ACS Publications. Most Trusted. Most Cited. Most Read
Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating
My Activity
    Letter

    Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 11, 7995–8000
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c02860
    Published October 16, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ultrathin two-dimensional (2D) monolayer atomic crystal materials offer great potential for extending the field of novel separation technology due to their infinitesimal thickness and mechanical strength. One difficult and ongoing challenge is to perforate the 2D monolayer material with subnanometer pores with atomic precision for sieving similarly sized molecules. Here, we demonstrate the exceptional separation performance of ionic liquid (IL)/graphene hybrid membranes for challenging separation of CO2 and N2. Notably, the ultrathin ILs afford dynamic tuning of the size and chemical affinity of nanopores while preserving the high permeance of the monolayer nanoporous graphene membranes. The hybrid membrane yields a high CO2 permeance of 4000 GPU and an outstanding CO2/N2 selectivity up to 32. This rational hybrid design provides a universal direction for broadening gas separation capability of atomically thin nanoporous membranes.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c02860.

    • Detailed membrane synthesis and experimental conditions with additional figures detailing data analysis, estimation of graphene porosity, Raman spectra, SEM images, membrane test, discussions of membrane stability, and separation performance (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 50 publications.

    1. Juncheng Guo, Guillaume Galliero, Romain Vermorel. How Membrane Flexibility Impacts Permeation and Separation of Gas through Nanoporous Graphenes. Nano Letters 2024, 24 (39) , 12292-12298. https://doi.org/10.1021/acs.nanolett.4c03580
    2. Yujing Tong, Sheng Dai, De-en Jiang. 2D Carbonaceous Materials for Molecular Transport and Functional Interfaces: Simulations and Insights. Accounts of Chemical Research 2024, 57 (18) , 2678-2688. https://doi.org/10.1021/acs.accounts.4c00398
    3. Yiming Zhang, Kai Sheng, Zheng Wang, Wenjia Wu, Ben Hang Yin, Junyong Zhu, Yatao Zhang. Rational Design of MXene Hollow Fiber Membranes for Gas Separations. Nano Letters 2023, 23 (7) , 2710-2718. https://doi.org/10.1021/acs.nanolett.3c00004
    4. Luis Francisco Villalobos, Deepu J. Babu, Kuang-Jung Hsu, Cédric Van Goethem, Kumar Varoon Agrawal. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene. Accounts of Materials Research 2022, 3 (10) , 1073-1087. https://doi.org/10.1021/accountsmr.2c00143
    5. Liu Yang, Xiao Xiao, Sophia Shen, John Lama, Menglei Hu, Fengchun Jia, Zhenyang Han, Huaijiao Qu, Linjun Huang, Yanxin Wang, Tianmei Wang, Zhi Ye, Zhijun Zhu, Jianguo Tang, Jun Chen. Recent Advances in Graphene Oxide Membranes for Nanofiltration. ACS Applied Nano Materials 2022, 5 (3) , 3121-3145. https://doi.org/10.1021/acsanm.1c04469
    6. Xiaoyang Liu, Jason E. Bara, C. Heath Turner. Understanding Gas Solubility of Pure Component and Binary Mixtures within Multivalent Ionic Liquids from Molecular Simulations. The Journal of Physical Chemistry B 2021, 125 (29) , 8165-8174. https://doi.org/10.1021/acs.jpcb.1c04212
    7. Zongyu Wang, Hao Chen, Yangyang Wang, Jihua Chen, Mark A. Arnould, Bin Hu, Ilja Popovs, Shannon M. Mahurin, Sheng Dai. Polymer-Grafted Porous Silica Nanoparticles with Enhanced CO2 Permeability and Mechanical Performance. ACS Applied Materials & Interfaces 2021, 13 (23) , 27411-27418. https://doi.org/10.1021/acsami.1c04342
    8. Yangyang Dai, Wenjun Su, Shumin Li, Suyue Zhong, Weimin Liu, Jian Li. Effect of introduced g-C3N4 nanosheet interlayers with different morphologies of ZIF-67 on CO2 separation performance. Journal of Membrane Science 2025, 721 , 123818. https://doi.org/10.1016/j.memsci.2025.123818
    9. Shuai Gu, Lijuan Feng, Guoliu Dai, Feng Zhang, Lifeng Deng, Bo Peng, Haohao Zeng, Chenxiang Ai, Juntao Tang, Guipeng Yu. Building ternary mixed matrix membranes with ionic liquid-functional COF fillers for efficient CO2 separation. Journal of Membrane Science 2025, 716 , 123506. https://doi.org/10.1016/j.memsci.2024.123506
    10. Dinesh K. Behera, Fan Wang, Bratin Sengupta, Kaleb Friedman, Shiguang Li, Miao Yu. A facilitated transport membrane composed of amine-containing ionic liquid confined in a GO/CNT network for highly efficient carbon capture. Journal of Membrane Science 2024, 712 , 123177. https://doi.org/10.1016/j.memsci.2024.123177
    11. Yuewen Jia, Kelvin Wong, Can Zeng Liang, Ji Wu, Tai-Shung Chung, Sui Zhang. Recent development of membranes for carbon capture: From materials to asymmetric membranes. Progress in Materials Science 2024, 146 , 101324. https://doi.org/10.1016/j.pmatsci.2024.101324
    12. Yangyang Dai, Tian Fang, Shumin Li, Yuanyuan Wang, Suyue Zhong, Wenjun Su, Jian Li. Mixed-matrix membranes based on semi-oxidation MXene modified g-C3N4 nanosheet for enhanced CO2 separation. Separation and Purification Technology 2024, 348 , 127776. https://doi.org/10.1016/j.seppur.2024.127776
    13. Yuewen Jia, Yanqiu Lu, Haozhou Yang, Yu Chen, Febrian Hillman, Kaiyu Wang, Can Zeng Liang, Sui Zhang. Control of Microporous Structure in Conjugated Microporous Polymer Membranes for Post‐Combustion Carbon Capture. Advanced Functional Materials 2024, 34 (45) https://doi.org/10.1002/adfm.202407499
    14. Suyue Zhong, Yangyang Xiang, Yangyang Dai, Yuanyuan Wang, Wenjun Su, Shumin Li, Jian Li. Construction of PEO@g-C3N4 supported ionic liquid membrane with interactive network structure for enhanced carbon capture efficiency. Journal of Membrane Science 2024, 708 , 123058. https://doi.org/10.1016/j.memsci.2024.123058
    15. Qixin Wang, Yandong Guo, Yan Long, Yawei Liu, Zhenlei Wang, Yiming Liu, Xiaochun Zhang. Efficient separation of CO2/CH4 by covering ultrathin ionic liquid film on COF membrane. Journal of Membrane Science 2024, 701 , 122766. https://doi.org/10.1016/j.memsci.2024.122766
    16. Guancai Xie, Xiaolong Liu, Beidou Guo, Ting Tan, Jian Ru Gong. Porous 2D Catalyst Covers Improve Photoelectrochemical Water‐Oxidation Performance. Advanced Materials 2024, 36 (22) https://doi.org/10.1002/adma.202211008
    17. Nkosingiphile E. Zikalala, Shohreh Azizi, Force T. Thema, Karen J. Cloete, Ali.A. Zinatizadeh, Touhami Mokrani, Nomvano Mketo, Malik M. Maaza. Modification of graphene-based nanomaterials with gamma irradiation as an eco-friendly approach for diverse applications: A review. FlatChem 2024, 45 , 100662. https://doi.org/10.1016/j.flatc.2024.100662
    18. Wenjia Luo, Changzheng Wang, Xueguo Li, Jian Liu, Duo Hou, Xi Zhang, Guoxian Huang, Xingwu Lu, Yanlong Li, Tao Zhou. Advancements in defect engineering of two-dimensional nanomaterial-based membranes for enhanced gas separation. Chemical Communications 2024, 60 (28) , 3745-3763. https://doi.org/10.1039/D4CC00201F
    19. Dandan Lei, Zhen Zhang, Lei Jiang. Bioinspired 2D nanofluidic membranes for energy applications. Chemical Society Reviews 2024, 53 (5) , 2300-2325. https://doi.org/10.1039/D3CS00382E
    20. Petr Dementyev, Armin Gölzhäuser. Anti-Arrhenius passage of gaseous molecules through nanoporous two-dimensional membranes. Physical Chemistry Chemical Physics 2024, 26 (8) , 6949-6955. https://doi.org/10.1039/D3CP05705D
    21. Wenjia Luo, Changzheng Wang, Minghu Jin, Fei Li, Huan Li, Zhixun Zhang, Xi Zhang, Youqian Liang, Guoxian Huang, Tao Zhou. Research progress on nanoconfined ILs in two-dimensional composite membranes for CO2 capture. Separation and Purification Technology 2024, 330 , 125406. https://doi.org/10.1016/j.seppur.2023.125406
    22. Dionysios S. Karousos, Evangelos P. Favvas. New perspectives in O2/N2 gas separation. 2024, 383-426. https://doi.org/10.1016/B978-0-323-99311-1.00013-1
    23. Rohan Jena, Subhajit Laha, Nimish Dwarkanath, Arpan Hazra, Ritesh Haldar, Sundaram Balasubramanian, Tapas Kumar Maji. Noncovalent interaction guided selectivity of haloaromatic isomers in a flexible porous coordination polymer. Chemical Science 2023, 14 (43) , 12321-12330. https://doi.org/10.1039/D3SC03079B
    24. R Yesenia G Silva-Molina, Arnulfo Castellanos-Moreno, Alejandro Castellanos-Jaramillo, Juan M Castellanos-Jaramillo. Thermodynamic properties of M− C 60 dimers immersed in an inert gas. Physica Scripta 2023, 98 (11) , 115028. https://doi.org/10.1088/1402-4896/ad0008
    25. Linlin Zhao, Yandong Guo, Peng Liu, Peng Xu, Zhenlei Wang, Qixin Wang, Xiaochun Zhang. CO2/CH4 separation through monolayer nanoporous graphene oxide supported ionic liquid membrane. Journal of Molecular Liquids 2023, 390 , 123044. https://doi.org/10.1016/j.molliq.2023.123044
    26. Liwei Sun, Meilin Yin, Shaokun Tang. Bi-functionalized ionic liquid/metal-organic framework composite for low-concentration CO2 cycloaddition reaction under atmospheric pressure. Journal of Environmental Chemical Engineering 2023, 11 (5) , 110843. https://doi.org/10.1016/j.jece.2023.110843
    27. Chenxia Xie, Hui Li. Multiscale simulations of nanofluidics: Recent progress and perspective. WIREs Computational Molecular Science 2023, 13 (5) https://doi.org/10.1002/wcms.1661
    28. Yuhao Hu, Hongyan Xiao, Lin Fu, Pei Liu, Yadong Wu, Weipeng Chen, Yongchao Qian, Shengyang Zhou, Xiang‐yu Kong, Zhen Zhang, Lei Jiang, Liping Wen. Confined Ionic‐Liquid‐Mediated Cation Diffusion through Layered Membranes for High‐Performance Osmotic Energy Conversion. Advanced Materials 2023, 35 (24) https://doi.org/10.1002/adma.202301285
    29. Peng Xu, Xiaochun Zhang, Linlin Zhao, Zhenlei Wang, Yawei Liu, Lu Bai, Zhiping Liu. Prominently improved CO2/N2 separation efficiency by ultrathin-ionic-liquid-covered MXene membrane. Separation and Purification Technology 2023, 311 , 123296. https://doi.org/10.1016/j.seppur.2023.123296
    30. José M Luque-Alled, César Moreno, Patricia Gorgojo. Two-dimensional materials for gas separation membranes. Current Opinion in Chemical Engineering 2023, 39 , 100901. https://doi.org/10.1016/j.coche.2023.100901
    31. Ayesha Kausar. Nanoporous graphene in polymeric nanocomposite membranes for gas separation and water purification—standings and headways. Journal of Macromolecular Science, Part A 2023, 60 (2) , 81-91. https://doi.org/10.1080/10601325.2023.2177170
    32. Zhe Zhang, Ran Zhao, Shutao Wang, Jingxin Meng. Recent advances in bio-inspired ionic liquid-based interfacial materials from preparation to application. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1117944
    33. Luc Bondaz, Shiqi Huang, Mojtaba Rezaei, Shaoxian Li, Kumar Varoon Agrawal. Nanoporous Single‐Layer Graphene Membranes for Gas Separation. 2022, 35-81. https://doi.org/10.1002/9783527829859.ch3
    34. Zhe Yuan, Guangwei He, Sylvia Xin Li, Rahul Prasanna Misra, Michael S. Strano, Daniel Blankschtein. Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances. Advanced Materials 2022, 34 (32) https://doi.org/10.1002/adma.202201472
    35. Chenlu Wang, Yanlei Wang, Ju Liu, Mi Wang, Zhongdong Gan, Hongyan He. Entropy driving highly selective CO2 separation in nanoconfined ionic liquids. Chemical Engineering Journal 2022, 440 , 135918. https://doi.org/10.1016/j.cej.2022.135918
    36. Jinbo Cai, Linghong Lu, Jiabao Zhu, Zhengsong Weng. Ionic-liquid-gated porous graphene membranes for efficient CO2/CH4 separation. Journal of Molecular Liquids 2022, 358 , 119148. https://doi.org/10.1016/j.molliq.2022.119148
    37. Han Zhou, Shaoyuan Bai, Yanan Zhang, Dandan Xu, Mei Wang. Recent Advances in Ionic Liquids and Ionic Liquid-Functionalized Graphene: Catalytic Application and Environmental Remediation. International Journal of Environmental Research and Public Health 2022, 19 (13) , 7584. https://doi.org/10.3390/ijerph19137584
    38. Fang Yan, Yandong Guo, Zhenlei Wang, Linlin Zhao, Xiaochun Zhang. Efficient separation of CO2/CH4 by ionic liquids confined in graphene oxide: A molecular dynamics simulation. Separation and Purification Technology 2022, 289 , 120736. https://doi.org/10.1016/j.seppur.2022.120736
    39. Timing Fang, Xiangshuai Meng, Guohui Zhou, Kun Jiang, Xiaomin Liu. Nonnegligible role of rigidity/flexibility for efficient CO2 separation in SILMs: A molecular dynamics simulation study. International Journal of Heat and Mass Transfer 2022, 183 , 122058. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122058
    40. Petr Dementyev, Neita Khayya, Jakob Kreie, Armin Gölzhäuser. Vapor Adsorption Measurements with Two‐Dimensional Membranes. ChemPhysChem 2022, 23 (2) https://doi.org/10.1002/cphc.202100732
    41. Ahmad Arabi Shamsabadi, Zahra Fakhraai, Masoud Soroush. MXene-based molecular sieving membranes for highly efficient gas separation. 2022, 595-616. https://doi.org/10.1016/B978-0-12-823361-0.00017-4
    42. Fang Yan, Yandong Guo, Zhenlei Wang, Linlin Zhao, Xiaochun Zhang. Efficient Separation of Co2/Ch4 by Ionic Liquids Confined in Graphene Oxide: A Molecular Dynamics Simulation. SSRN Electronic Journal 2022, 6 https://doi.org/10.2139/ssrn.4007274
    43. Yasser Vasseghian, Elena-Niculina Dragoi, Fares Almomani, Van Thuan Le, Mohammed Berkani. Graphene-based membrane techniques for heavy metal removal: A critical review. Environmental Technology & Innovation 2021, 24 , 101863. https://doi.org/10.1016/j.eti.2021.101863
    44. Zhenzhen Yang, Wei Guo, Hao Chen, Takeshi Kobayashi, Xian Suo, Tao Wang, Song Wang, Long Cheng, Gongping Liu, Wanqin Jin, Shannon M. Mahurin, De-en Jiang, Ilja Popovs, Sheng Dai. Benchmark CO2 separation achieved by highly fluorinated nanoporous molecular sieve membranes from nonporous precursor via in situ cross-linking. Journal of Membrane Science 2021, 638 , 119698. https://doi.org/10.1016/j.memsci.2021.119698
    45. Vepa Rozyyev, Yeongran Hong, Mustafa S. Yavuz, Damien Thirion, Cafer T. Yavuz. Extensive Screening of Solvent‐Linked Porous Polymers through Friedel–Crafts Reaction for Gas Adsorption. Advanced Energy and Sustainability Research 2021, 2 (10) https://doi.org/10.1002/aesr.202100064
    46. Swati Singh, Anish Mathai Varghese, Donald Reinalda, Georgios N. Karanikolos. Graphene - based membranes for carbon dioxide separation. Journal of CO2 Utilization 2021, 49 , 101544. https://doi.org/10.1016/j.jcou.2021.101544
    47. Yunpan Ying, Zhengqing Zhang, Shing Bo Peh, Avishek Karmakar, Youdong Cheng, Jian Zhang, Lifei Xi, Chris Boothroyd, Yeng Ming Lam, Chongli Zhong, Dan Zhao. Pressure‐Responsive Two‐Dimensional Metal–Organic Framework Composite Membranes for CO 2 Separation. Angewandte Chemie 2021, 133 (20) , 11419-11426. https://doi.org/10.1002/ange.202017089
    48. Yunpan Ying, Zhengqing Zhang, Shing Bo Peh, Avishek Karmakar, Youdong Cheng, Jian Zhang, Lifei Xi, Chris Boothroyd, Yeng Ming Lam, Chongli Zhong, Dan Zhao. Pressure‐Responsive Two‐Dimensional Metal–Organic Framework Composite Membranes for CO 2 Separation. Angewandte Chemie International Edition 2021, 60 (20) , 11318-11325. https://doi.org/10.1002/anie.202017089
    49. M Caglar, U F Keyser. Ionic and molecular transport in aqueous solution through 2D and layered nanoporous membranes. Journal of Physics D: Applied Physics 2021, 54 (18) , 183002. https://doi.org/10.1088/1361-6463/abe07b
    50. Peifu Cheng, Nicole K. Moehring, Juan Carlos Idrobo, Ilia N. Ivanov, Piran R. Kidambi. Scalable synthesis of nanoporous atomically thin graphene membranes for dialysis and molecular separations via facile isopropanol-assisted hot lamination. Nanoscale 2021, 13 (5) , 2825-2837. https://doi.org/10.1039/D0NR07384A

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 11, 7995–8000
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c02860
    Published October 16, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    2809

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.