ACS Publications. Most Trusted. Most Cited. Most Read
Light-Induced Polaronic Crystals in Single-Layer Transition Metal Dichalcogenides
My Activity
    Letter

    Light-Induced Polaronic Crystals in Single-Layer Transition Metal Dichalcogenides
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (2)

    Nano Letters

    Cite this: Nano Lett. 2024, 24, 42, 13179–13184
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.4c03065
    Published October 10, 2024
    Copyright © 2024 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Light-induced ordered states can emerge in materials after irradiation with ultrafast laser pulses. However, their prediction is challenging because the inverted band occupation confounds our chemical intuition. Hence, we use a recently developed constrained density functional perturbation theory approach to systematically screen single-layer transition metal dichalcogenides (TMDs) for light-induced ordered states. We demonstrate that all examined single-layer TMDs reveal similar light-induced charge orderings. The corresponding reconstructions are periodic arrangements of polarons (polaronic crystals), characterized by triangular metal clusters and having no equivalent at equilibrium conditions. The polarons are accompanied by localized midgap states in the electronic band structure, detectable by experimental methods. We assess the selenides as the most promising candidates for potential photoexcitation experiments because they transition at low critical fluences, have low transition barriers, and maintain an open band gap under photoexcitation. Our work paves the way for innovative material design approaches targeting light-induced phases.

    Copyright © 2024 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.4c03065.

    • Reconstruction results as referenced in Section 5 of the SM (ZIP)

    • Additional discussions as referenced in the main paper (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    Nano Letters

    Cite this: Nano Lett. 2024, 24, 42, 13179–13184
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.4c03065
    Published October 10, 2024
    Copyright © 2024 American Chemical Society

    Article Views

    730

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.