Ab Initio Molecular Dynamics Investigation of Water and Butanone Adsorption on UiO-66 with DefectsClick to copy article linkArticle link copied!
- Brianne BoydBrianne BoydDepartment of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United StatesMore by Brianne Boyd
- Deep Choudhuri*Deep Choudhuri*Email: [email protected]Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United StatesMore by Deep Choudhuri
- N. Scott BobbittN. Scott BobbittMaterial, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United StatesMore by N. Scott Bobbitt
Abstract
Volatile organic compounds (VOCs) are harmful chemicals that are found in minute quantities in the atmosphere and are emitted from a variety of industrial and biological processes. They can be harmful to breathe or serve as biomarkers for disease detection. Therefore, capture and detection of VOCs is important. Here, we have examined if the Zr-based UiO-66 metal–organic framework (MOF) can be used to capture butanone─a well-known VOC. Toward that end, we have performed Born–Oppenheimer ab initio molecular dynamics (AIMD) at 300 and 500 K to probe the energetics and molecular interactions between butanone [CH3C(O)CH2CH3] and open-cage Zr-UiO-66. Such interactions were systematically interrogated using three MOF structures: defective MOF with a missing 1,4-benzene-dicarboxylate linker and two H2O; pristine MOF with two H2O; and pristine dry MOF. These structures were loaded with one and four molecules of butanone to examine the effect of concentration as well. One-molecule loading interacted favorably with the defective structure at 300 K, only. In comparison, interactions with four-molecule loading were energetically favorable for all conditions. Persistent hydrogen bonds between the O atom of butanone, H2O, and μ3–OH hydroxyl attachments at Zr nodes substantially contributed to the intermolecular interactions. At higher loadings, butanone also showed a pronounced tendency to diffuse into the adjoining cages of Zr-UiO-66. The effect of such movement on interaction energies was rationalized using simple statistical mechanics-based models of interacting and noninteracting gases. Broadly, we learn that the presence of prior moisture within the interstitial cages of Zr-UiO-66 significantly impacts the adsorption behavior of butanone.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.