ACS Publications. Most Trusted. Most Cited. Most Read
Effect of Polymer Chemistry on the Linear Viscoelasticity of Complex Coacervates
My Activity

Figure 1Loading Img
    Article

    Effect of Polymer Chemistry on the Linear Viscoelasticity of Complex Coacervates
    Click to copy article linkArticle link copied!

    • Yalin Liu
      Yalin Liu
      Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
      More by Yalin Liu
    • Cristiam F. Santa Chalarca
      Cristiam F. Santa Chalarca
      Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
    • R. Nicholas Carmean
      R. Nicholas Carmean
      George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
    • Rebecca A. Olson
      Rebecca A. Olson
      George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
    • Jason Madinya
      Jason Madinya
      Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
    • Brent S. Sumerlin
      Brent S. Sumerlin
      George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
    • Charles E. Sing
      Charles E. Sing
      Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
    • Todd Emrick
      Todd Emrick
      Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
      More by Todd Emrick
    • Sarah L. Perry*
      Sarah L. Perry
      Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    Macromolecules

    Cite this: Macromolecules 2020, 53, 18, 7851–7864
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.macromol.0c00758
    Published September 10, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Complex coacervates can form through the electrostatic complexation of oppositely charged polymers. The material properties of the resulting coacervates can change based on the polymer chemistry and the complex interplay between electrostatic interactions and water structure, controlled by salt. We examined the effect of varying the polymer backbone chemistry using methacryloyl- and acryloyl-based complex coacervates over a range of polymer chain lengths and salt conditions. We simultaneously quantified the coacervate phase behavior and the linear viscoelasticity of the resulting coacervates to understand the interplay between polymer chain length, backbone chemistry, polymer concentration, and salt concentration. Time-salt superposition analysis was used to facilitate a broader characterization and comparison of the stress relaxation behavior between different coacervate samples. Samples with mismatched polymer chain lengths highlighted the ways in which the shortest polymer chain can dominate the resulting coacervate properties. A comparison between coacervates formed from methacryloyl vs acryloyl polymers demonstrated that the presence of a backbone methyl group affects the phase behavior, and thus the rheology in such a way that coacervates formed from methacryloyl polymers have a similar phase behavior to those of acryloyl polymers with ∼10× longer polymer chains.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.macromol.0c00758.

    • Details on the synthesis and characterization of monomers; polymer characterization; calibration curves for salt concentration as a function of solution conductivity; propagation of error analysis; tabulated binodal curve data including uncertainty and potential systematic errors; individual and comparison binodal curve plots with error bars; plots of salt partitioning trends; Cole–Cole plots; individual and comparison plots of horizontal and vertical shift factors as a function of salt and polymer concentration; tabulated parameters describing fits to shift factor data; and additional rheology comparison graphs (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 61 publications.

    1. Conner H. Chee, Aijie Han, Gileanna Ortiz, Lexi R. Knight, Jennifer E. Laaser. Effect of Cation−π Interactions on the Phase Behavior and Viscoelastic Properties of Polyelectrolyte Complexes. Macromolecules 2025, Article ASAP.
    2. Nagham Abou Hamad, John Akintola, Joseph B. Schlenoff. Quantifying Hydrophilicity in Polyelectrolytes and Polyzwitterions. Macromolecules 2025, 58 (7) , 3422-3430. https://doi.org/10.1021/acs.macromol.4c03126
    3. Isaac A. Ramírez Marrero, Nadine Kaiser, Bernhard von Vacano, Rupert Konradi, Alfred J. Crosby, Sarah L. Perry. Brittle-to-Ductile Transitions of Polyelectrolyte Complexes: Humidity, Temperature, and Salt. Macromolecules 2025, 58 (6) , 2925-2938. https://doi.org/10.1021/acs.macromol.4c02819
    4. Jowon Shin, Heewoon Shin, Sang-Ho Lee, Jong Dae Jang, Hyeong Jun Kim. Influence of Solvent Dielectric Constant on the Complex Coacervation Phase Behavior of Polymerized Ionic Liquids. ACS Macro Letters 2024, 13 (12) , 1678-1685. https://doi.org/10.1021/acsmacrolett.4c00663
    5. Chaeyoung Lim, Whitney C. Blocher McTigue. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomaterials Science & Engineering 2024, 10 (11) , 6766-6789. https://doi.org/10.1021/acsbiomaterials.4c01105
    6. Fatma Akcay Ogur, Sezin Mamasoglu, Sarah L. Perry, Fatma Ahu Akin, A. Basak Kayitmazer. Interactions between Hyaluronic Acid and Chitosan by Isothermal Titration Calorimetry: The Effect of Ionic Strength, pH, and Polymer Molecular Weight. The Journal of Physical Chemistry B 2024, 128 (37) , 9022-9035. https://doi.org/10.1021/acs.jpcb.4c03930
    7. Nghia T. K. Le, Eunbin Park, Hyungjun Kim, Jongmin Park, Kyungtae Kang. Viscosity Regulation of Chemically Simple Condensates. Biomacromolecules 2024, 25 (9) , 5959-5967. https://doi.org/10.1021/acs.biomac.4c00623
    8. Kaden C. Stevens, Matthew V. Tirrell. Impact of a Lightly Branched Star Polyelectrolyte Architecture on Polyelectrolyte Complexes. ACS Macro Letters 2024, 13 (6) , 688-694. https://doi.org/10.1021/acsmacrolett.4c00167
    9. Suvesh Manoj Lalwani, Kayla Hellikson, Piotr Batys, Jodie L. Lutkenhaus. Counter Anion Type Influences the Glass Transition Temperature of Polyelectrolyte Complexes. Macromolecules 2024, 57 (10) , 4695-4705. https://doi.org/10.1021/acs.macromol.3c02200
    10. Isaac A. Ramírez Marrero, Luke Boudreau, Weiguo Hu, Rainer Gutzler, Nadine Kaiser, Bernhard von Vacano, Rupert Konradi, Sarah L. Perry. Decoupling the Effects of Charge Density and Hydrophobicity on the Phase Behavior and Viscoelasticity of Complex Coacervates. Macromolecules 2024, 57 (10) , 4680-4694. https://doi.org/10.1021/acs.macromol.4c00247
    11. Partha Sarathi Roy. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Industrial & Engineering Chemistry Research 2024, 63 (13) , 5414-5487. https://doi.org/10.1021/acs.iecr.3c03830
    12. Chikaodinaka I. Eneh, Kevin Nixon, Suvesh Manoj Lalwani, Maria Sammalkorpi, Piotr Batys, Jodie L. Lutkenhaus. Solid–Liquid–Solution Phases in Poly(diallyldimethylammonium)/Poly(acrylic acid) Polyelectrolyte Complexes at Varying Temperatures. Macromolecules 2024, 57 (5) , 2363-2375. https://doi.org/10.1021/acs.macromol.4c00258
    13. Pratik U. Joshi, Claire Decker, Xianci Zeng, Arvind Sathyavageeswaran, Sarah L. Perry, Caryn L. Heldt. Design Rules for the Sequestration of Viruses into Polypeptide Complex Coacervates. Biomacromolecules 2024, 25 (2) , 741-753. https://doi.org/10.1021/acs.biomac.3c00938
    14. Larissa van Westerveld, Théophile Pelras, Anton H. Hofman, Katja Loos, Marleen Kamperman, Julien Es Sayed. Effect of Polyelectrolyte Charge Density on the Linear Viscoelastic Behavior and Processing of Complex Coacervate Adhesives. Macromolecules 2024, 57 (2) , 652-663. https://doi.org/10.1021/acs.macromol.3c02352
    15. Shanta Biswas, Alison L. Hecht, Sadie A. Noble, Qingqiu Huang, Richard E. Gillilan, Amy Y. Xu. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein–Polymer Complex Coacervates. Biomacromolecules 2023, 24 (11) , 4771-4782. https://doi.org/10.1021/acs.biomac.3c00545
    16. Julien Es Sayed, Clément Caïto, Abinaya Arunachalam, Armin Amirsadeghi, Larissa van Westerveld, Denise Maret, Roshan Akdar Mohamed Yunus, Eleonora Calicchia, Olivia Dittberner, Giuseppe Portale, Daniele Parisi, Marleen Kamperman. Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid – Chitosan Complex Coacervates. Macromolecules 2023, 56 (15) , 5891-5904. https://doi.org/10.1021/acs.macromol.3c00269
    17. Charles E. Sing, Jian Qin. Bridging Field Theory and Ion Pairing in the Modeling of Polyelectrolytes and Complex Coacervation. Macromolecules 2023, 56 (15) , 5941-5963. https://doi.org/10.1021/acs.macromol.3c01020
    18. Philipp Schröder, Monika Schönhoff, Cornelia Cramer. Validity and Breakdown of Superposition Principles in the Viscoelasticity of Chitosan–Gum Arabic Complex Coacervates. Macromolecules 2023, 56 (13) , 4966-4980. https://doi.org/10.1021/acs.macromol.3c00447
    19. Saehyun Choi, Ashley R. Knoerdel, Charles E. Sing, Christine D. Keating. Effect of Polypeptide Complex Coacervate Microenvironment on Protonation of a Guest Molecule. The Journal of Physical Chemistry B 2023, 127 (26) , 5978-5991. https://doi.org/10.1021/acs.jpcb.3c02098
    20. Jason J. Madinya, Hansen Tjo, Xiangxi Meng, Isaac A. Ramírez Marrero, Charles E. Sing, Sarah L. Perry. Surface Charge Density and Steric Repulsion in Polyelectrolyte–Surfactant Coacervation. Macromolecules 2023, 56 (11) , 3973-3988. https://doi.org/10.1021/acs.macromol.3c00464
    21. Kai Chi, Jiamu He, Wei-Shu Lin, Syed M. Q. Bokhari, Jeffrey M. Catchmark. Electrostatically Complexed Natural Polysaccharides as Aqueous Barrier Coatings for Sustainable and Recyclable Fiber-Based Packaging. ACS Applied Materials & Interfaces 2023, 15 (9) , 12248-12260. https://doi.org/10.1021/acsami.2c17886
    22. Ethan T. Iverson, Hudson Legendre, Kendra Schmieg, Bethany Palen, Thomas J. Kolibaba, Hsu-Cheng Chiang, Jaime C. Grunlan. Polyelectrolyte Coacervate Coatings That Dramatically Improve Oxygen Barrier of Paper. Industrial & Engineering Chemistry Research 2022, 61 (51) , 18936-18942. https://doi.org/10.1021/acs.iecr.2c03908
    23. Boyuan Yu, Heyi Liang, Artem M. Rumyantsev, Juan J. de Pablo. Isotropic-to-Nematic Transition in Salt-Free Polyelectrolyte Coacervates from Coarse-Grained Simulations. Macromolecules 2022, 55 (21) , 9627-9639. https://doi.org/10.1021/acs.macromol.2c01674
    24. Rebecca A. Olson, Megan E. Lott, John B. Garrison, Cullen L. G. Davidson, IV, Lucca Trachsel, Diego I. Pedro, W. Gregory Sawyer, Brent S. Sumerlin. Inverse Miniemulsion Photoiniferter Polymerization for the Synthesis of Ultrahigh Molecular Weight Polymers. Macromolecules 2022, 55 (19) , 8451-8460. https://doi.org/10.1021/acs.macromol.2c01239
    25. Mo Yang, Swapnil L. Sonawane, Zachary A. Digby, Jin G. Park, Joseph B. Schlenoff. Influence of “Hydrophobicity” on the Composition and Dynamics of Polyelectrolyte Complex Coacervates. Macromolecules 2022, 55 (17) , 7594-7604. https://doi.org/10.1021/acs.macromol.2c00267
    26. Pengfei Zhang, Zhen-Gang Wang. Supernatant Phase in Polyelectrolyte Complex Coacervation: Cluster Formation, Binodal, and Nucleation. Macromolecules 2022, 55 (10) , 3910-3923. https://doi.org/10.1021/acs.macromol.2c00340
    27. Jason J. Madinya, Charles E. Sing. Hybrid Field Theory and Particle Simulation Model of Polyelectrolyte–Surfactant Coacervation. Macromolecules 2022, 55 (6) , 2358-2373. https://doi.org/10.1021/acs.macromol.2c00187
    28. Juanfeng Sun, Jessica D. Schiffman, Sarah L. Perry. Linear Viscoelasticity and Time–Alcohol Superposition of Chitosan/Hyaluronic Acid Complex Coacervates. ACS Applied Polymer Materials 2022, 4 (3) , 1617-1625. https://doi.org/10.1021/acsapm.1c01411
    29. Minjung Lee, Sarah L. Perry, Ryan C. Hayward. Complex Coacervation of Polymerized Ionic Liquids in Non-aqueous Solvents. ACS Polymers Au 2021, 1 (2) , 100-106. https://doi.org/10.1021/acspolymersau.1c00017
    30. Suvesh M. Lalwani, Piotr Batys, Maria Sammalkorpi, Jodie L. Lutkenhaus. Relaxation Times of Solid-like Polyelectrolyte Complexes of Varying pH and Water Content. Macromolecules 2021, 54 (17) , 7765-7776. https://doi.org/10.1021/acs.macromol.1c00940
    31. Sojeong Kim, Minhwan Lee, Won Bo Lee, Soo-Hyung Choi. Ionic-Group Dependence of Polyelectrolyte Coacervate Phase Behavior. Macromolecules 2021, 54 (16) , 7572-7581. https://doi.org/10.1021/acs.macromol.1c00216
    32. Jun Huang, Jennifer E. Laaser. Charge Density and Hydrophobicity-Dominated Regimes in the Phase Behavior of Complex Coacervates. ACS Macro Letters 2021, 10 (8) , 1029-1034. https://doi.org/10.1021/acsmacrolett.1c00382
    33. Ashley R. Knoerdel, Whitney C. Blocher McTigue, Charles E. Sing. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation. The Journal of Physical Chemistry B 2021, 125 (31) , 8965-8980. https://doi.org/10.1021/acs.jpcb.1c03065
    34. Xiangxi Meng, Yifeng Du, Yalin Liu, E. Bryan Coughlin, Sarah L. Perry, Jessica D. Schiffman. Electrospinning Fibers from Oligomeric Complex Coacervates: No Chain Entanglements Needed. Macromolecules 2021, 54 (11) , 5033-5042. https://doi.org/10.1021/acs.macromol.1c00397
    35. Xianci Zeng, Pratik U. Joshi, Alexander Lawton, Lynn Manchester, Caryn L. Heldt, Sarah L. Perry. Exploring the effects of excipients on complex coacervation. Journal of Colloid and Interface Science 2025, 695 , 137808. https://doi.org/10.1016/j.jcis.2025.137808
    36. Ayla N. Kwant, Julien S. Es Sayed, Marleen Kamperman, Janette K. Burgess, Dirk‐Jan Slebos, Simon D. Pouwels. Sticky Science: Using Complex Coacervate Adhesives for Biomedical Applications. Advanced Healthcare Materials 2025, 14 (2) https://doi.org/10.1002/adhm.202402340
    37. Patricia Montes, Tania Chopra, Rafał Konefał, Pavla Hájovská, Igor Lacík, Vladimír Raus, Miroslav Šlouf, Mariusz Uchman, Miroslav Štěpánek. Interpolyelectrolyte complexes of a biguanide cationic polyelectrolyte: formation of core/corona nanoparticles with double-hydrophilic diblock polyanion. Soft Matter 2024, 20 (47) , 9475-9482. https://doi.org/10.1039/D4SM00851K
    38. Sang-Jun Park, You-young Byun, Eunji Lee, Tae-Young Heo, Soo-Hyung Choi. Structure of Complex Coacervate Core Micelles: AB + C system. Polymer 2024, 57 , 127902. https://doi.org/10.1016/j.polymer.2024.127902
    39. Kaden C. Stevens, Matthew V. Tirrell. Structure and properties of bottlebrush polyelectrolyte complexes. Journal of Polymer Science 2024, 62 (16) , 3808-3817. https://doi.org/10.1002/pol.20230540
    40. Julia Y. Rho, Angie B. Korpusik, Miriam Hoteit, John B. Garrison, Brent S. Sumerlin. Ultra-high molecular weight complex coacervates via polymerization-induced electrostatic self-assembly. Polymer Chemistry 2024, 15 (18) , 1821-1825. https://doi.org/10.1039/D4PY00273C
    41. Jiabao Zheng, Paul Van der Meeren, Weizheng Sun. New insights into protein–polysaccharide complex coacervation: Dynamics, molecular parameters, and applications. Aggregate 2024, 5 (1) https://doi.org/10.1002/agt2.449
    42. Larissa van Westerveld, Julien Es Sayed, Marijn de Graaf, Anton H. Hofman, Marleen Kamperman, Daniele Parisi. Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesives. Soft Matter 2023, 19 (45) , 8832-8848. https://doi.org/10.1039/D3SM01114C
    43. Xuetao Xu, Ziyun Chen, Xizi Wan, Zhao Wang, Yikai Zhang, Jingxin Meng, Lei Jiang, Shutao Wang. Colonial sandcastle-inspired low-carbon building materials. Matter 2023, 6 (11) , 3864-3876. https://doi.org/10.1016/j.matt.2023.08.023
    44. Jiawei Lu, Yukai Ge, Tao Liu. The influence of dynamic crosslinked topology and bond exchange on thermal properties, viscoelasticity, and foaming behavior of multibranched TPEE vitrimer. Polymer 2023, 283 , 126227. https://doi.org/10.1016/j.polymer.2023.126227
    45. Yang Zhao, Jia Kang, Yuting Cui, Shengli Ji, Rui Nian, Wenfa Yu, Yue Sun. Mechanically tunable, antibacterial and bioactive mussel adhesive protein/hyaluronic acid coacervates as bioadhesives. International Journal of Biological Macromolecules 2023, 247 , 125773. https://doi.org/10.1016/j.ijbiomac.2023.125773
    46. Mohammad Khoonkari, Julien Es Sayed, Marta Oggioni, Armin Amirsadeghi, Peter Dijkstra, Daniele Parisi, Frank Kruyt, Patrick van Rijn, Małgorzata Katarzyna Włodarczyk‐Biegun, Marleen Kamperman. Bioinspired Processing: Complex Coacervates as Versatile Inks for 3D Bioprinting. Advanced Materials 2023, 35 (28) https://doi.org/10.1002/adma.202210769
    47. Kristian Kyle Le Vay, Elia Salibi, Basusree Ghosh, TY Dora Tang, Hannes Mutschler. Ribozyme activity modulates the physical properties of RNA–peptide coacervates. eLife 2023, 12 https://doi.org/10.7554/eLife.83543
    48. Xiangxi Meng. A mini-review on bio-inspired polymer self-assembly: single-component and interactive polymer systems. Emerging Topics in Life Sciences 2022, 6 (6) , 593-607. https://doi.org/10.1042/ETLS20220057
    49. A. Basak Kayitmazer, Fatih Comert, Henning H. Winter, Phillip B. Messersmith. Rheology and Gelation of Hyaluronic Acid/Chitosan Coacervates. Biomolecules 2022, 12 (12) , 1817. https://doi.org/10.3390/biom12121817
    50. Chongrui Zhang, Yinmin Cai, Qiang Zhao. Coacervation between Two Positively Charged Poly(ionic liquid)s. Macromolecular Rapid Communications 2022, 43 (18) https://doi.org/10.1002/marc.202200191
    51. Mohsen Ghasemi, Ronald G. Larson. Future directions in physiochemical modeling of the thermodynamics of polyelectrolyte coacervates. AIChE Journal 2022, 68 (5) https://doi.org/10.1002/aic.17646
    52. Yimin Luo, Mengyang Gu, Chelsea E. R. Edwards, Megan T. Valentine, Matthew E. Helgeson. High-throughput microscopy to determine morphology, microrheology, and phase boundaries applied to phase separating coacervates. Soft Matter 2022, 18 (15) , 3063-3075. https://doi.org/10.1039/D1SM01763B
    53. Inge Bos, Eline Brink, Lucile Michels, Joris Sprakel. DNA dynamics in complex coacervate droplets and micelles. Soft Matter 2022, 18 (10) , 2012-2027. https://doi.org/10.1039/D1SM01787J
    54. Jiabao Zheng, Qing Gao, Ge Ge, Jihong Wu, Chuan-he Tang, Mouming Zhao, Weizheng Sun. Sodium chloride-programmed phase transition of β-conglycinin/lysozyme electrostatic complexes from amorphous precipitates to complex coacervates. Food Hydrocolloids 2022, 124 , 107247. https://doi.org/10.1016/j.foodhyd.2021.107247
    55. Wen-de Tian, Mohsen Ghasemi, Ronald G. Larson. Extracting free energies of counterion binding to polyelectrolytes by molecular dynamics simulations. The Journal of Chemical Physics 2021, 155 (11) https://doi.org/10.1063/5.0056853
    56. Yening Xia, Georg M. Scheutz, Charles P. Easterling, Junpeng Zhao, Brent S. Sumerlin. Hybrid Block Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ring‐Opening Polymerizations. Angewandte Chemie 2021, 133 (34) , 18685-18689. https://doi.org/10.1002/ange.202106418
    57. Yening Xia, Georg M. Scheutz, Charles P. Easterling, Junpeng Zhao, Brent S. Sumerlin. Hybrid Block Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ring‐Opening Polymerizations. Angewandte Chemie International Edition 2021, 60 (34) , 18537-18541. https://doi.org/10.1002/anie.202106418
    58. Fei Xu, Ruizhong Xue, Fangping Yang, Hao Liu, Xu Zhang, Shifang Luan, Haoyu Tang. Preparation and solution properties of helical sulfonium-based polypeptides and their polyelectrolyte complexes. European Polymer Journal 2021, 149 , 110390. https://doi.org/10.1016/j.eurpolymj.2021.110390
    59. Frances J. Morin, Marissa L. Puppo, Jennifer E. Laaser. Decoupling salt- and polymer-dependent dynamics in polyelectrolyte complex coacervates via salt addition. Soft Matter 2021, 17 (5) , 1223-1231. https://doi.org/10.1039/D0SM01412E
    60. Ronald G. Larson, Ying Liu, Huiling Li. Linear viscoelasticity and time-temperature-salt and other superpositions in polyelectrolyte coacervates. Journal of Rheology 2021, 65 (1) , 77-102. https://doi.org/10.1122/8.0000156
    61. Whitney C. Blocher McTigue, Elizabeth Voke, Li-Wei Chang, Sarah L. Perry. The benefit of poor mixing: kinetics of coacervation. Physical Chemistry Chemical Physics 2020, 22 (36) , 20643-20657. https://doi.org/10.1039/D0CP03224G

    Macromolecules

    Cite this: Macromolecules 2020, 53, 18, 7851–7864
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.macromol.0c00758
    Published September 10, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    3517

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.