ACS Publications. Most Trusted. Most Cited. Most Read
Local Polymer Dynamics and Diffusion in Cylindrical Nanoconfinement
My Activity
    Article

    Local Polymer Dynamics and Diffusion in Cylindrical Nanoconfinement
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ Department of Materials Science and Engineering and Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
    *E-mail [email protected] (K.I.W.).
    *E-mail [email protected] (R.A.R.).
    Other Access OptionsSupporting Information (1)

    Macromolecules

    Cite this: Macromolecules 2015, 48, 7, 2324–2332
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.macromol.5b00085
    Published April 1, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The melt diffusion of polymers confined to nanoscale cylinders was investigated by molecular dynamics simulations and depth profiling experiments. In the simulations, entangled polymers are confined within long cylindrical pores having effective diameters (deff) from 0.4Ree to 1.7Ree, where Ree is the square root of the mean-squared end-to-end distance of the polymer in the absence of confinement. The local dynamics of polymers confined to cylinders exhibit anisotropic relaxations. Perpendicular to the cylindrical axis, monomer motion is suppressed by the adjacent wall, while motion along the cylindrical axis is faster relative to the bulk dynamics. These anisotropic relaxations are discussed in light of our prior studies showing that chain conformations parallel to the cylinder axis are elongated relative to the bulk conformation, whereas in the perpendicular direction the chain conformations are compressed. Furthermore, our previous simulations found that the number of entanglements per chain decreases as deff decreases. Here, the effects of confinement on local dynamics, chain size, and entanglement density are combined to calculate polymer diffusion (Drep,z) along the cylindrical pore according to the reptation model. The center of mass diffusion coefficients (DMSD,z) along the cylindrical pore were also determined using long simulation times. Finally, using elastic recoil detection, polymer tracer diffusion coefficients (Dexp) along the cylindrical nanopores were measured for deuterated polystyrene diffusing into membranes preinfiltrated with polystyrene. Relative to the bulk diffusion coefficients, the diffusion coefficients along the cylinder (Drep,z, DMSD,z, Dexp) systematically increase as the extent of cylindrical confinement increases (smaller diameter). Moreover, normalized Drep,z and normalize DMSD,z from simulations are in good agreement when deff/Ree > 0.5, while normalized Dexp is substantially smaller at all degrees of confinement investigated. These are the first side-by-side comparisons of simulations and experiments of polymer diffusion in cylindrical nanopores, and the implications of faster polymer diffusion along the cylinder and parallel to the confining wall are discussed.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Figures S1–S4 and Table S1. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 51 publications.

    1. Tae-Young Heo, Théophile Ienn, Julien Bernard, Robert A. Riggleman, Daeyeon Lee. Nonmonotonic Impact of Statistical Copolymer Composition on the Kinetics of Capillary Rise Infiltration. Macromolecules 2024, 57 (21) , 10083-10090. https://doi.org/10.1021/acs.macromol.4c01708
    2. R. Bharath Venkatesh, Daeyeon Lee. Conflicting Effects of Extreme Nanoconfinement on the Translational and Segmental Motion of Entangled Polymers. Macromolecules 2022, 55 (11) , 4492-4501. https://doi.org/10.1021/acs.macromol.2c00145
    3. Shiwang Cheng . Broadband Dielectric Spectroscopy of Polymer Nanocomposites. 2021, 157-183. https://doi.org/10.1021/bk-2021-1375.ch007
    4. Eric J. Bailey, Robert A. Riggleman, Karen I. Winey. Polymer Conformations and Diffusion through a Monolayer of Confining Nanoparticles. Macromolecules 2020, 53 (19) , 8171-8180. https://doi.org/10.1021/acs.macromol.0c01524
    5. Jiaxiang Li, Yuyuan Lu, Lili Hao, Ran Zhang, Mingming Ding, Tongfei Shi. Dynamics Transition of Polymer Films Induced by Polymer–Obstacle Entanglements on Rough Surfaces. Macromolecules 2020, 53 (10) , 3873-3882. https://doi.org/10.1021/acs.macromol.0c00114
    6. Haider Bayat, Mohammad Raoufi, Imad Zamrik, Holger Schönherr. Poly(diethylene glycol methylether methacrylate) Brush-Functionalized Anodic Alumina Nanopores: Curvature-Dependent Polymerization Kinetics and Nanopore Filling. Langmuir 2020, 36 (10) , 2663-2672. https://doi.org/10.1021/acs.langmuir.9b03700
    7. James F. Pressly, Robert A. Riggleman, Karen I. Winey. Increased Polymer Diffusivity in Thin-Film Confinement. Macromolecules 2019, 52 (16) , 6116-6125. https://doi.org/10.1021/acs.macromol.9b01001
    8. Christos Politidis, Stelios Alexandris, Georgios Sakellariou, Martin Steinhart, George Floudas. Dynamics of Entangled cis-1,4-Polyisoprene Confined to Nanoporous Alumina. Macromolecules 2019, 52 (11) , 4185-4195. https://doi.org/10.1021/acs.macromol.9b00523
    9. Magdalena Tarnacka, Agnieszka Talik, Ewa Kamińska, Monika Geppert-Rybczyńska, Kamil Kaminski, Marian Paluch. The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules 2019, 52 (9) , 3516-3529. https://doi.org/10.1021/acs.macromol.9b00209
    10. Sukanya Das, Kavassery Sureswaran Narayan. Significant Increase in Electrical Transport of Conducting Polymers Confined in Alumina Nanopores. The Journal of Physical Chemistry C 2019, 123 (17) , 11284-11291. https://doi.org/10.1021/acs.jpcc.9b01563
    11. David J. Ring, Robert A. Riggleman, Daeyeon Lee. Critical Contact Angle to Induce Capillary Rise of Polymers in Nanopores Does Not Depend on Chain Length. ACS Macro Letters 2019, 8 (1) , 31-35. https://doi.org/10.1021/acsmacrolett.8b00953
    12. Tianren Zhang, Karen I. Winey, Robert A. Riggleman. Polymer Conformations and Dynamics under Confinement with Two Length Scales. Macromolecules 2019, 52 (1) , 217-226. https://doi.org/10.1021/acs.macromol.8b01779
    13. James F. Pressly, Robert A. Riggleman, Karen I. Winey. Polymer Diffusion Is Fastest at Intermediate Levels of Cylindrical Confinement. Macromolecules 2018, 51 (23) , 9789-9797. https://doi.org/10.1021/acs.macromol.8b01728
    14. Reika Katsumata, Austin R. Dulaney, Chae Bin Kim, Christopher J. Ellison. Glass Transition and Self-Diffusion of Unentangled Polymer Melts Nanoconfined by Different Interfaces. Macromolecules 2018, 51 (19) , 7509-7517. https://doi.org/10.1021/acs.macromol.8b00475
    15. Jyo Lyn Hor, Haonan Wang, Zahra Fakhraai, Daeyeon Lee. Effect of Physical Nanoconfinement on the Viscosity of Unentangled Polymers during Capillary Rise Infiltration. Macromolecules 2018, 51 (14) , 5069-5078. https://doi.org/10.1021/acs.macromol.8b00966
    16. Ki-In Choi, Tae-Ho Kim, Guangcui Yuan, Sushil K. Satija, and Jaseung Koo . Dynamics of Entangled Polymers Confined between Graphene Oxide Sheets as Studied by Neutron Reflectivity. ACS Macro Letters 2017, 6 (8) , 819-823. https://doi.org/10.1021/acsmacrolett.7b00416
    17. Sijia Li, Jiawei Li, Mingming Ding, and Tongfei Shi . Effects of Polymer–Wall Interactions on Entanglements and Dynamics of Confined Polymer Films. The Journal of Physical Chemistry B 2017, 121 (6) , 1448-1454. https://doi.org/10.1021/acs.jpcb.7b00225
    18. Stelios Alexandris, Periklis Papadopoulos, Georgios Sakellariou, Martin Steinhart, Hans-Jürgen Butt, and George Floudas . Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. Macromolecules 2016, 49 (19) , 7400-7414. https://doi.org/10.1021/acs.macromol.6b01484
    19. Chia-Chun Lin, Emmabeth Parrish, and Russell J. Composto . Macromolecule and Particle Dynamics in Confined Media. Macromolecules 2016, 49 (16) , 5755-5772. https://doi.org/10.1021/acs.macromol.6b00471
    20. Yang Yao, Takamasa Sakai, Martin Steinhart, Hans-Jürgen Butt, and George Floudas . Effect of Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina. Macromolecules 2016, 49 (16) , 5945-5954. https://doi.org/10.1021/acs.macromol.6b01406
    21. Frank Lange, Patrick Judeinstein, Cornelius Franz, Brigitte Hartmann-Azanza, Salim Ok, Martin Steinhart, and Kay Saalwächter . Large-Scale Diffusion of Entangled Polymers along Nanochannels. ACS Macro Letters 2015, 4 (5) , 561-565. https://doi.org/10.1021/acsmacrolett.5b00213
    22. Tian Ren, Zachary R. Hinton, Renjing Huang, Thomas H. Epps, LaShanda Korley, Raymond J. Gorte, Daeyeon Lee. Increase in the effective viscosity of polyethylene under extreme nanoconfinement. The Journal of Chemical Physics 2024, 160 (2) https://doi.org/10.1063/5.0185144
    23. Xingyu Wu, Christopher Barner-Kowollik. Fluorescence-readout as a powerful macromolecular characterisation tool. Chemical Science 2023, 14 (45) , 12815-12849. https://doi.org/10.1039/D3SC04052F
    24. Kakoli Doloi, Dambarudhar Mohanta. Micropore Filling and Temperature Dependent Electrical Transport Aspects of Poly(3,4‐ethylenedioxythiophene) Polymerized Zr‐Based Metal–Organic Framework. physica status solidi (a) 2022, 219 (19) https://doi.org/10.1002/pssa.202200377
    25. L. Tannoury, M. Solar, W. Paul. Structure and dynamics of a 1,4-polybutadiene melt in an alumina nanopore: A molecular dynamics simulation. The Journal of Chemical Physics 2022, 157 (12) https://doi.org/10.1063/5.0105313
    26. Sukanya Das, Anil Kumar, K. S. Narayan. Confinement highlights the different electrical transport mechanisms prevailing in conducting polymers. Physical Review Materials 2022, 6 (2) https://doi.org/10.1103/PhysRevMaterials.6.025602
    27. Pedro M. Resende, Edgar Gutiérrez-Fernández, Myriam H. Aguirre, Aurora Nogales, Marisol Martín-González. Polyethylene three-dimensional nano-networks: How lateral chains affect metamaterial formation. Polymer 2021, 212 , 123145. https://doi.org/10.1016/j.polymer.2020.123145
    28. Tianren Zhang, Karen I. Winey, Robert A. Riggleman. Conformation and dynamics of ring polymers under symmetric thin film confinement. The Journal of Chemical Physics 2020, 153 (18) https://doi.org/10.1063/5.0024729
    29. Kuo Zhang, Duo Xu, Li Zhao, Zhong-Yuan Lu. Proper adsorptive confinement for efficient production of cyclic polymers: a dissipative particle dynamics study. Physical Chemistry Chemical Physics 2020, 22 (33) , 18703-18710. https://doi.org/10.1039/D0CP02210A
    30. R. Bharath Venkatesh, Tianren Zhang, Neha Manohar, Kathleen J. Stebe, Robert A. Riggleman, Daeyeon Lee. Effect of polymer–nanoparticle interactions on solvent-driven infiltration of polymer (SIP) into nanoparticle packings: a molecular dynamics study. Molecular Systems Design & Engineering 2020, 5 (3) , 666-674. https://doi.org/10.1039/C9ME00148D
    31. Zheng Zhang, Junjun Ding, Benjamin M. Ocko, Andrei Fluerasu, Lutz Wiegart, Yugang Zhang, Mark Kobrak, Ye Tian, Honghu Zhang, Julien Lhermitte, Chang-Hwan Choi, Frank T. Fisher, Kevin G. Yager, Charles T. Black. Nanoscale viscosity of confined polyethylene oxide. Physical Review E 2019, 100 (6) https://doi.org/10.1103/PhysRevE.100.062503
    32. Can Wang, Scott G. Isaacson, Yucheng Wang, Krystelle Lionti, Willi Volksen, Teddie P. Magbitang, Mithun Chowdhury, Rodney D. Priestley, Geraud Dubois, Reinhold H. Dauskardt. Surface Chemical Functionalization to Achieve Extreme Levels of Molecular Confinement in Hybrid Nanocomposites. Advanced Functional Materials 2019, 29 (33) https://doi.org/10.1002/adfm.201903132
    33. Jeeno Jose, Narasimhan Swaminathan. Response of adhesive polymer interfaces to repeated mechanical loading and the spatial variation of diffusion coefficient and stresses in a deforming polymer film. Physical Chemistry Chemical Physics 2019, 21 (21) , 11266-11283. https://doi.org/10.1039/C9CP00576E
    34. Sijia Li, Mingming Ding, Tongfei Shi. Spatial distribution of entanglements and dynamics in polymer films confined by smooth walls. Polymer 2019, 172 , 365-371. https://doi.org/10.1016/j.polymer.2019.04.010
    35. Argyrios Karatrantos, Russell J. Composto, Karen I. Winey, Martin Kröger, Nigel Clarke. Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers 2019, 11 (5) , 876. https://doi.org/10.3390/polym11050876
    36. Tejal Agarwal, G. P. Manjunath, Farhat Habib, Apratim Chatterji. Bacterial chromosome organization. II. Few special cross-links, cell confinement, and molecular crowders play the pivotal roles. The Journal of Chemical Physics 2019, 150 (14) https://doi.org/10.1063/1.5058217
    37. Hui Wu, Yuji Higaki, Atsushi Takahara. Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Progress in Polymer Science 2018, 77 , 95-117. https://doi.org/10.1016/j.progpolymsci.2017.10.004
    38. M. Krutyeva, S. Pasini, M. Monkenbusch, J. Allgaier, J. Maiz, C. Mijangos, B. Hartmann-Azanza, M. Steinhart, N. Jalarvo, D. Richter. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study. The Journal of Chemical Physics 2017, 146 (20) https://doi.org/10.1063/1.4974836
    39. I. Tanis, H. Meyer, T. Salez, E. Raphaël, A. C. Maggs, J. Baschnagel. Molecular dynamics simulation of the capillary leveling of viscoelastic polymer films. The Journal of Chemical Physics 2017, 146 (20) https://doi.org/10.1063/1.4978938
    40. Argyrios Karatrantos, Russell J. Composto, Karen I. Winey, Nigel Clarke. Polymer and spherical nanoparticle diffusion in nanocomposites. The Journal of Chemical Physics 2017, 146 (20) https://doi.org/10.1063/1.4981258
    41. Shengwei Deng, Arkadii Arinstein, Eyal Zussman. Size‐dependent mechanical properties of glassy polymer nanofibers via molecular dynamics simulations. Journal of Polymer Science Part B: Polymer Physics 2017, 55 (6) , 506-514. https://doi.org/10.1002/polb.24292
    42. Simone Napolitano, Emmanouil Glynos, Nicholas B Tito. Glass transition of polymers in bulk, confined geometries, and near interfaces. Reports on Progress in Physics 2017, 80 (3) , 036602. https://doi.org/10.1088/1361-6633/aa5284
    43. Paritat Muanchan, Shohei Suzuki, Takashi Kyotani, Hiroshi Ito. One-dimensional polymer nanofiber arrays with high aspect ratio obtained by thermal nanoimprint method. Polymer Engineering & Science 2017, 57 (2) , 214-223. https://doi.org/10.1002/pen.24403
    44. Abelardo Ramírez-Hernández, Brandon L. Peters, Ludwig Schneider, Marat Andreev, Jay D. Schieber, Marcus Müller, Juan J. de Pablo. A multi-chain polymer slip-spring model with fluctuating number of entanglements: Density fluctuations, confinement, and phase separation. The Journal of Chemical Physics 2017, 146 (1) https://doi.org/10.1063/1.4972582
    45. Xiaohui Wen, Tieyu Sun, Wei-Bing Zhang, Chi-Hang Lam, Linxi Zhang, Huaping Zang. Helix-like structure formation of a semi-flexible chain confined in a cylinder channel. Chinese Physics B 2016, 25 (9) , 093601. https://doi.org/10.1088/1674-1056/25/9/093601
    46. Pavan V. Kolluru, Ioannis Chasiotis. A master curve for the size and strain rate dependent large deformation behavior of PS nanofibers at room temperature. Polymer 2016, 99 , 544-551. https://doi.org/10.1016/j.polymer.2016.07.046
    47. Ekaterina Chernova, Dmitrii Petukhov, Olga Boytsova, Alexander Alentiev, Peter Budd, Yuri Yampolskii, Andrei Eliseev. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep31183
    48. Daniel M. Sussman. Spatial distribution of entanglements in thin free-standing films. Physical Review E 2016, 94 (1) https://doi.org/10.1103/PhysRevE.94.012503
    49. Argyrios Karatrantos, Nigel Clarke, Russell J. Composto, Karen I. Winey. Entanglements in polymer nanocomposites containing spherical nanoparticles. Soft Matter 2016, 12 (9) , 2567-2574. https://doi.org/10.1039/C5SM02010G
    50. Jiao Chen, Linling Li, Dongshan Zhou, Xiaoliang Wang, Gi Xue. Effect of geometric curvature on vitrification behavior for polymer nanotubes confined in anodic aluminum oxide templates. Physical Review E 2015, 92 (3) https://doi.org/10.1103/PhysRevE.92.032306
    51. Amit Shavit, Robert A. Riggleman. The dynamics of unentangled polymers during capillary rise infiltration into a nanoparticle packing. Soft Matter 2015, 11 (42) , 8285-8295. https://doi.org/10.1039/C5SM01866H

    Macromolecules

    Cite this: Macromolecules 2015, 48, 7, 2324–2332
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.macromol.5b00085
    Published April 1, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2072

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.