries: technical advances and recent applications. Expert Review of Proteomics 2022, 19 (2) , 131-151. https://doi.org/10.1080/14789450.2022.2070477
    33. Dillon J. Chung, Grey P. Madison, Angel M. Aponte, Komudi Singh, Yuesheng Li, Mehdi Pirooznia, Christopher K. E. Bleck, Nissar A. Darmani, Robert S. Balaban. Metabolic design in a mammalian model of extreme metabolism, the North American least shrew ( Cryptotis parva ). The Journal of Physiology 2022, 600 (3) , 547-567. https://doi.org/10.1113/JP282153
    34. Reilly Fankhauser, Nicholas DePatie, Rachel Berryman, Olivia M. Lucero, Rajan P. Kulkarni. Proteomic biomarker technology for cancer immunotherapy. 2022, 357-397. https://doi.org/10.1016/B978-0-323-90949-5.00007-3
    35. Xiulan Chen, Yaping Sun, Tingting Zhang, Lian Shu, Peter Roepstorff, Fuquan Yang. Quantitative Proteomics Using Isobaric Labeling: A Practical Guide. Genomics, Proteomics & Bioinformatics 2021, 19 (5) , 689-706. https://doi.org/10.1016/j.gpb.2021.08.012
    36. Fayth L. Miles, Sandi L. Navarro, Carly B. Garrison, Timothy W. Randolph, Yuzheng Zhang, Ali Shojaie, Mario Kratz, Meredith A.J. Hullar, Daniel Raftery, Marian L. Neuhouser, Paul D. Lampe, Johanna W. Lampe. Urinary enterolactone is associated with plasma proteins related to immunity and cancer development in healthy participants on controlled diets. Human Nutrition & Metabolism 2021, 25 , 200128. https://doi.org/10.1016/j.hnm.2021.200128
    37. Debby Ngo, Mark D. Benson, Jonathan Z. Long, Zsu-Zsu Chen, Ruiqi Wang, Anjali K. Nath, Michelle J. Keyes, Dongxiao Shen, Sumita Sinha, Eric Kuhn, Jordan E. Morningstar, Xu Shi, Bennet D. Peterson, Christopher Chan, Daniel H. Katz, Usman A. Tahir, Laurie A. Farrell, Olle Melander, Jonathan D. Mosley, Steven A. Carr, Ramachandran S. Vasan, Martin G. Larson, J. Gustav Smith, Thomas J. Wang, Qiong Yang, Robert E. Gerszten. Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk. JCI Insight 2021, 6 (5) https://doi.org/10.1172/jci.insight.144392
    38. Rainer Cramer. High-speed Analysis of Large Sample Sets – How Can This Key Aspect of the Omics Be Achieved?. Molecular & Cellular Proteomics 2020, 19 (11) , 1760-1766. https://doi.org/10.1074/mcp.P120.001997
    39. Etienne Dubois, Antonio Nunez Galindo, Loic Dayon, Ornella Cominetti. Comparison of normalization methods in clinical research applications of mass spectrometry-based proteomics. 2020, 1-10. https://doi.org/10.1109/CIBCB48159.2020.9277702
    40. Michal Alexovič, Pawel L. Urban, Hadi Tabani, Ján Sabo. Recent advances in robotic protein sample preparation for clinical analysis and other biomedical applications. Clinica Chimica Acta 2020, 507 , 104-116. https://doi.org/10.1016/j.cca.2020.04.015
    41. Hélène Ruffieux, Jérôme Carayol, Radu Popescu, Mary-Ellen Harper, Robert Dent, Wim H. M. Saris, Arne Astrup, Jörg Hager, Anthony C. Davison, Armand Valsesia, . A fully joint Bayesian quantitative trait locus mapping of human protein abundance in plasma. PLOS Computational Biology 2020, 16 (6) , e1007882. https://doi.org/10.1371/journal.pcbi.1007882
    42. Tomasz Kowalczyk, Michal Ciborowski, Joanna Kisluk, Adam Kretowski, Coral Barbas. Mass spectrometry based proteomics and metabolomics in personalized oncology. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020, 1866 (5) , 165690. https://doi.org/10.1016/j.bbadis.2020.165690
    43. Wei Loong Sherman Yee, Chester Lee Drum. Increasing Complexity to Simplify Clinical Care: High Resolution Mass Spectrometry as an Enabler of AI Guided Clinical and Therapeutic Monitoring. Advanced Therapeutics 2020, 3 (4) https://doi.org/10.1002/adtp.201900163
    44. Loïc Dayon, Michael Affolter. Progress and pitfalls of using isobaric mass tags for proteome profiling. Expert Review of Proteomics 2020, 17 (2) , 149-161. https://doi.org/10.1080/14789450.2020.1731309
    45. Chen Xuan Wei, Yanbao Yu, Gajender Aleti, Manny Torralba, Anna Edlund, Karen E. Nelson, Marcelo Freire. Salivary Bioscience and Periodontal Medicine. 2020, 419-447. https://doi.org/10.1007/978-3-030-35784-9_18
    46. Maxim Tsypin, Senait Asmellash, Krista Meyer, Brandon Touchet, Heinrich Roder, . Extending the information content of the MALDI analysis of biological fluids via multi-million shot analysis. PLOS ONE 2019, 14 (12) , e0226012. https://doi.org/10.1371/journal.pone.0226012
    47. Navid Sahebekhtiari, Mayank Saraswat, Sakari Joenväärä, Riikka Jokinen, Alen Lovric, Sanna Kaye, Adil Mardinoglu, Aila Rissanen, Jaakko Kaprio, Risto Renkonen, Kirsi H. Pietiläinen. Plasma Proteomics Analysis Reveals Dysregulation of Complement Proteins and Inflammation in Acquired Obesity—A Study on Rare BMI‐Discordant Monozygotic Twin Pairs. PROTEOMICS – Clinical Applications 2019, 13 (4) https://doi.org/10.1002/prca.201800173
    48. Roland Bruderer, Jan Muntel, Sebastian Müller, Oliver M. Bernhardt, Tejas Gandhi, Ornella Cominetti, Charlotte Macron, Jérôme Carayol, Oliver Rinner, Arne Astrup, Wim H.M. Saris, Jörg Hager, Armand Valsesia, Loïc Dayon, Lukas Reiter. Analysis of 1508 Plasma Samples by Capillary-Flow Data-Independent Acquisition Profiles Proteomics of Weight Loss and Maintenance. Molecular & Cellular Proteomics 2019, 18 (6) , 1242-1254. https://doi.org/10.1074/mcp.RA118.001288
    49. Catalina Picó, Francisca Serra, Ana María Rodríguez, Jaap Keijer, Andreu Palou. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019, 11 (5) , 1092. https://doi.org/10.3390/nu11051092
    50. Maria Pernemalm, AnnSofi Sandberg, Yafeng Zhu, Jorrit Boekel, Davide Tamburro, Jochen M Schwenk, Albin Björk, Marie Wahren-Herlenius, Hanna Åmark, Claes-Göran Östenson, Magnus Westgren, Janne Lehtiö. In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta. eLife 2019, 8 https://doi.org/10.7554/eLife.41608
    51. Marta Spodzieja, Sylwia Rodziewicz-Motowidło, Aneta Szymanska. Hyphenated Mass Spectrometry Techniques in the Diagnosis of Amyloidosis. Current Medicinal Chemistry 2019, 26 (1) , 104-120. https://doi.org/10.2174/0929867324666171003113019
    52. Antonio Núñez Galindo, Charlotte Macron, Ornella Cominetti, Loïc Dayon. Analyzing Cerebrospinal Fluid Proteomes to Characterize Central Nervous System Disorders: A Highly Automated Mass Spectrometry-Based Pipeline for Biomarker Discovery. 2019, 89-112. https://doi.org/10.1007/978-1-4939-9164-8_6
    53. Charlotte Macron, Antonio Núñez Galindo, Ornella Cominetti, Loïc Dayon. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput. 2019, 129-154. https://doi.org/10.1007/978-1-4939-9706-0_9
    54. Lingyan Ping, Duc M. Duong, Luming Yin, Marla Gearing, James J. Lah, Allan I. Levey, Nicholas T. Seyfried. Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson’s Disease. Scientific Data 2018, 5 (1) https://doi.org/10.1038/sdata.2018.36
    55. Ornella Cominetti, Antonio Núñez Galindo, John Corthésy, Armand Valsesia, Irina Irincheeva, Martin Kussmann, Wim H. M. Saris, Arne Astrup, Ruth McPherson, Mary-Ellen Harper, Robert Dent, Jörg Hager, Loïc Dayon. Obesity shows preserved plasma proteome in large independent clinical cohorts. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-35321-7
    56. Jaimie Dufresne, Pete Bowden, Thanusi Thavarajah, Angelique Florentinus-Mefailoski, Zhuo Zhen Chen, Monika Tucholska, Tenzin Norzin, Margaret Truc Ho, Morla Phan, Nargiz Mohamed, Amir Ravandi, Eric Stanton, Arthur S. Slutsky, Claudia C. dos Santos, Alexander Romaschin, John C. Marshall, Christina Addison, Shawn Malone, Daren Heyland, Philip Scheltens, Joep Killestein, Charlotte Teunissen, Eleftherios P. Diamandis, K. W. M. Siu, John G. Marshall. The plasma peptidome. Clinical Proteomics 2018, 15 (1) https://doi.org/10.1186/s12014-018-9211-3
    57. Loïc Dayon, Antonio Núñez Galindo, Jérôme Wojcik, Ornella Cominetti, John Corthésy, Aikaterini Oikonomidi, Hugues Henry, Martin Kussmann, Eugenia Migliavacca, India Severin, Gene L. Bowman, Julius Popp. Alzheimer disease pathology and the cerebrospinal fluid proteome. Alzheimer's Research & Therapy 2018, 10 (1) https://doi.org/10.1186/s13195-018-0397-4
    58. Robert Moulder, Santosh D. Bhosale, David R. Goodlett, Riitta Lahesmaa. Analysis of the plasma proteome using iTRAQ and TMT‐based Isobaric labeling. Mass Spectrometry Reviews 2018, 37 (5) , 583-606. https://doi.org/10.1002/mas.21550
    59. Peng Zhang, Shisheng Zhu, Minzhu Zhao, Peng Zhao, Haiyi Zhao, Jianqiang Deng, Jianbo Li. Identification of plasma biomarkers for diffuse axonal injury in rats by iTRAQ-coupled LC–MS/MS and bioinformatics analysis. Brain Research Bulletin 2018, 142 , 224-232. https://doi.org/10.1016/j.brainresbull.2018.07.015
    60. S.B. Jensen, K. Hindberg, T. Solomon, E.N. Smith, J.D. Lapek, D.J. Gonzalez, N. Latysheva, K.A. Frazer, S.K. Brækkan, J.‐B. Hansen. Discovery of novel plasma biomarkers for future incident venous thromboembolism by untargeted synchronous precursor selection mass spectrometry proteomics. Journal of Thrombosis and Haemostasis 2018, 16 (9) , 1763-1774. https://doi.org/10.1111/jth.14220
    61. Afshan Masood, Hicham Benabdelkamel, Assim A. Alfadda. Obesity Proteomics: An Update on the Strategies and Tools Employed in the Study of Human Obesity. High-Throughput 2018, 7 (3) , 27. https://doi.org/10.3390/ht7030027
    62. Bjoern Titz, Raffaella M. Gadaleta, Giuseppe Lo Sasso, Ashraf Elamin, Kim Ekroos, Nikolai V. Ivanov, Manuel C. Peitsch, Julia Hoeng. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. International Journal of Molecular Sciences 2018, 19 (9) , 2775. https://doi.org/10.3390/ijms19092775
    63. Elisabetta Gianazza, Ingrid Miller, Uliano Guerrini, Luca Palazzolo, Chiara Parravicini, Ivano Eberini. Gender proteomics I. Which proteins in non-sexual organs. Journal of Proteomics 2018, 178 , 7-17. https://doi.org/10.1016/j.jprot.2017.10.002
    64. Ignacio Ortea, Isabel Ruiz-Sánchez, Ramón Cañete, Javier Caballero-Villarraso, María Dolores Cañete. Identification of candidate serum biomarkers of childhood-onset growth hormone deficiency using SWATH-MS and feature selection. Journal of Proteomics 2018, 175 , 105-113. https://doi.org/10.1016/j.jprot.2018.01.003
    65. Nan Deng, Yuanbo Chen, Bo Jiang, Qi Wu, Yuan Zhou, Xiaodan Zhang, Zhen Liang, Lihua Zhang, Yukui Zhang. A robust and effective intact protein fractionation strategy by GO/PEI/Au/PEG nanocomposites for human plasma proteome analysis. Talanta 2018, 178 , 49-56. https://doi.org/10.1016/j.talanta.2017.08.079
    66. Robert Moulder, Domitille Schvartz, David R. Goodlett, Loïc Dayon. Proteomics of Diabetes, Obesity, and Related Disorders. PROTEOMICS – Clinical Applications 2018, 12 (1) https://doi.org/10.1002/prca.201600134
    67. Sergio Oller Moreno, Ornella Cominetti, Antonio Núñez Galindo, Irina Irincheeva, John Corthésy, Arne Astrup, Wim H.M. Saris, Jörg Hager, Martin Kussmann, Loïc Dayon. The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention. PROTEOMICS – Clinical Applications 2018, 12 (1) https://doi.org/10.1002/prca.201600150
    68. Loïc Dayon, Jérôme Wojcik, Antonio Núñez Galindo, John Corthésy, Ornella Cominetti, Aikaterini Oikonomidi, Hugues Henry, Eugenia Migliavacca, Gene L. Bowman, Julius Popp, . Plasma Proteomic Profiles of Cerebrospinal Fluid-Defined Alzheimer’s Disease Pathology in Older Adults. Journal of Alzheimer's Disease 2017, 60 (4) , 1641-1652. https://doi.org/10.3233/JAD-170426
    69. Nolan J. Hoffman. Omics and Exercise: Global Approaches for Mapping Exercise Biological Networks. Cold Spring Harbor Perspectives in Medicine 2017, 7 (10) , a029884. https://doi.org/10.1101/cshperspect.a029884
    70. Philipp E Geyer, Lesca M Holdt, Daniel Teupser, Matthias Mann. Revisiting biomarker discovery by plasma proteomics. Molecular Systems Biology 2017, 13 (9) https://doi.org/10.15252/msb.20156297
    71. Dobrin Nedelkov. Human proteoforms as new targets for clinical mass spectrometry protein tests. Expert Review of Proteomics 2017, 14 (8) , 691-699. https://doi.org/10.1080/14789450.2017.1362337
    72. Yanbao Yu, Shiferaw Bekele, Rembert Pieper. Quick 96FASP for high throughput quantitative proteome analysis. Journal of Proteomics 2017, 166 , 1-7. https://doi.org/10.1016/j.jprot.2017.06.019
    73. Hasmik Keshishian, Michael W Burgess, Harrison Specht, Luke Wallace, Karl R Clauser, Michael A Gillette, Steven A Carr. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry. Nature Protocols 2017, 12 (8) , 1683-1701. https://doi.org/10.1038/nprot.2017.054
    74. Viviana Greco, Cristian Piras, Luisa Pieroni, Andrea Urbani. Direct Assessment of Plasma/Serum Sample Quality for Proteomics Biomarker Investigation. 2017, 3-21. https://doi.org/10.1007/978-1-4939-7057-5_1
    75. Antonius Koller, Purvi Patel, Jenny Kim Kim, Emily I. Chen. Proteomics Analysis of Circulating Serum Exosomes. 2017, 213-225. https://doi.org/10.1007/978-1-4939-7057-5_17
    76. Loïc Dayon, Antonio Núñez Galindo, Ornella Cominetti, John Corthésy, Martin Kussmann. A Highly Automated Shotgun Proteomic Workflow: Clinical Scale and Robustness for Biomarker Discovery in Blood. 2017, 433-449. https://doi.org/10.1007/978-1-4939-7057-5_30
    77. Chih-Wei Liu, Lisa Bramer, Bobbie-Jo Webb-Robertson, Kathleen Waugh, Marian J. Rewers, Qibin Zhang. Temporal profiles of plasma proteome during childhood development. Journal of Proteomics 2017, 152 , 321-328. https://doi.org/10.1016/j.jprot.2016.11.016
    78. Maggie P.Y. Lam, Peipei Ping, Elizabeth Murphy. Proteomics Research in Cardiovascular Medicine and Biomarker Discovery. Journal of the American College of Cardiology 2016, 68 (25) , 2819-2830. https://doi.org/10.1016/j.jacc.2016.10.031
    79. Philipp E Geyer, Nicolai J Wewer Albrechtsen, Stefka Tyanova, Niklas Grassl, Eva W Iepsen, Julie Lundgren, Sten Madsbad, Jens J Holst, Signe S Torekov, Matthias Mann. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Molecular Systems Biology 2016, 12 (12) https://doi.org/10.15252/msb.20167357
    80. M. Ariel Geer Wallace, Tzipporah M. Kormos, Joachim D. Pleil. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. Journal of Toxicology and Environmental Health, Part B 2016, 19 (8) , 380-409. https://doi.org/10.1080/10937404.2016.1215772
    81. Debby Ngo, Sumita Sinha, Dongxiao Shen, Eric W. Kuhn, Michelle J. Keyes, Xu Shi, Mark D. Benson, John F. O’Sullivan, Hasmik Keshishian, Laurie A. Farrell, Michael A. Fifer, Ramachandran S. Vasan, Marc S. Sabatine, Martin G. Larson, Steven A. Carr, Thomas J. Wang, Robert E. Gerszten. Aptamer-Based Proteomic Profiling Reveals Novel Candidate Biomarkers and Pathways in Cardiovascular Disease. Circulation 2016, 134 (4) , 270-285. https://doi.org/10.1161/CIRCULATIONAHA.116.021803

    Journal of Proteome Research

    Cite this: J. Proteome Res. 2016, 15, 2, 389–399
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jproteome.5b00901
    Published December 1, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    3626

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.