ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas

View Author Information
Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303, CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon, France
Lebedev Physical Institute, Moscow, Russia
ITMO University, Kronverkskiy 49, 197101, St. Petersburg, Russia
§ ICube UMR 7357 CNRS-Télécom Physique Strasbourg, 67412 Illkirch, France
The Institute of Photonic Sciences, 08860 Castelldefels, Spain
*E-mail: [email protected]. Phone: +33 38039 60222. Fax: +33 38039 6024.
Cite this: Nano Lett. 2015, 15, 9, 5811–5818
Publication Date (Web):July 27, 2015
https://doi.org/10.1021/acs.nanolett.5b01861
Copyright © 2015 American Chemical Society

Article Views

2812

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Abstract Image

Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

Supporting Information

ARTICLE SECTIONS
Jump To

This material is available free of charge via the Internet at http://pubs.acs.org/. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b01861.

  • Description of the experimental apparatus used to characterize the electrical and the optical properties of the electron fed antenna, derivation of the one-dimensional model relating the temperature of the electrons to the electrical power injected into the junction, and comparison of our model with the parameters inferred from noise measurements. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 75 publications.

  1. Florian Dell’Ova, Konstantin Malchow, Rémi Chassagnon, Olivier Heintz, Nicolas Pocholle, Gérard Colas des Francs, Erik Dujardin, Alexandre Bouhelier. Hot Carrier-Induced Nonlinear Photoluminescence in a Thin Indium Tin Oxide Layer Patterned by Ga Ion Beam Milling. ACS Applied Optical Materials 2023, 1 (1) , 244-251. https://doi.org/10.1021/acsaom.2c00046
  2. Yunxuan Zhu, Longji Cui, Mahdiyeh Abbasi, Douglas Natelson. Tuning Light Emission Crossovers in Atomic-Scale Aluminum Plasmonic Tunnel Junctions. Nano Letters 2022, 22 (20) , 8068-8075. https://doi.org/10.1021/acs.nanolett.2c02013
  3. Philipp Grimm, Stefan Zeißner, Maximilian Rödel, Simon Wiegand, Sebastian Hammer, Monika Emmerling, Enno Schatz, René Kullock, Jens Pflaum, Bert Hecht. Color-Switchable Subwavelength Organic Light-Emitting Antennas. Nano Letters 2022, 22 (3) , 1032-1038. https://doi.org/10.1021/acs.nanolett.1c03994
  4. Anna Rosławska, Pablo Merino, Abhishek Grewal, Christopher C. Leon, Klaus Kuhnke, Klaus Kern. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity. Nano Letters 2021, 21 (17) , 7221-7227. https://doi.org/10.1021/acs.nanolett.1c02207
  5. Alberto Martín-Jiménez, Koen Lauwaet, Óscar Jover, Daniel Granados, Andrés Arnau, Vyacheslav M. Silkin, Rodolfo Miranda, Roberto Otero. Electronic Temperature and Two-Electron Processes in Overbias Plasmonic Emission from Tunnel Junctions. Nano Letters 2021, 21 (16) , 7086-7092. https://doi.org/10.1021/acs.nanolett.1c00951
  6. Fangwei Wang, Yan Liu, Thorin Jake Duffin, Vijith Kalathingal, Siping Gao, Wenrui Hu, Yongxin Guo, Soo-Jin Chua, Christian A. Nijhuis. Silicon-Based Quantum Mechanical Tunnel Junction for Plasmon Excitation from Low-Energy Electron Tunneling. ACS Photonics 2021, 8 (7) , 1951-1960. https://doi.org/10.1021/acsphotonics.0c01913
  7. Longji Cui, Yunxuan Zhu, Peter Nordlander, Massimiliano Di Ventra, Douglas Natelson. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations. Nano Letters 2021, 21 (6) , 2658-2665. https://doi.org/10.1021/acs.nanolett.1c00503
  8. Guy Shalem, Omer Erez-Cohen, Diana Mahalu, Israel Bar-Joseph. Light Emission in Metal–Semiconductor Tunnel Junctions: Direct Evidence for Electron Heating by Plasmon Decay. Nano Letters 2021, 21 (3) , 1282-1287. https://doi.org/10.1021/acs.nanolett.0c03945
  9. E-Dean Fung, Latha Venkataraman. Too Cool for Blackbody Radiation: Overbias Photon Emission in Ambient STM Due to Multielectron Processes. Nano Letters 2020, 20 (12) , 8912-8918. https://doi.org/10.1021/acs.nanolett.0c03994
  10. Adrian Agreda, Sviatlana Viarbitskaya, Igor V. Smetanin, Alexander V. Uskov, Gérard Colas des Francs, Alexandre Bouhelier. Electrostatic Control over Optically Pumped Hot Electrons in Optical Gap Antennas. ACS Photonics 2020, 7 (8) , 2153-2162. https://doi.org/10.1021/acsphotonics.0c00623
  11. Longji Cui, Yunxuan Zhu, Mahdiyeh Abbasi, Arash Ahmadivand, Burak Gerislioglu, Peter Nordlander, Douglas Natelson. Electrically Driven Hot-Carrier Generation and Above-Threshold Light Emission in Plasmonic Tunnel Junctions. Nano Letters 2020, 20 (8) , 6067-6075. https://doi.org/10.1021/acs.nanolett.0c02121
  12. Jin Qin, Yingjian Liu, Huiwen Luo, Zhongjun Jiang, Wenshan Cai, Liang Wang. Tunable Light Emission by Electrically Excited Plasmonic Antenna. ACS Photonics 2019, 6 (10) , 2392-2396. https://doi.org/10.1021/acsphotonics.9b00954
  13. Adrian Agreda, Deepak K. Sharma, Sviatlana Viarbitskaya, Romain Hernandez, Benoît Cluzel, Olivier Demichel, Jean-Claude Weeber, Gérard Colas des Francs, G.V. Pavan Kumar, Alexandre Bouhelier. Spatial Distribution of the Nonlinear Photoluminescence in Au Nanowires. ACS Photonics 2019, 6 (5) , 1240-1247. https://doi.org/10.1021/acsphotonics.9b00181
  14. Hasan Göktaş, Fikri Serdar Gökhan, Volker J. Sorger. Electrical-Driven Plasmon Source of Silicon Based on Quantum Tunneling. ACS Photonics 2018, 5 (12) , 4928-4936. https://doi.org/10.1021/acsphotonics.8b01106
  15. Upkar Kumar, Sviatlana Viarbitskaya, Aurélien Cuche, Christian Girard, Sreenath Bolisetty, Raffaele Mezzenga, Gérard Colas des Francs, Alexandre Bouhelier, Erik Dujardin. Designing Plasmonic Eigenstates for Optical Signal Transmission in Planar Channel Devices. ACS Photonics 2018, 5 (6) , 2328-2335. https://doi.org/10.1021/acsphotonics.8b00137
  16. Surya Prakash Gurunarayanan, Niels Verellen, Vyacheslav S. Zharinov, Finub James Shirley, Victor V. Moshchalkov, Marc Heyns, Joris Van de Vondel, Iuliana P. Radu, and Pol Van Dorpe . Electrically Driven Unidirectional Optical Nanoantennas. Nano Letters 2017, 17 (12) , 7433-7439. https://doi.org/10.1021/acs.nanolett.7b03312
  17. Srinivas Ganti, Peter J. King, Erhan Arac, Karl Dawson, Mikko J. Heikkilä, John H. Quilter, Billy Murdoch, Peter Cumpson, and Anthony O’Neill . Voltage Controlled Hot Carrier Injection Enables Ohmic Contacts Using Au Island Metal Films on Ge. ACS Applied Materials & Interfaces 2017, 9 (33) , 27357-27364. https://doi.org/10.1021/acsami.7b06595
  18. Alexander V. Uskov, Jacob B. Khurgin, Mickael Buret, Alexandre Bouhelier, Igor V. Smetanin, and Igor E. Protsenko . Biased Nanoscale Contact as Active Element for Electrically Driven Plasmonic Nanoantenna. ACS Photonics 2017, 4 (6) , 1501-1505. https://doi.org/10.1021/acsphotonics.7b00272
  19. Klaus Kuhnke, Christoph Große, Pablo Merino, and Klaus Kern . Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces. Chemical Reviews 2017, 117 (7) , 5174-5222. https://doi.org/10.1021/acs.chemrev.6b00645
  20. Yuval Vardi, Eyal Cohen-Hoshen, Guy Shalem, and Israel Bar-Joseph . Fano Resonance in an Electrically Driven Plasmonic Device. Nano Letters 2016, 16 (1) , 748-752. https://doi.org/10.1021/acs.nanolett.5b04622
  21. Yuankai Tang, Hayk Harutyunyan. Optical Properties of Plasmonic Tunneling Junctions. The Journal of Chemical Physics 2023, https://doi.org/10.1063/5.0128822
  22. Ryo Yonemoto, Toma Babe, Rieko Ueda, Akira Otomo, Yutaka Noguchi. Electrically induced light emission via nanoscale vacuum discharge in nanogap electrodes without luminescent molecules. Journal of Applied Physics 2022, 132 (17) , 174303. https://doi.org/10.1063/5.0102395
  23. Maoning Wang, Tao Wang, Oluwafemi S. Ojambati, Thorin Jake Duffin, Keehoon Kang, Takhee Lee, Elke Scheer, Dong Xiang, Christian A. Nijhuis. Plasmonic phenomena in molecular junctions: principles and applications. Nature Reviews Chemistry 2022, 6 (10) , 681-704. https://doi.org/10.1038/s41570-022-00423-4
  24. Saurabh Kishen, Jinal Tapar, Naresh Kumar Emani. Tunable directional emission from electrically driven nano-strip metal–insulator–metal tunnel junctions. Nanoscale Advances 2022, 4 (17) , 3609-3616. https://doi.org/10.1039/D2NA00149G
  25. Andreea Radulescu, Vijith Kalathingal, Zhe Wang, Christian A. Nijhuis. Coherence Between Different Propagating Surface Plasmon Polariton Modes Excited by Quantum Mechanical Tunnel Junctions. Advanced Optical Materials 2022, 10 (3) , 2101804. https://doi.org/10.1002/adom.202101804
  26. Anne Nguyen, Jean-Jacques Greffet. Efficiency optimization of mid-infrared incandescent sources with time-varying temperature. Optical Materials Express 2022, 12 (1) , 225. https://doi.org/10.1364/OME.443129
  27. Léo Wojszvzyk, Anne Nguyen, Anne-Lise Coutrot, Cheng Zhang, Benjamin Vest, Jean-Jacques Greffet. An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated beyond 10 MHz. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21752-w
  28. Jibo Tang, Huatian Hu, Xiaobo He, Yuhao Xu, Yuan Zhang, Zhiqiang Guan, Shunping Zhang, Hongxing Xu. Switchable Electrically Driven Optical Antenna Based on Ultrathin Amorphous Silica. Advanced Optical Materials 2021, 9 (19) , 2100191. https://doi.org/10.1002/adom.202100191
  29. Yan Liu, Soo-Jin Chua, Siping Gao, Wenrui Hu, Yongxin Guo. Electroluminescence in plasmonic actuator based on Au/SiO 2 /n-Si tunnel junction. Nanophotonics 2021, 10 (13) , 3487-3496. https://doi.org/10.1515/nanoph-2021-0287
  30. Anne Nguyen, Léo Wojszvzyk, Anne-Lise Coutrot, Benjamin Vest, Jean-Jacques Greffet, , , . Fast modulation and polarization control of infrared emission by incandescent metasurfaces. 2021, 60. https://doi.org/10.1117/12.2594428
  31. A. Ciattoni, C. Conti, A. Marini. Electric Directional Steering of Cathodoluminescence From Graphene-Based Hybrid Nanostructures. Physical Review Applied 2021, 15 (5) https://doi.org/10.1103/PhysRevApplied.15.054016
  32. Andreea Radulescu, Ksenia S. Makarenko, Thanh Xuan Hoang, Vijith Kalathingal, Thorin J. Duffin, Hong-Son Chu, Christian A. Nijhuis. Geometric control over surface plasmon polariton out-coupling pathways in metal-insulator-metal tunnel junctions. Optics Express 2021, 29 (8) , 11987. https://doi.org/10.1364/OE.413698
  33. Konstantin Malchow, Alexandre Bouhelier. Photon bunching of the nonlinear photoluminescence emitted by plasmonics metals. Journal of the Optical Society of America B 2021, 38 (2) , 576. https://doi.org/10.1364/JOSAB.411507
  34. Jihye Lee, Jong-Souk Yeo. On-Chip Nanoscale Light Source Based on Quantum Tunneling: Enabling Ultrafast Quantum Device and Sensing Applications. Applied Science and Convergence Technology 2021, 30 (1) , 6-13. https://doi.org/10.5757/ASCT.2021.30.1.6
  35. Nannan Li, Yunhe Lai, Shiu Hei Lam, Haoyuan Bai, Lei Shao, Jianfang Wang. Directional Control of Light with Nanoantennas. Advanced Optical Materials 2021, 9 (1) , 2001081. https://doi.org/10.1002/adom.202001081
  36. Youngsang Kim, Charles H. Ang, Kwissy Ang, Soon W. Chang. Electromigrated nanogaps: A review on the fabrications and applications. Journal of Vacuum Science & Technology B 2021, 39 (1) , 010802. https://doi.org/10.1116/6.0000866
  37. Yunxuan Zhu, Longji Cui, Douglas Natelson. Hot-carrier enhanced light emission: The origin of above-threshold photons from electrically driven plasmonic tunnel junctions. Journal of Applied Physics 2020, 128 (23) , 233105. https://doi.org/10.1063/5.0024392
  38. Christian Ott, Stephan Götzinger, Heiko B. Weber. Thermal origin of light emission in nonresonant and resonant nanojunctions. Physical Review Research 2020, 2 (4) https://doi.org/10.1103/PhysRevResearch.2.042019
  39. Ksenia S. Makarenko, Thanh Xuan Hoang, Thorin J. Duffin, Andreea Radulescu, Vijith Kalathingal, Henri J. Lezec, Hong‐Son Chu, Christian A. Nijhuis. Efficient Surface Plasmon Polariton Excitation and Control over Outcoupling Mechanisms in Metal–Insulator–Metal Tunneling Junctions. Advanced Science 2020, 7 (8) , 1900291. https://doi.org/10.1002/advs.201900291
  40. Mickaël Buret, Igor V. Smetanin, Alexander V. Uskov, Gérard Colas des Francs, Alexandre Bouhelier. Effect of quantized conductivity on the anomalous photon emission radiated from atomic-size point contacts. Nanophotonics 2020, 9 (2) , 413-425. https://doi.org/10.1515/nanoph-2019-0325
  41. Zhipeng Sun, Mingming Jiang, Wangqi Mao, Caixia Kan, Chongxin Shan, Dezhen Shen. Nonequilibrium hot-electron-induced wavelength-tunable incandescent-type light sources. Photonics Research 2020, 8 (1) , 91. https://doi.org/10.1364/PRJ.8.000091
  42. Markus Parzefall, Áron Szabó, Takashi Taniguchi, Kenji Watanabe, Mathieu Luisier, Lukas Novotny. Light from van der Waals quantum tunneling devices. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-018-08266-8
  43. Liang Wang, Yingjian Liu, Jin Qin, , , . Electrically driven plasmonic antenna. 2019, 8. https://doi.org/10.1117/12.2538155
  44. Markus Parzefall, Lukas Novotny. Optical antennas driven by quantum tunneling: a key issues review. Reports on Progress in Physics 2019, 82 (11) , 112401. https://doi.org/10.1088/1361-6633/ab4239
  45. Tao Wang, Wei Du, Nikodem Tomczak, Lejia Wang, Christian A. Nijhuis. In Operando Characterization and Control over Intermittent Light Emission from Molecular Tunnel Junctions via Molecular Backbone Rigidity. Advanced Science 2019, 6 (20) , 1900390. https://doi.org/10.1002/advs.201900390
  46. Ludivine Emeric, Claire Deeb, Fabrice Pardo, Jean-Luc Pelouard. Critical coupling and extreme confinement in nanogap antennas. Optics Letters 2019, 44 (19) , 4761. https://doi.org/10.1364/OL.44.004761
  47. Zhanguo Li, Gaohang He, Mingming Jiang, Jiaolong Ji, Chongxin Shan, Dezhen Shen. Electrical-pumping spasing action from cross-stacked microwires. Journal of Materials Chemistry C 2019, 7 (35) , 10933-10944. https://doi.org/10.1039/C9TC03537K
  48. Léo Wojszvzyk, Hector Monin, Jean‐Jacques Greffet. Light Emission by a Thermalized Ensemble of Emitters Coupled to a Resonant Structure. Advanced Optical Materials 2019, 7 (14) , 1801697. https://doi.org/10.1002/adom.201801697
  49. Arindam Dasgupta, Marie-Maxime Mennemanteuil, Mickaël Buret, Nicolas Cazier, Gérard Colas-des-Francs, Alexandre Bouhelier. Optical wireless link between a nanoscale antenna and a transducing rectenna. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-04382-7
  50. Pierre Février, Julien Gabelli. Tunneling time probed by quantum shot noise. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07369-6
  51. Woongkyu Park, Youjin Lee, Taehee Kang, Jeeyoon Jeong, Dai-Sik Kim. Terahertz-driven polymerization of resists in nanoantennas. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-26214-w
  52. Marie-Maxime Mennemanteuil, Gérard Colas-des-Francs, Mickaël Buret, Arindam Dasgupta, Alexander Cuadrado, Javier Alda, Alexandre Bouhelier. Laser-induced thermoelectric effects in electrically biased nanoscale constrictions. Nanophotonics 2018, 7 (12) , 1917-1927. https://doi.org/10.1515/nanoph-2018-0083
  53. Kai Braun, Florian Laible, Otto Hauler, Xiao Wang, Anlian Pan, Monika Fleischer, Alfred J. Meixner. Active optical antennas driven by inelastic electron tunneling. Nanophotonics 2018, 7 (9) , 1503-1516. https://doi.org/10.1515/nanoph-2018-0080
  54. I. V. Smetanin, A. Bouhelier, A. V. Uskov. Coherent Excitation of Optical Oscillations in a Metal Nanosphere by a 2D Electric Current. Journal of Russian Laser Research 2018, 39 (5) , 484-491. https://doi.org/10.1007/s10946-018-9743-z
  55. F.A. Shuklin, J.B. Khurgin, I.V. Smetanin, I.E. Protsenko, A. Bouhelier, I.S. Mukhin, A.V. Uskov. Stimulated emission of phonons and plasmons by ballistic electrons in nanoscale contacts. 2018, 429-429. https://doi.org/10.1109/LO.2018.8435781
  56. Ludivine Emeric, Claire Deeb, Jean-Luc Pelouard, Alan Durnez, Fabrice Pardo, Nathalie Bardou, Riad Haïdar, , , , . Investigating the optical properties of nanogap optical antennas. 2018, 111. https://doi.org/10.1117/12.2306849
  57. Jean-Jacques Greffet, Patrick Bouchon, Giovanni Brucoli, François Marquier. Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law. Physical Review X 2018, 8 (2) https://doi.org/10.1103/PhysRevX.8.021008
  58. Yang Liu, Mingming Jiang, Zhenzhong Zhang, Binghui Li, Haifeng Zhao, Chongxin Shan, Dezhen Shen. Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires via metal quasiparticle film decoration. Nanoscale 2018, 10 (12) , 5678-5688. https://doi.org/10.1039/C8NR00715B
  59. Arindam Dasgupta, Mickaël Buret, Nicolas Cazier, Marie-Maxime Mennemanteuil, Reinaldo Chacon, Kamal Hammani, Jean-Claude Weeber, Juan Arocas, Laurent Markey, Gérard Colas des Francs, Alexander Uskov, Igor Smetanin, Alexandre Bouhelier. Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale. Beilstein Journal of Nanotechnology 2018, 9 , 1964-1976. https://doi.org/10.3762/bjnano.9.187
  60. Vijith Kalathingal, Paul Dawson, J. Mitra. Scanning tunnelling microscope light emission: Finite temperature current noise and over cut-off emission. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-03766-x
  61. Wei Du, Tao Wang, Hong-Son Chu, Christian A. Nijhuis. Highly efficient on-chip direct electronic–plasmonic transducers. Nature Photonics 2017, 11 (10) , 623-627. https://doi.org/10.1038/s41566-017-0003-5
  62. Peter-Jan Peters, Fei Xu, Kristen Kaasbjerg, Gianluca Rastelli, Wolfgang Belzig, Richard Berndt. Quantum Coherent Multielectron Processes in an Atomic Scale Contact. Physical Review Letters 2017, 119 (6) https://doi.org/10.1103/PhysRevLett.119.066803
  63. I E Protsenko, A V Uskov, Xue-Wen Chen, Hongxing Xu. Plasmonic superradiance of two emitters near a metal nanorod. Journal of Physics D: Applied Physics 2017, 50 (25) , 254003. https://doi.org/10.1088/1361-6463/aa6fd4
  64. Alexander Cuadrado, José Manuel López-Alonso, Francisco Javier González, Javier Alda. Spectral Response of Metallic Optical Antennas Driven by Temperature. Plasmonics 2017, 12 (3) , 553-561. https://doi.org/10.1007/s11468-016-0297-z
  65. A. V. Uskov, J. B. Khurgin, I. V. Smetanin, I. E. Protsenko, I. S. Mukhin, A. O. Goludok, M. Buret, A. Bouhelier. New approaches to electrically driven nanoantennas. 2017, 3847-3853. https://doi.org/10.1109/PIERS.2017.8262430
  66. , , Alexander V. Uskov, Jacob B. Khurgin, Alexandre Bouhelier, Mikael Buret, Igor E. Protsenko, Igor V. Smetanin. Electrically-driven optical antennas enabled by mesoscopic contacts. 2017, 1010204. https://doi.org/10.1117/12.2249619
  67. Markus Parzefall, Palash Bharadwaj, Lukas Novotny. Antenna-Coupled Tunnel Junctions. 2017, 211-236. https://doi.org/10.1007/978-3-319-45820-5_10
  68. B Rogez, S Cao, G Dujardin, G Comtet, E Le Moal, A Mayne, E Boer-Duchemin. The mechanism of light emission from a scanning tunnelling microscope operating in air. Nanotechnology 2016, 27 (46) , 465201. https://doi.org/10.1088/0957-4484/27/46/465201
  69. A. V. Uskov, I. V. Smetanin, I. E. Protsenko, J. B. Khurgin, M. Buret, A. Bouhelier. Nanoscale constriction as a source of plasmons for plasmonic nanocircuitries. 2016, 376-378. https://doi.org/10.1109/MetaMaterials.2016.7746405
  70. Tao Wang, Christian A. Nijhuis. Molecular electronic plasmonics. Applied Materials Today 2016, 3 , 73-86. https://doi.org/10.1016/j.apmt.2016.03.001
  71. A. V. Uskov, I. V. Smetanin, I. E. Protsenko, J. B. Khurgin, M. Buret, A. Bouhelier. Metal mesoscopic contact as a source of plasmons for plasmonic nanocircuitries. 2016, R9-3-R9-3. https://doi.org/10.1109/LO.2016.7549903
  72. T. Malinowski, H. R. Klein, M. Iazykov, Ph. Dumas. Infrared light emission from nano hot electron gas created in atomic point contacts. EPL (Europhysics Letters) 2016, 114 (5) , 57002. https://doi.org/10.1209/0295-5075/114/57002
  73. Guillaume Schull. Launching plasmons with molecules. Nature Photonics 2016, 10 (4) , 208-209. https://doi.org/10.1038/nphoton.2016.42
  74. N. Cazier, M. Buret, A. V. Uskov, L. Markey, J. Arocas, G. Colas Des Francs, A. Bouhelier. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna. Optics Express 2016, 24 (4) , 3873. https://doi.org/10.1364/OE.24.003873
  75. Alexander V. Uskov, Jacob B. Khurgin, Igor E. Protsenko, Igor V. Smetanin, Alexandre Bouhelier. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling. Nanoscale 2016, 8 (30) , 14573-14579. https://doi.org/10.1039/C6NR01931E

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect