ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots

Cite this: Nano Lett. 2020, 20, 8, 5909–5915
Publication Date (Web):July 14, 2020
https://doi.org/10.1021/acs.nanolett.0c01859
Copyright © 2020 American Chemical Society

    Article Views

    2741

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm–1.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c01859.

    • Experimental methods, characterization methods, density of states calculations, control experiments, additional absorption spectra, XPS and UPS spectra and anlysis, FET experiments and analysis, doping stability, ASE threshold calculations, exciton dynamics models, Auger analysis, additional TA traces, additional power dependence spectra and analysis, VSL measurements, CW lasing calculations, and exciton occupancy calculations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Yuan Liu, Yuxuan Li, Kaimin Gao, Jingyi Zhu, Kaifeng Wu. Sub-Single-Exciton Optical Gain in Lead Halide Perovskite Quantum Dots Revealed by Exciton Polarization Spectroscopy. Journal of the American Chemical Society 2023, 145 (47) , 25864-25873. https://doi.org/10.1021/jacs.3c10281
    2. Nima Taghipour, Mariona Dalmases, Guy Luke Whitworth, Yongjie Wang, Gerasimos Konstantatos. Ultrafast Cascade Charge Transfer in Multibandgap Colloidal Quantum Dot Solids Enables Threshold Reduction for Optical Gain and Stimulated Emission. Nano Letters 2023, 23 (18) , 8637-8642. https://doi.org/10.1021/acs.nanolett.3c02468
    3. Linxiang Zhang, Long Chen, Junrui Yang, Jing Liu, Shuaicheng Lu, Xinyi Liang, Xuezhi Zhao, Yang Yang, Jun Hu, Long Hu, Xinzheng Lan, Jianbing Zhang, Liang Gao, Jiang Tang. High-Performance and Stable Colloidal Quantum Dots Imager via Energy Band Engineering. Nano Letters 2023, 23 (14) , 6489-6496. https://doi.org/10.1021/acs.nanolett.3c01391
    4. Namyoung Ahn, Clément Livache, Valerio Pinchetti, Victor I. Klimov. Colloidal Semiconductor Nanocrystal Lasers and Laser Diodes. Chemical Reviews 2023, 123 (13) , 8251-8296. https://doi.org/10.1021/acs.chemrev.2c00865
    5. Benoît Sklénard, Gabriel Mugny, Bilal Chehaibou, Christophe Delerue, Arthur Arnaud, Jing Li. Size and Solvation Effects on Electronic and Optical Properties of PbS Quantum Dots. The Journal of Physical Chemistry Letters 2022, 13 (39) , 9044-9050. https://doi.org/10.1021/acs.jpclett.2c02247
    6. Ananth Kamath, Christopher Melnychuk, Philippe Guyot-Sionnest. Toward Bright Mid-Infrared Emitters: Thick-Shell n-Type HgSe/CdS Nanocrystals. Journal of the American Chemical Society 2021, 143 (46) , 19567-19575. https://doi.org/10.1021/jacs.1c09858
    7. Rajesh Bera, Gahyeon Kim, Dongsun Choi, Jihye Kim, Kwang Seob Jeong. Beyond the Bandgap Photoluminescence of Colloidal Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2021, 12 (10) , 2562-2569. https://doi.org/10.1021/acs.jpclett.1c00142
    8. Christopher Melnychuk, Philippe Guyot-Sionnest. Multicarrier Dynamics in Quantum Dots. Chemical Reviews 2021, 121 (4) , 2325-2372. https://doi.org/10.1021/acs.chemrev.0c00931
    9. Iñigo Ramiro, Onur Özdemir, Sotirios Christodoulou, Shuchi Gupta, Mariona Dalmases, Iacopo Torre, Gerasimos Konstantatos. Mid- and Long-Wave Infrared Optoelectronics via Intraband Transitions in PbS Colloidal Quantum Dots. Nano Letters 2020, 20 (2) , 1003-1008. https://doi.org/10.1021/acs.nanolett.9b04130
    10. Bertille Martinez, Rémi Plamont, Charlie Gréboval, Prachi Rastogi, Yoann Prado, Junling Qu, Audrey Chu, Clément Livache, Xiang Zhen Xu, Hervé Cruguel, Sandrine Ithurria, Mathieu G. Silly, Nicolas Goubet, Emmanuel Lhuillier. Azobenzenes as Light-Activable Carrier Density Switches in Nanocrystals. The Journal of Physical Chemistry C 2019, 123 (44) , 27257-27263. https://doi.org/10.1021/acs.jpcc.9b08597
    11. Benjamin T. Diroll, Corentin Dabard, Emmanuel Lhuillier, Sandrine Ithurria. Band Edge Excitons and Amplified Spontaneous Emission of Mercury Chalcogenide Nanoplatelets. Advanced Optical Materials 2024, 12 (9) https://doi.org/10.1002/adom.202302004
    12. Zhonghai Lin, Chengshuai Sun, Min Liu, Ruiyang Zeng, Mengdi Liu, Yingcai Fan, Qingyu Wu, Guangfen Wei, Pingjian Wang, Zhuhui Qiao. First-principles calculations for heterostructure studies Involving CsPbI 3 perovskite and IV-VI semiconductors. Physica Scripta 2024, 99 (2) , 025921. https://doi.org/10.1088/1402-4896/ad1967
    13. Lingju Meng, Qiwei Xu, Jiangwen Zhang, Xihua Wang. Colloidal quantum dot materials for next-generation near-infrared optoelectronics. Chemical Communications 2024, 60 (9) , 1072-1088. https://doi.org/10.1039/D3CC04315K
    14. Yazhou Gu, Zhengmei Yang, Zhitong Li. Field Manipulations in On-Chip Micro/Nanoscale Lasers Based on Colloid Nanocrystals. Nanomaterials 2023, 13 (23) , 3069. https://doi.org/10.3390/nano13233069
    15. Dongxu Zhu, Houman Bahmani Jalali, Gabriele Saleh, Francesco Di Stasio, Mirko Prato, Nefeli Polykarpou, Andreas Othonos, Sotirios Christodoulou, Yurii P. Ivanov, Giorgio Divitini, Ivan Infante, Luca De Trizio, Liberato Manna. Boosting the Photoluminescence Efficiency of InAs Nanocrystals Synthesized with Aminoarsine via a ZnSe Thick‐Shell Overgrowth. Advanced Materials 2023, 35 (38) https://doi.org/10.1002/adma.202303621
    16. Wenchao Zhang, Jingjing Liu, Chao Liu. Ultrafast carrier dynamics of PbS quantum dots in glasses for light amplification. Journal of Non-Crystalline Solids 2023, 609 , 122285. https://doi.org/10.1016/j.jnoncrysol.2023.122285
    17. Xinyi Liang, Yuxuan Liu, Peilin Liu, Junrui Yang, Jing Liu, Yang Yang, Bo Wang, Jun Hu, Linxiang Zhang, Gaoyuan Yang, Shuaicheng Lu, Guijie Liang, Xinzheng Lan, Jianbing Zhang, Liang Gao, Jiang Tang. Large-area flexible colloidal-quantum-dot infrared photodiodes for photoplethysmogram signal measurements. Science Bulletin 2023, 68 (7) , 698-705. https://doi.org/10.1016/j.scib.2023.03.016
    18. Zamin Mamiyev, Narmina O. Balayeva. PbS nanostructures: A review of recent advances. Materials Today Sustainability 2023, 21 , 100305. https://doi.org/10.1016/j.mtsust.2022.100305
    19. Lucas Cuadra, Sancho Salcedo-Sanz, José Carlos Nieto-Borge. Carrier Transport in Colloidal Quantum Dot Intermediate Band Solar Cell Materials Using Network Science. International Journal of Molecular Sciences 2023, 24 (4) , 3797. https://doi.org/10.3390/ijms24043797
    20. Nima Taghipour, Mariona Dalmases, Guy L. Whitworth, Miguel Dosil, Andreas Othonos, Sotirios Christodoulou, Shanti Maria Liga, Gerasimos Konstantatos. Colloidal Quantum Dot Infrared Lasers Featuring Sub‐Single‐Exciton Threshold and Very High Gain. Advanced Materials 2023, 35 (1) https://doi.org/10.1002/adma.202207678
    21. Vo Thi Le Na, Pham Kim Ngoc, Duong Anh Tuan, Nguyen Viet Huong, Vu Ngoc Hai, Nguyen Huu Tuan. The shape-controlled synthesis of alloyed CdS x Se 1−x nanocrystals and their applications in LEDs. Advances in Natural Sciences: Nanoscience and Nanotechnology 2022, 13 (4) , 045010. https://doi.org/10.1088/2043-6262/aca0f0
    22. Daoyuan Chen, Beibei Xu, Zaijin Fang, Duoduo Zhang, Tao Man, Junyao Mo, Xiaofeng Liu, Zhousu Xu, Yehui Liu, Shiyi Cao, Zhiwu Chang, Xinhua Xiao, Jianrong Qiu. Broadband Optical Amplification of PbS Quantum‐Dot‐Doped Glass Fibers. Advanced Photonics Research 2022, 3 (9) https://doi.org/10.1002/adpr.202200097
    23. Long Liu, Bing Bai, Jun Li, Yi Zhou, Hsien-Yi Hsu, Guohua Jia. Band Alignment Engineering of Semiconductor Nanocrystal Heterostructures Toward Emerging Applications. Solar RRL 2022, 6 (8) https://doi.org/10.1002/solr.202200299
    24. Chen Liao, Luping Tang, Yan Li, Shaoling Sun, Liye Wang, Jie Xu, Yunzhe Jia, Zixuan Gu. Toward temperature-insensitive near-infrared optical gain using low-toxicity Ag 2 Se quantum dots. Nanoscale 2022, 14 (28) , 10169-10175. https://doi.org/10.1039/D2NR01145J
    25. Nima Taghipour, Ibrahim Tanriover, Mariona Dalmases, Guy L. Whitworth, Christina Graham, Avijit Saha, Onur Özdemir, Biswajit Kundu, Valerio Pruneri, Koray Aydin, Gerasimos Konstantatos. Ultra‐Thin Infrared Optical Gain Medium and Optically‐Pumped Stimulated Emission in PbS Colloidal Quantum Dot LEDs. Advanced Functional Materials 2022, 32 (27) https://doi.org/10.1002/adfm.202200832
    26. Nima Taghipour, Guy L. Whitworth, Andreas Othonos, Mariona Dalmases, Santanu Pradhan, Yongjie Wang, Gaurav Kumar, Gerasimos Konstantatos. Low‐Threshold, Highly Stable Colloidal Quantum Dot Short‐Wave Infrared Laser enabled by Suppression of Trap‐Assisted Auger Recombination. Advanced Materials 2022, 34 (3) https://doi.org/10.1002/adma.202107532
    27. Junhui Wang, Lifeng Wang, Shuwen Yu, Tao Ding, Dongmei Xiang, Kaifeng Wu. Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20835-4
    28. Yongqiang Zhang, Haoqiang Song, Lu Wang, Jingkun Yu, Boyang Wang, Yongsheng Hu, Shuang‐Quan Zang, Bai Yang, Siyu Lu. Solid‐State Red Laser with a Single Longitudinal Mode from Carbon Dots. Angewandte Chemie 2021, 133 (48) , 25718-25725. https://doi.org/10.1002/ange.202111285
    29. Yongqiang Zhang, Haoqiang Song, Lu Wang, Jingkun Yu, Boyang Wang, Yongsheng Hu, Shuang‐Quan Zang, Bai Yang, Siyu Lu. Solid‐State Red Laser with a Single Longitudinal Mode from Carbon Dots. Angewandte Chemie International Edition 2021, 60 (48) , 25514-25521. https://doi.org/10.1002/anie.202111285
    30. Biswajit Kundu, Onur Özdemir, Mariona Dalmases, Gaurav Kumar, Gerasimos Konstantatos. Hybrid 2D‐QD MoS 2 –PbSe Quantum Dot Broadband Photodetectors with High‐Sensitivity and Room‐Temperature Operation at 2.5 µm. Advanced Optical Materials 2021, 9 (22) https://doi.org/10.1002/adom.202101378
    31. Longjia Wu, Pieter Geiregat, Wenyong Liu, Zizhe Lu, Yiran Yan, Xiongfeng Lin, Iwan Moreels, Xiaolin Yan, Zeger Hens, Yixing Yang. Electrically Pumped QD Light Emission from LEDs to Lasers. Information Display 2021, 37 (6) , 6-17. https://doi.org/10.1002/msid.1256
    32. G. L. Whitworth, M. Dalmases, N. Taghipour, G. Konstantatos. Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window. Nature Photonics 2021, 15 (10) , 738-742. https://doi.org/10.1038/s41566-021-00878-9
    33. Heeyoung Jung, Namyoung Ahn, Victor I. Klimov. Prospects and challenges of colloidal quantum dot laser diodes. Nature Photonics 2021, 15 (9) , 643-655. https://doi.org/10.1038/s41566-021-00827-6
    34. F. Pelayo García de Arquer, Dmitri V. Talapin, Victor I. Klimov, Yasuhiko Arakawa, Manfred Bayer, Edward H. Sargent. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373 (6555) https://doi.org/10.1126/science.aaz8541
    35. Jianjun Chen, Kexiu Rong. Nanophotonic devices and circuits based on colloidal quantum dots. Materials Chemistry Frontiers 2021, 5 (12) , 4502-4537. https://doi.org/10.1039/D0QM01118E
    36. Zhenzhen Ma, Jiahui Li, Yating Zhang, Hongliang Zhao, Qingyan Li, Chengqi Ma, Jianquan Yao. Enhanced detectivity of PbS quantum dots infrared photodetector by introducing the tunneling effect of PMMA. Nanotechnology 2021, 32 (19) , 195502. https://doi.org/10.1088/1361-6528/abcc20
    37. Young-Shin Park, Jeongkyun Roh, Benjamin T. Diroll, Richard D. Schaller, Victor I. Klimov. Colloidal quantum dot lasers. Nature Reviews Materials 2021, 6 (5) , 382-401. https://doi.org/10.1038/s41578-020-00274-9
    38. Chen Liao, Luping Tang, Liye Wang, Yan Li, Jie Xu, Yunzhe Jia. Low-threshold near-infrared lasing at room temperature using low-toxicity Ag 2 Se quantum dots. Nanoscale 2020, 12 (42) , 21879-21884. https://doi.org/10.1039/D0NR05098A

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect