Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to Droplet Interface Bilayer FormationClick to copy article linkArticle link copied!
- Guru A. Venkatesan
- Joonho Lee
- Amir Barati Farimani
- Mohammad Heiranian
- C. Patrick Collier
- Narayana R. Aluru
- Stephen A. Sarles
Abstract
The droplet interface bilayer (DIB)—a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets—has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous droplet–oil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: “lipid-in”, in which phospholipids in the form of liposomes are placed in water, and “lipid-out”, in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods and exhibit different success rates for bilayer formation. In this study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. We also clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid placement and type are characterized.
Cited By
This article is cited by 59 publications.
- Jamie Gudyka, Jasmin Ceja-Vega, Michael Krmic, Riley Porteus, Sunghee Lee. The Role of Lipid Intrinsic Curvature in the Droplet Interface Bilayer. Langmuir 2024, 40
(22)
, 11428-11435. https://doi.org/10.1021/acs.langmuir.4c00270
- Farzin Mashali, Colin M. Basham, Xufeng Xu, Camilla Servidio, Paulo H. Jacob Silva, Francesco Stellacci, Stephen A. Sarles. Simultaneous Electrophysiology and Imaging Reveal Changes in Lipid Membrane Thickness and Tension upon Uptake of Amphiphilic Gold Nanoparticles. Langmuir 2023, 39
(42)
, 15031-15045. https://doi.org/10.1021/acs.langmuir.3c01973
- Chiho Kataoka-Hamai, Kohsaku Kawakami. Hydrocarbon Penetration into Phospholipid Monolayers Formed at Hydrocarbon–Water Interfaces. Langmuir 2022, 38
(12)
, 3720-3728. https://doi.org/10.1021/acs.langmuir.1c03269
- Colin M. Basham, Uvinduni I. Premadasa, Ying-Zhong Ma, Francesco Stellacci, Benjamin Doughty, Stephen A. Sarles. Nanoparticle-Induced Disorder at Complex Liquid–Liquid Interfaces: Effects of Curvature and Compositional Synergy on Functional Surfaces. ACS Nano 2021, 15
(9)
, 14285-14294. https://doi.org/10.1021/acsnano.1c02663
- Jessica G. Bermudez, Alexander Deiters, Matthew C. Good. Patterning Microtubule Network Organization Reshapes Cell-Like Compartments. ACS Synthetic Biology 2021, 10
(6)
, 1338-1350. https://doi.org/10.1021/acssynbio.0c00575
- Simon Bachler, Marion Ort, Stefanie D. Krämer, Petra S. Dittrich. Permeation Studies across Symmetric and Asymmetric Membranes in Microdroplet Arrays. Analytical Chemistry 2021, 93
(12)
, 5137-5144. https://doi.org/10.1021/acs.analchem.0c04939
- Michelle M. Makhoul-Mansour, Eric C. Freeman. Droplet-Based Membranous Soft Materials. Langmuir 2021, 37
(11)
, 3231-3247. https://doi.org/10.1021/acs.langmuir.0c03289
- Chiho Kataoka-Hamai, Kohsaku Kawakami. Determination of the Coverage of Phosphatidylcholine Monolayers Formed at Silicone Oil–Water Interfaces by Vesicle Fusion. The Journal of Physical Chemistry B 2020, 124
(39)
, 8719-8727. https://doi.org/10.1021/acs.jpcb.0c06310
- Azhad U. Chowdhury, Graham J. Taylor, Vera Bocharova, Robert L. Sacci, Yingdong Luo, William T. McClintic, Ying-Zhong Ma, Stephen A. Sarles, Kunlun Hong, C. Patrick Collier, Benjamin Doughty. Insight into the Mechanisms Driving the Self-Assembly of Functional Interfaces: Moving from Lipids to Charged Amphiphilic Oligomers. Journal of the American Chemical Society 2020, 142
(1)
, 290-299. https://doi.org/10.1021/jacs.9b10536
- Maria Tsemperouli, Esther Amstad, Naomi Sakai, Stefan Matile, Kaori Sugihara. Black Lipid Membranes: Challenges in Simultaneous Quantitative Characterization by Electrophysiology and Fluorescence Microscopy. Langmuir 2019, 35
(26)
, 8748-8757. https://doi.org/10.1021/acs.langmuir.9b00673
- Tatiana Trantidou, Mark S. Friddin, Kin B. Gan, Luyao Han, Guido Bolognesi, Nicholas J. Brooks, Oscar Ces. Mask-Free Laser Lithography for Rapid and Low-Cost Microfluidic Device Fabrication. Analytical Chemistry 2018, 90
(23)
, 13915-13921. https://doi.org/10.1021/acs.analchem.8b03169
- Michelle Makhoul-Mansour, Wujun Zhao, Nicole Gay, Colleen O’Connor, Joseph S. Najem, Leidong Mao, and Eric C. Freeman . Ferrofluid-Based Droplet Interface Bilayer Networks. Langmuir 2017, 33
(45)
, 13000-13007. https://doi.org/10.1021/acs.langmuir.7b03055
- Jacqueline S. J. Tan, Liping Zhang, Freda C. H. Lim, and Daniel W. Cheong . Interfacial Properties and Monolayer Collapse of Alkyl Benzenesulfonate Surfactant Monolayers at the Decane–Water Interface from Molecular Dynamics Simulations. Langmuir 2017, 33
(18)
, 4461-4476. https://doi.org/10.1021/acs.langmuir.7b00171
- Michael Martin, Timothy Dubbs, and J. R. Fried . Planar Bilayer Measurements of Alamethicin and Gramicidin Reconstituted in Biomimetic Block Copolymers. Langmuir 2017, 33
(5)
, 1171-1179. https://doi.org/10.1021/acs.langmuir.6b03309
- Ji Huang, Yuval Elani, Mark S. Friddin. A handheld laser-cut device for the size-controlled assembly and electrical characterisation of lipid bilayers. Sensors & Diagnostics 2024, 379 https://doi.org/10.1039/D4SD00076E
- Joshua J. Maraj, Kevin P.T. Haughn, Daniel J. Inman, Stephen A. Sarles. Sensory Adaptation in Biomolecular Memristors Improves Reservoir Computing Performance. Advanced Intelligent Systems 2023, 5
(8)
https://doi.org/10.1002/aisy.202300049
- Joyce El-Beyrouthy, Michelle Makhoul-Mansour, Jesse Gulle, Eric Freeman. Morphogenesis-inspired two-dimensional electrowetting in droplet networks. Bioinspiration & Biomimetics 2023, 18
(3)
, 036007. https://doi.org/10.1088/1748-3190/acc779
- Michelle M. Makhoul-Mansour, Joyce B. El-Beyrouthy, Leidong Mao, Eric C. Freeman. Enhancing membrane-based soft materials with magnetic reconfiguration events. Scientific Reports 2022, 12
(1)
https://doi.org/10.1038/s41598-022-05501-7
- Subhadeep Koner, Joseph Tawfik, Farzin Mashali, Kristen B. Kennison, William T. McClintic, Frederick A. Heberle, Yu-Ming Tu, Manish Kumar, Stephen A. Sarles. Homogeneous hybrid droplet interface bilayers assembled from binary mixtures of DPhPC phospholipids and PB-b-PEO diblock copolymers. Biochimica et Biophysica Acta (BBA) - Biomembranes 2022, 1864
(10)
, 183997. https://doi.org/10.1016/j.bbamem.2022.183997
- Elanna B. Stephenson, Jaime L. Korner, Katherine S. Elvira. Challenges and opportunities in achieving the full potential of droplet interface bilayers. Nature Chemistry 2022, 14
(8)
, 862-870. https://doi.org/10.1038/s41557-022-00989-y
- Elanna B. Stephenson, Ricardo García Ramírez, Sean Farley, Katherine Adolph-Hammond, Gihyun Lee, John M. Frostad, Katherine S. Elvira. Investigating the effect of phospholipids on droplet formation and surface property evolution in microfluidic devices for droplet interface bilayer (DIB) formation. Biomicrofluidics 2022, 16
(4)
https://doi.org/10.1063/5.0096193
- Y. Huang, G.G. Fuller, V. Chandran Suja. Physicochemical characteristics of droplet interface bilayers. Advances in Colloid and Interface Science 2022, 304 , 102666. https://doi.org/10.1016/j.cis.2022.102666
- Yaoqi Huang, Vineeth Chandran Suja, Layaa Amirthalingam, Gerald G. Fuller. Influence of salt on the formation and separation of droplet interface bilayers. Physics of Fluids 2022, 34
(6)
https://doi.org/10.1063/5.0096591
- Robert Strutt, Felix Sheffield, Nathan E. Barlow, Anthony J. Flemming, John D. Harling, Robert V. Law, Nicholas J. Brooks, Laura M. C. Barter, Oscar Ces. UV-DIB: label-free permeability determination using droplet interface bilayers. Lab on a Chip 2022, 22
(5)
, 972-985. https://doi.org/10.1039/D1LC01155C
- Jaime L. Korner, Katherine S. Elvira. The role of temperature in the formation of human–mimetic artificial cell membranes using droplet interface bilayers (DIBs). Soft Matter 2021, 17
(39)
, 8891-8901. https://doi.org/10.1039/D1SM00668A
- Juan Hu, Wesley G. Cochrane, Alexander X. Jones, Donna G. Blackmond, Brian M. Paegel. Chiral lipid bilayers are enantioselectively permeable. Nature Chemistry 2021, 13
(8)
, 786-791. https://doi.org/10.1038/s41557-021-00708-z
- Elanna B. Stephenson, Katherine S. Elvira. Biomimetic artificial cells to model the effect of membrane asymmetry on chemoresistance. Chemical Communications 2021, 57
(53)
, 6534-6537. https://doi.org/10.1039/D1CC02043A
- Michelle M Makhoul-Mansour, Elio J Challita, Adarsh Chaurasia, Donald J Leo, Sergei Sukharev, Eric C Freeman. A skin-inspired soft material with directional mechanosensation. Bioinspiration & Biomimetics 2021, 16
(4)
, 046014. https://doi.org/10.1088/1748-3190/abf746
- Robert Strutt, James W. Hindley, Jordan Gregg, Paula J. Booth, John D. Harling, Robert V. Law, Mark S. Friddin, Oscar Ces. Activating mechanosensitive channels embedded in droplet interface bilayers using membrane asymmetry. Chemical Science 2021, 12
(6)
, 2138-2145. https://doi.org/10.1039/D0SC03889J
- Y. Huang, V. Chandran Suja, J. Tajuelo, G. G. Fuller. Surface energy and separation mechanics of droplet interface phospholipid bilayers. Journal of The Royal Society Interface 2021, 18
(175)
https://doi.org/10.1098/rsif.2020.0860
- Heather E. Findlay, Nicola J. Harris, Paula J. Booth. Integrating Membrane Transporter Proteins into Droplet Interface Bilayers. 2021, 31-41. https://doi.org/10.1007/978-1-0716-1468-6_2
- Simon Bachler, Dominik Haidas, Marion Ort, Todd A. Duncombe, Petra S. Dittrich. Microfluidic platform enables tailored translocation and reaction cascades in nanoliter droplet networks. Communications Biology 2020, 3
(1)
https://doi.org/10.1038/s42003-020-01489-w
- Shea Foley, Elizabeth Miller, Samuel Braziel, Sunghee Lee. Molecular organization in mixed SOPC and SDPC model membranes: Water permeability studies of polyunsaturated lipid bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes 2020, 1862
(9)
, 183365. https://doi.org/10.1016/j.bbamem.2020.183365
- Justin Rofeh, Luke Theogarajan. Instantaneous tension measurements in droplet interface bilayers using an inexpensive, integrated pendant drop camera. Soft Matter 2020, 16
(18)
, 4484-4493. https://doi.org/10.1039/D0SM00418A
- Woochul Song, Himanshu Joshi, Ratul Chowdhury, Joseph S. Najem, Yue-xiao Shen, Chao Lang, Codey B. Henderson, Yu-Ming Tu, Megan Farell, Megan E. Pitz, Costas D. Maranas, Paul S. Cremer, Robert J. Hickey, Stephen A. Sarles, Jun-li Hou, Aleksei Aksimentiev, Manish Kumar. Artificial water channels enable fast and selective water permeation through water-wire networks. Nature Nanotechnology 2020, 15
(1)
, 73-79. https://doi.org/10.1038/s41565-019-0586-8
- Joyce El-Beyrouthy, Michelle M. Makhoul-Mansour, Graham Taylor, Stephen A. Sarles, Eric C. Freeman. A new approach for investigating the response of lipid membranes to electrocompression by coupling droplet mechanics and membrane biophysics. Journal of The Royal Society Interface 2019, 16
(161)
, 20190652. https://doi.org/10.1098/rsif.2019.0652
- Michelle M. Makhoul-Mansour, Joyce B. El-Beyrouthy, Hope L. Mumme, Eric C. Freeman. Photopolymerized microdomains in both lipid leaflets establish diffusive transport pathways across biomimetic membranes. Soft Matter 2019, 15
(43)
, 8718-8727. https://doi.org/10.1039/C9SM01658A
- Subhadeep Koner, Joseph S. Najem, Md Sakib Hasan, Stephen A. Sarles. Memristive plasticity in artificial electrical synapses
via
geometrically reconfigurable, gramicidin-doped biomembranes. Nanoscale 2019, 11
(40)
, 18640-18652. https://doi.org/10.1039/C9NR07288H
- James W. Hindley, Daniela G. Zheleva, Yuval Elani, Kalypso Charalambous, Laura M. C. Barter, Paula J. Booth, Charlotte L. Bevan, Robert V. Law, Oscar Ces. Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proceedings of the National Academy of Sciences 2019, 116
(34)
, 16711-16716. https://doi.org/10.1073/pnas.1903500116
- Paul Heo, Sathish Ramakrishnan, Jeff Coleman, James E. Rothman, Jean‐Baptiste Fleury, Frederic Pincet. Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D‐Printed Microfluidic Setup. Small 2019, 15
(21)
https://doi.org/10.1002/smll.201900725
- Maxwell Allen-Benton, Heather E Findlay, Paula J Booth. Probing membrane protein properties using droplet interface bilayers. Experimental Biology and Medicine 2019, 244
(8)
, 709-720. https://doi.org/10.1177/1535370219847939
- Masayuki Iwamoto, Shigetoshi Oiki. In bulla functional channel expression systems that mimic bacterial synthetic membranes. 2019, 231-244. https://doi.org/10.1016/bs.mie.2019.02.011
- Kazuhiro Urakubo, Masayuki Iwamoto, Shigetoshi Oiki. Drop-in-well chamber for droplet interface bilayer with built-in electrodes. 2019, 347-363. https://doi.org/10.1016/bs.mie.2019.02.012
- Swadha Jaiswal, Richa Singh, Kislay Singh, Sana Fatma, Bhim Bali Prasad. Enantioselective analysis of D- and l- Serine on a layer-by-layer imprinted electrochemical sensor. Biosensors and Bioelectronics 2019, 124-125 , 176-183. https://doi.org/10.1016/j.bios.2018.09.090
- Guido Bolognesi. Manipulation of biomimetic soft interfaces by optical and microfluidic methods. 2019, 69-126. https://doi.org/10.1016/bs.abl.2019.02.002
- Nathan E. Barlow, Halim Kusumaatmaja, Ali Salehi-Reyhani, Nick Brooks, Laura M. C. Barter, Anthony J. Flemming, Oscar Ces. Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers. Journal of The Royal Society Interface 2018, 15
(148)
, 20180610. https://doi.org/10.1098/rsif.2018.0610
- Maie A. Elfaramawy, Satoshi Fujii, Atsuko Uyeda, Toshihisa Osaki, Shoji Takeuchi, Yasuhiko Kato, Hajime Watanabe, Tomoaki Matsuura. Quantitative analysis of cell-free synthesized membrane proteins at the stabilized droplet interface bilayer. Chemical Communications 2018, 54
(86)
, 12226-12229. https://doi.org/10.1039/C8CC06804F
- Benjamin Guiselin, Jack O. Law, Buddhapriya Chakrabarti, Halim Kusumaatmaja. Dynamic Morphologies and Stability of Droplet Interface Bilayers. Physical Review Letters 2018, 120
(23)
https://doi.org/10.1103/PhysRevLett.120.238001
- Elio J. Challita, Michelle M. Makhoul-Mansour, Eric C. Freeman. Reconfiguring droplet interface bilayer networks through sacrificial membranes. Biomicrofluidics 2018, 12
(3)
https://doi.org/10.1063/1.5023386
- Kan Shoji, Ryuji Kawano. Microfluidic Formation of Double-Stacked Planar Bilayer Lipid Membranes by Controlling the Water-Oil Interface. Micromachines 2018, 9
(5)
, 253. https://doi.org/10.3390/mi9050253
- Guru A. Venkatesan, Graham J. Taylor, Colin M. Basham, Nathan G. Brady, C. Patrick Collier, Stephen A. Sarles. Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids. Biomicrofluidics 2018, 12
(2)
https://doi.org/10.1063/1.5016523
- Sudip Suklabaidya, P. Debnath, B. Dey, D. Bhattacharjee, Syed Arshad Hussain. Interaction of an antibiotic – Norfloxacin with lipid membrane. Materials Today: Proceedings 2018, 5
(1)
, 2373-2380. https://doi.org/10.1016/j.matpr.2017.09.244
- Shigetoshi Oiki, Masayuki Iwamoto. Lipid Bilayers Manipulated through Monolayer Technologies for Studies of Channel-Membrane Interplay. Biological and Pharmaceutical Bulletin 2018, 41
(3)
, 303-311. https://doi.org/10.1248/bpb.b17-00708
- Kadla R. Rosholm, Matthew A. B. Baker, Pietro Ridone, Yoshitaka Nakayama, Paul R. Rohde, Luis G. Cuello, Lawrence K. Lee, Boris Martinac. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers. Scientific Reports 2017, 7
(1)
https://doi.org/10.1038/srep45180
- Joseph S. Najem, Eric C. Freeman, Anthony Yasmann, Sergei Sukharev, Donald J. Leo. Mechanics of Droplet Interface Bilayer “Unzipping” Defines the Bandwidth for the Mechanotransduction Response of Reconstituted MscL. Advanced Materials Interfaces 2017, 4
(3)
https://doi.org/10.1002/admi.201600805
- Michael J. Booth, Vanessa Restrepo Schild, Florence G. Downs, Hagan Bayley. Functional aqueous droplet networks. Molecular BioSystems 2017, 13
(9)
, 1658-1691. https://doi.org/10.1039/C7MB00192D
- Guru A. Venkatesan, Stephen A. Sarles. Droplet immobilization within a polymeric organogel improves lipid bilayer durability and portability. Lab on a Chip 2016, 16
(11)
, 2116-2125. https://doi.org/10.1039/C6LC00391E
- Nathan E. Barlow, Guido Bolognesi, Anthony J. Flemming, Nicholas J. Brooks, Laura M. C. Barter, Oscar Ces. Multiplexed droplet Interface bilayer formation. Lab on a Chip 2016, 16
(24)
, 4653-4657. https://doi.org/10.1039/C6LC01011C
- Nima Tamaddoni, Graham Taylor, Trevor Hepburn, S. Michael Kilbey, Stephen A. Sarles. Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents. Soft Matter 2016, 12
(23)
, 5096-5109. https://doi.org/10.1039/C6SM00400H
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.