Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Impact of Electrode Density of States on Transport through Pyridine-Linked Single Molecule Junctions
My Activity
    Letter

    Impact of Electrode Density of States on Transport through Pyridine-Linked Single Molecule Junctions
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
    Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
    § Institute of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2015, 15, 6, 3716–3722
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b01195
    Published May 28, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We study the impact of electrode band structure on transport through single-molecule junctions by measuring the conductance of pyridine-based molecules using Ag and Au electrodes. Our experiments are carried out using the scanning tunneling microscope based break-junction technique and are supported by density functional theory based calculations. We find from both experiments and calculations that the coupling of the dominant transport orbital to the metal is stronger for Au-based junctions when compared with Ag-based junctions. We attribute this difference to relativistic effects, which result in an enhanced density of d-states at the Fermi energy for Au compared with Ag. We further show that the alignment of the conducting orbital relative to the Fermi level does not follow the work function difference between two metals and is different for conjugated and saturated systems. We thus demonstrate that the details of the molecular level alignment and electronic coupling in metal–organic interfaces do not follow simple rules but are rather the consequence of subtle local interactions.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental and analysis details, additional data and controls and theoretical methods. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b01195.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 68 publications.

    1. Angela L. Paoletta, Latha Venkataraman. Determining Transmission Characteristics from Shot-Noise-Driven Electroluminescence in Single-Molecule Junctions. Nano Letters 2024, 24 (6) , 1931-1935. https://doi.org/10.1021/acs.nanolett.3c04207
    2. Lichuan Chen, Zixian Yang, Qichao Lin, Xiaohui Li, Jie Bai, Wenjing Hong. Evolution of Single-Molecule Electronic Interfaces. Langmuir 2024, 40 (4) , 1988-2004. https://doi.org/10.1021/acs.langmuir.3c03104
    3. Xiaohang Qiao, Andrea Vezzoli, Shaun Smith, Simon J. Higgins, Ross J. Davidson, Andrew Beeby, Richard J. Nichols. Single-Molecule Junction Formation in Deep Eutectic Solvents with Highly Effective Gate Coupling. The Journal of Physical Chemistry C 2023, 127 (26) , 12802-12810. https://doi.org/10.1021/acs.jpcc.3c03129
    4. Kai Song, Junfeng Lin, Xuwei Song, Mingliang Zhang, Qianfeng Gu, Yaping Zang, Daoben Zhu. In Situ Creation of Organometallic Molecular Junctions via Terminal Alkynes. The Journal of Physical Chemistry C 2023, 127 (18) , 8850-8855. https://doi.org/10.1021/acs.jpcc.3c01337
    5. Yujing Wei, Liang Li, Julia E. Greenwald, Latha Venkataraman. Voltage-Modulated van der Waals Interaction in Single-Molecule Junctions. Nano Letters 2023, 23 (2) , 567-572. https://doi.org/10.1021/acs.nanolett.2c04098
    6. Shuang-Shuang Wang, Zhi Yang, Feng Sun, Ran Liu, Lin Liu, Xiao-Xiao Fu, Chuan-Kui Wang, Zong-Liang Li. Decoding Forming Processes of Different Contact Configurations in Au- and Ag-Electrode Single-Molecule Junctions. The Journal of Physical Chemistry C 2021, 125 (49) , 27290-27297. https://doi.org/10.1021/acs.jpcc.1c07935
    7. Hai Bi, Chao Jing, Peter Hasch, Yuxiang Gong, Daniel Gerster, Johannes V. Barth, Joachim Reichert. Single Molecules in Strong Optical Fields: A Variable-Temperature Molecular Junction Spectroscopy Setup. Analytical Chemistry 2021, 93 (28) , 9853-9859. https://doi.org/10.1021/acs.analchem.1c01633
    8. Hongliang Chen, Feng Jiang, Chen Hu, Yang Jiao, Su Chen, Yunyan Qiu, Ping Zhou, Long Zhang, Kang Cai, Bo Song, Xiao-Yang Chen, Xingang Zhao, Michael R. Wasielewski, Hong Guo, Wenjing Hong, J. Fraser Stoddart. Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. Journal of the American Chemical Society 2021, 143 (22) , 8476-8487. https://doi.org/10.1021/jacs.1c03141
    9. Anirban Karmakar, Gautam Gangopadhyay. Electron–Vibration Entanglement of Resonating Dimers in Quantum Transport. The Journal of Physical Chemistry A 2021, 125 (15) , 3122-3134. https://doi.org/10.1021/acs.jpca.1c00964
    10. A. Magyarkuti, Z. Balogh, G. Mezei, A. Halbritter. Structural Memory Effects in Gold–4,4′-Bipyridine–Gold Single-Molecule Nanowires. The Journal of Physical Chemistry Letters 2021, 12 (7) , 1759-1764. https://doi.org/10.1021/acs.jpclett.0c03765
    11. Xiao-Mei Li, Ya-Hao Wang, Jing-Wen Seng, Ju-Fang Zheng, Rui Cao, Yong Shao, Jing-Zhe Chen, Jian-Feng Li, Xiao-Shun Zhou, Bing-Wei Mao. z-Piezo Pulse-Modulated STM Break Junction: Toward Single-Molecule Rectifiers with Dissimilar Metal Electrodes. ACS Applied Materials & Interfaces 2021, 13 (7) , 8656-8663. https://doi.org/10.1021/acsami.0c21435
    12. Songsong Li, Hao Yu, Xinyi Chen, Andrew A. Gewirth, Jeffrey S. Moore, Charles M. Schroeder. Covalent Ag–C Bonding Contacts from Unprotected Terminal Acetylenes for Molecular Junctions. Nano Letters 2020, 20 (7) , 5490-5495. https://doi.org/10.1021/acs.nanolett.0c02015
    13. Geng-Min Lin, Chih-Hsun Lin, Hao Howard Peng, Han Hsiao, Tsai-Hui Wang, Ching-Hwa Ho, Hsiu-Fu Hsu, Chun-hsien Chen. Effect of the Chemical Potentials of Electrodes on Charge Transport across Molecular Junctions. The Journal of Physical Chemistry C 2019, 123 (36) , 22009-22017. https://doi.org/10.1021/acs.jpcc.9b05927
    14. Zhen-Fei Liu and Jeffrey B. Neaton . Voltage Dependence of Molecule–Electrode Coupling in Biased Molecular Junctions. The Journal of Physical Chemistry C 2017, 121 (39) , 21136-21144. https://doi.org/10.1021/acs.jpcc.7b05567
    15. Colin Van Dyck and Mark A. Ratner . Molecular Junctions: Control of the Energy Gap Achieved by a Pinning Effect. The Journal of Physical Chemistry C 2017, 121 (5) , 3013-3024. https://doi.org/10.1021/acs.jpcc.6b07855
    16. E-Dean Fung, Olgun Adak, Giacomo Lovat, Diego Scarabelli, and Latha Venkataraman . Too Hot for Photon-Assisted Transport: Hot-Electrons Dominate Conductance Enhancement in Illuminated Single-Molecule Junctions. Nano Letters 2017, 17 (2) , 1255-1261. https://doi.org/10.1021/acs.nanolett.6b05091
    17. Jianbing Jiang, Robert H. Crabtree, and Gary W. Brudvig . One-Step Trimethylstannylation of Benzyl and Alkyl Halides. The Journal of Organic Chemistry 2016, 81 (19) , 9483-9488. https://doi.org/10.1021/acs.joc.6b01883
    18. Yu Li, Satoshi Kaneko, Yuki Komoto, Shintaro Fujii, Tomoaki Nishino, and Manabu Kiguchi . Atomic and Electronic Structures of a Single Oxygen Molecular Junction with Au, Ag, and Cu Electrodes. The Journal of Physical Chemistry C 2016, 120 (29) , 16254-16258. https://doi.org/10.1021/acs.jpcc.6b04862
    19. Brian Capozzi, Jonathan Z. Low, Jianlong Xia, Zhen-Fei Liu, Jeffrey B. Neaton, Luis M. Campos, and Latha Venkataraman . Mapping the Transmission Functions of Single-Molecule Junctions. Nano Letters 2016, 16 (6) , 3949-3954. https://doi.org/10.1021/acs.nanolett.6b01592
    20. Dong Xiang, Xiaolong Wang, Chuancheng Jia, Takhee Lee, and Xuefeng Guo . Molecular-Scale Electronics: From Concept to Function. Chemical Reviews 2016, 116 (7) , 4318-4440. https://doi.org/10.1021/acs.chemrev.5b00680
    21. Mark S. Hybertsen and Latha Venkataraman . Structure–Property Relationships in Atomic-Scale Junctions: Histograms and Beyond. Accounts of Chemical Research 2016, 49 (3) , 452-460. https://doi.org/10.1021/acs.accounts.6b00004
    22. Xiaobo Li, Liemao Cao, Hui-Li Li, Haiqing Wan, and Guanghui Zhou . Spin-Resolved Transport Properties of a Pyridine-Linked Single Molecule Embedded between Zigzag-Edged Graphene Nanoribbon Electrodes. The Journal of Physical Chemistry C 2016, 120 (5) , 3010-3018. https://doi.org/10.1021/acs.jpcc.5b10880
    23. Elena Gorenskaia, Paul J. Low. Methods for the analysis, interpretation, and prediction of single-molecule junction conductance behaviour. Chemical Science 2024, 15 (25) , 9510-9556. https://doi.org/10.1039/D4SC00488D
    24. Haojie Liu, Lijue Chen, Hao Zhang, Zhangqiang Yang, Jingyao Ye, Ping Zhou, Chao Fang, Wei Xu, Jia Shi, Junyang Liu, Ye Yang, Wenjing Hong. Single-molecule photoelectron tunnelling spectroscopy. Nature Materials 2023, 22 (8) , 1007-1012. https://doi.org/10.1038/s41563-023-01591-4
    25. Elena Gorenskaia, Jarred Potter, Marcus Korb, Colin Lambert, Paul J. Low. Exploring relationships between chemical structure and molecular conductance: from α,ω-functionalised oligoynes to molecular circuits. Nanoscale 2023, 15 (25) , 10573-10583. https://doi.org/10.1039/D3NR01034A
    26. Haojie Liu, Hao Zhang, Yongjie Zhao, Junyang Liu, Wenjing Hong. Interface engineering for single-molecule devices. Trends in Chemistry 2023, 5 (5) , 367-379. https://doi.org/10.1016/j.trechm.2023.03.005
    27. Abdullah Alshehab, Ali K. Ismael. Impact of the terminal end-group on the electrical conductance in alkane linear chains. RSC Advances 2023, 13 (9) , 5869-5873. https://doi.org/10.1039/D3RA00019B
    28. Mong‐Wen Gu, Chih‐Ta Lai, I‐Chih Ni, Chih‐I Wu, Chun‐hsien Chen. Increased Surface Density of States at the Fermi Level for Electron Transport Across Single‐Molecule Junctions. Angewandte Chemie 2023, 135 (6) https://doi.org/10.1002/ange.202214963
    29. Mong‐Wen Gu, Chih‐Ta Lai, I‐Chih Ni, Chih‐I Wu, Chun‐hsien Chen. Increased Surface Density of States at the Fermi Level for Electron Transport Across Single‐Molecule Junctions. Angewandte Chemie International Edition 2023, 62 (6) https://doi.org/10.1002/anie.202214963
    30. Rui Wang, Zhe He, Dmitry Kurouski. Near-field and photocatalytic properties of mono- and bimetallic nanostructures monitored by nanocavity surface-enhanced Raman scattering. Nano Research 2023, 16 (1) , 1545-1551. https://doi.org/10.1007/s12274-022-4736-1
    31. Biao-Feng Zeng, Yu-Ling Zou, Gan Wang, Wenjing Hong, Zhong-Qun Tian, Yang Yang. Quantitative studies of single-molecule chemistry using conductance measurement. Nano Today 2022, 47 , 101660. https://doi.org/10.1016/j.nantod.2022.101660
    32. Xiaobo Li, Fei Qi, Rundong Zhao, Zijie Qiu, Yun Li, Mengqiu Long, Guanghui Zhou. Multi-functional switch effect in interlocking molecular rotators-on-graphene systems using electric fields. Journal of Materials Chemistry C 2022, 10 (13) , 5292-5302. https://doi.org/10.1039/D1TC05773A
    33. Ivana Djurišić, Vladimir P. Jovanović, Miloš S. Dražić, Aleksandar Ž. Tomović, Radomir Zikic. Predicting Finite-Bias Tunneling Current Properties from Zero-Bias Features: The Frontier Orbital Bias Dependence at an Exemplar Case of DNA Nucleotides in a Nanogap. Nanomaterials 2021, 11 (11) , 3021. https://doi.org/10.3390/nano11113021
    34. Zhuoling Jiang, Kah-Meng Yam, Na Guo, Lishu Zhang, Lei Shen, Chun Zhang. Prominent nonequilibrium effects beyond the standard first-principles approach in nanoscale electronic devices. Nanoscale Horizons 2021, 6 (10) , 801-808. https://doi.org/10.1039/D1NH00293G
    35. Shengxiong Xiao. Single‐Molecule Electronic Devices. 2021, 239-299. https://doi.org/10.1002/9783527659562.ch5
    36. Zhou Yu, Yu‐Xing Xu, Jun‐Qing Su, Petar M. Radjenovic, Ya‐Hao Wang, Ju‐Fang Zheng, Botao Teng, Yong Shao, Xiao‐Shun Zhou, Jian‐Feng Li. Probing Interfacial Electronic Effects on Single‐Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angewandte Chemie 2021, 133 (28) , 15580-15586. https://doi.org/10.1002/ange.202102587
    37. Zhou Yu, Yu‐Xing Xu, Jun‐Qing Su, Petar M. Radjenovic, Ya‐Hao Wang, Ju‐Fang Zheng, Botao Teng, Yong Shao, Xiao‐Shun Zhou, Jian‐Feng Li. Probing Interfacial Electronic Effects on Single‐Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angewandte Chemie International Edition 2021, 60 (28) , 15452-15458. https://doi.org/10.1002/anie.202102587
    38. Ivana Djurišić, Miloš S. Dražić, Aleksandar Ž. Tomović, Vladimir P. Jovanović, Radomir Zikic. Electrostatically driven energy shift of molecular orbitals of benzene and nicotine in carbon nanotube gaps. Journal of Nanoparticle Research 2021, 23 (1) https://doi.org/10.1007/s11051-021-05139-y
    39. Valentin Bruch, Konstantin Nestmann, Jens Schulenborg, Maarten Wegewijs. Fermionic duality: General symmetry of open systems with strong dissipation and memory. SciPost Physics 2021, 11 (3) https://doi.org/10.21468/SciPostPhys.11.3.053
    40. . Integrating Molecular Functionalities into Electrical Circuits. 2020, 225-374. https://doi.org/10.1002/9783527818914.ch9
    41. Ferdinand Evers, Richard Korytár, Sumit Tewari, Jan M. van Ruitenbeek. Advances and challenges in single-molecule electron transport. Reviews of Modern Physics 2020, 92 (3) https://doi.org/10.1103/RevModPhys.92.035001
    42. Masoud Baghernejad, Yang Yang, Oday A. Al‐Owaedi, Yves Aeschi, Biao‐Feng Zeng, Zahra Murtada Abd Dawood, Xiaohui Li, Junyang Liu, Jia Shi, Silvio Decurtins, Shi‐Xia Liu, Wenjing Hong, Colin J. Lambert. Constructive Quantum Interference in Single‐Molecule Benzodichalcogenophene Junctions. Chemistry – A European Journal 2020, 26 (23) , 5264-5269. https://doi.org/10.1002/chem.201905878
    43. Jie Li, Tao Li, Yunrui Duan, Hui Li. “Even” conducting superiority in molecular wires designed by porphyrin and graphene nanoribbons. Materials & Design 2020, 189 , 108487. https://doi.org/10.1016/j.matdes.2020.108487
    44. Eric R. Hedin, Arkady M. Satanin, Yong S. Joe. Circular transmission resonances and magnetic field effects in a ring of quantum dots connected to external leads in the meta-configuration. Journal of Computational Electronics 2019, 18 (2) , 648-659. https://doi.org/10.1007/s10825-018-01291-2
    45. Na Xin, Jianxin Guan, Chenguang Zhou, Xinjiani Chen, Chunhui Gu, Yu Li, Mark A. Ratner, Abraham Nitzan, J. Fraser Stoddart, Xuefeng Guo. Concepts in the design and engineering of single-molecule electronic devices. Nature Reviews Physics 2019, 1 (3) , 211-230. https://doi.org/10.1038/s42254-019-0022-x
    46. Tong Chen, Quan Li, Liang Xu, Yao Zhang, Zhonghui Xu, Yingbin Zhang, Lingling Wang, Mengqiu Long. Characteristics of electronic and spin-independent linear conductance in conjugated aromatic polymer based molecular device. Organic Electronics 2019, 65 , 49-55. https://doi.org/10.1016/j.orgel.2018.10.045
    47. Barnali Bhattacharya, Rajkumar Mondal, Utpal Sarkar. The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis. Journal of Molecular Modeling 2018, 24 (10) https://doi.org/10.1007/s00894-018-3818-1
    48. Hari Kumar Yadalam, Upendra Harbola. Current in nanojunctions: Effects of reservoir coupling. Physica E: Low-dimensional Systems and Nanostructures 2018, 101 , 224-231. https://doi.org/10.1016/j.physe.2018.04.002
    49. Sweta Parashar. Electron transport in dipyridazine and dipyridimine molecular junctions: a first-principles investigation. Materials Research Express 2018, 5 (5) , 055011. https://doi.org/10.1088/2053-1591/aaafef
    50. M. R. Calvo, C. Sabater, W. Dednam, E. B. Lombardi, M. J. Caturla, C. Untiedt. Influence of Relativistic Effects on the Contact Formation of Transition Metals. Physical Review Letters 2018, 120 (7) https://doi.org/10.1103/PhysRevLett.120.076802
    51. Jie Li, Yunrui Duan, Yifan Li, Tao Li, Long-Wei Yin, Hui Li. First principles study of electronic transport properties in novel FeB 2 flake-based nanodevices. Physical Chemistry Chemical Physics 2018, 20 (6) , 4455-4465. https://doi.org/10.1039/C7CP07132A
    52. Jie Li, Yunrui Duan, Tao Li, Hui Li. Extreme electron transport suppression in siloxane ring-based molecular devices. Physical Chemistry Chemical Physics 2018, 20 (36) , 23352-23362. https://doi.org/10.1039/C8CP03616K
    53. Haixing Li, Timothy A. Su, María Camarasa‐Gómez, Daniel Hernangómez‐Pérez, Simon E. Henn, Vladislav Pokorný, Caravaggio D. Caniglia, Michael S. Inkpen, Richard Korytár, Michael L. Steigerwald, Colin Nuckolls, Ferdinand Evers, Latha Venkataraman. Silver Makes Better Electrical Contacts to Thiol‐Terminated Silanes than Gold. Angewandte Chemie 2017, 129 (45) , 14333-14336. https://doi.org/10.1002/ange.201708524
    54. Haixing Li, Timothy A. Su, María Camarasa‐Gómez, Daniel Hernangómez‐Pérez, Simon E. Henn, Vladislav Pokorný, Caravaggio D. Caniglia, Michael S. Inkpen, Richard Korytár, Michael L. Steigerwald, Colin Nuckolls, Ferdinand Evers, Latha Venkataraman. Silver Makes Better Electrical Contacts to Thiol‐Terminated Silanes than Gold. Angewandte Chemie International Edition 2017, 56 (45) , 14145-14148. https://doi.org/10.1002/anie.201708524
    55. Richard J. Nichols, Simon J. Higgins. Single molecule electrochemistry in nanoscale junctions. Current Opinion in Electrochemistry 2017, 4 (1) , 98-104. https://doi.org/10.1016/j.coelec.2017.09.009
    56. Noa Marom. Accurate description of the electronic structure of organic semiconductors by GW methods. Journal of Physics: Condensed Matter 2017, 29 (10) , 103003. https://doi.org/10.1088/1361-648X/29/10/103003
    57. Eran Katzir, Nir Sukenik, Yoav Kalcheim, Hen Alpern, Shira Yochelis, Yuri A. Berlin, Mark A. Ratner, Oded Millo, Yossi Paltiel. Probing Molecular‐Transport Properties using the Superconducting Proximity Effect. Small Methods 2017, 1 (3) https://doi.org/10.1002/smtd.201600034
    58. Sören Bock, Oday A. Al‐Owaedi, Samantha G. Eaves, David C. Milan, Mario Lemmer, Brian W. Skelton, Henrry M. Osorio, Richard J. Nichols, Simon J. Higgins, Pilar Cea, Nicholas J. Long, Tim Albrecht, Santiago Martín, Colin J. Lambert, Paul J. Low. Single‐Molecule Conductance Studies of Organometallic Complexes Bearing 3‐Thienyl Contacting Groups. Chemistry – A European Journal 2017, 23 (9) , 2133-2143. https://doi.org/10.1002/chem.201604565
    59. Kun Wang, Bingqian Xu. Modulation and Control of Charge Transport Through Single-Molecule Junctions. Topics in Current Chemistry 2017, 375 (1) https://doi.org/10.1007/s41061-017-0105-z
    60. Jie Li, Yunrui Duan, Yi Zhou, Tao Li, Zhenyang Zhao, Long-Wei Yin, Hui Li. Distinctive electronic transport in pyridine-based devices with narrow graphene nanoribbon electrodes. RSC Advances 2017, 7 (85) , 53696-53705. https://doi.org/10.1039/C7RA09552J
    61. Stephen E Tschudi, Matthew G Reuter. Estimating the Landauer−Büttiker transmission function from single molecule break junction experiments. Nanotechnology 2016, 27 (42) , 425203. https://doi.org/10.1088/0957-4484/27/42/425203
    62. Jie Li, Yi Zhou, Leining Zhang, Hui Li. Characteristic electron transport on pyridine-linked molecular devices with graphene nanoribbons electrodes and gold electrodes. Functional Materials Letters 2016, 09 (05) , 1650067. https://doi.org/10.1142/S1793604716500673
    63. T. Yelin, R. Korytár, N. Sukenik, R. Vardimon, B. Kumar, C. Nuckolls, F. Evers, O. Tal. Conductance saturation in a series of highly transmitting molecular junctions. Nature Materials 2016, 15 (4) , 444-449. https://doi.org/10.1038/nmat4552
    64. Timothy A. Su, Madhav Neupane, Michael L. Steigerwald, Latha Venkataraman, Colin Nuckolls. Chemical principles of single-molecule electronics. Nature Reviews Materials 2016, 1 (3) https://doi.org/10.1038/natrevmats.2016.2
    65. William R. Erwin, Holly F. Zarick, Eric M. Talbert, Rizia Bardhan. Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy & Environmental Science 2016, 9 (5) , 1577-1601. https://doi.org/10.1039/C5EE03847B
    66. Jie Li, Tao Li, Yi Zhou, Weikang Wu, Leining Zhang, Hui Li. Distinctive electron transport on pyridine-linked molecular junctions with narrow monolayer graphene nanoribbon electrodes compared with metal electrodes and graphene electrodes. Physical Chemistry Chemical Physics 2016, 18 (40) , 28217-28226. https://doi.org/10.1039/C6CP05007G
    67. Brian Capozzi, Jianlong Xia, Olgun Adak, Emma J. Dell, Zhen-Fei Liu, Jeffrey C. Taylor, Jeffrey B. Neaton, Luis M. Campos, Latha Venkataraman. Single-molecule diodes with high rectification ratios through environmental control. Nature Nanotechnology 2015, 10 (6) , 522-527. https://doi.org/10.1038/nnano.2015.97
    68. Edward Beall, Xing Yin, David H. Waldeck, Emil Wierzbinski. A scanning tunneling microscope break junction method with continuous bias modulation. Nanoscale 2015, 7 (36) , 14965-14973. https://doi.org/10.1039/C5NR04649A

    Nano Letters

    Cite this: Nano Lett. 2015, 15, 6, 3716–3722
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b01195
    Published May 28, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2678

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.