ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Nanoscale Control of Rewriteable Doping Patterns in Pristine Graphene/Boron Nitride Heterostructures

View Author Information
Department of Physics, University of California, Berkeley, California 94720, United States
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
§ Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
Department of Physics, University of California, Santa Cruz, California 95064, United States
Cite this: Nano Lett. 2016, 16, 3, 1620–1625
Publication Date (Web):February 8, 2016
https://doi.org/10.1021/acs.nanolett.5b04441
Copyright © 2016 American Chemical Society
Article Views
3943
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

Abstract Image

Nanoscale control of charge doping in two-dimensional (2D) materials permits the realization of electronic analogs of optical phenomena, relativistic physics at low energies, and technologically promising nanoelectronics. Electrostatic gating and chemical doping are the two most common methods to achieve local control of such doping. However, these approaches suffer from complicated fabrication processes that introduce contamination, change material properties irreversibly, and lack flexible pattern control. Here we demonstrate a clean, simple, and reversible technique that permits writing, reading, and erasing of doping patterns for 2D materials at the nanometer scale. We accomplish this by employing a graphene/boron nitride heterostructure that is equipped with a bottom gate electrode. By using electron transport and scanning tunneling microscopy (STM), we demonstrate that spatial control of charge doping can be realized with the application of either light or STM tip voltage excitations in conjunction with a gate electric field. Our straightforward and novel technique provides a new path toward on-demand graphene p–n junctions and ultrathin memory devices.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b04441.

  • (1) Determination of g for light-induced doping, (2) procedure for converting dI/dV intensity to charge density fluctuations after light-induced doping, (3) tip-doping dI/dV spectra for Vg > 0 V, (4) conversion of dI/dV intensity to charge density after tip-doping, (5) detailed tip-doping procedure, (6) G(Vg) transport data before and after tip-doping, and (7) discussion of the nature of the BN defects. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 48 publications.

  1. Zhehao Ge, Dillon Wong, Juwon Lee, Frederic Joucken, Eberth A. Quezada-Lopez, Salman Kahn, Hsin-Zon Tsai, Takashi Taniguchi, Kenji Watanabe, Feng Wang, Alex Zettl, Michael F. Crommie, Jairo Velasco, Jr.. Imaging Quantum Interference in Stadium-Shaped Monolayer and Bilayer Graphene Quantum Dots. Nano Letters 2021, 21 (21) , 8993-8998. https://doi.org/10.1021/acs.nanolett.1c02271
  2. Wyatt A. Behn, Zachary J. Krebs, Keenan J. Smith, Kenji Watanabe, Takashi Taniguchi, Victor W. Brar. Measuring and Tuning the Potential Landscape of Electrostatically Defined Quantum Dots in Graphene. Nano Letters 2021, 21 (12) , 5013-5020. https://doi.org/10.1021/acs.nanolett.1c00791
  3. Zhehao Ge, Frederic Joucken, Eberth Quezada, Diego R. da Costa, John Davenport, Brian Giraldo, Takashi Taniguchi, Kenji Watanabe, Nobuhiko P. Kobayashi, Tony Low, Jairo Velasco Jr.. Visualization and Manipulation of Bilayer Graphene Quantum Dots with Broken Rotational Symmetry and Nontrivial Topology. Nano Letters 2020, 20 (12) , 8682-8688. https://doi.org/10.1021/acs.nanolett.0c03453
  4. David Miller, Andrew Blaikie, Benjamín J. Alemán. Nonvolatile Rewritable Frequency Tuning of a Nanoelectromechanical Resonator Using Photoinduced Doping. Nano Letters 2020, 20 (4) , 2378-2386. https://doi.org/10.1021/acs.nanolett.9b05003
  5. Jairo Velasco, Jr., Juwon Lee, Dillon Wong, Salman Kahn, Hsin-Zon Tsai, Joseph Costello, Torben Umeda, Takashi Taniguchi, Kenji Watanabe, Alex Zettl, Feng Wang, Michael F. Crommie. Visualization and Control of Single-Electron Charging in Bilayer Graphene Quantum Dots. Nano Letters 2018, 18 (8) , 5104-5110. https://doi.org/10.1021/acs.nanolett.8b01972
  6. Jiandong Feng, Hendrik Deschout, Sabina Caneva, Stephan Hofmann, Ivor Lončarić, Predrag Lazić, Aleksandra Radenovic. Imaging of Optically Active Defects with Nanometer Resolution. Nano Letters 2018, 18 (3) , 1739-1744. https://doi.org/10.1021/acs.nanolett.7b04819
  7. Hyun Ho Choi, Jaesung Park, Sung Huh, Seong Kyu Lee, Byungho Moon, Sang Woo Han, Chanyong Hwang, and Kilwon Cho . Photoelectric Memory Effect in Graphene Heterostructure Field-Effect Transistors Based on Dual Dielectrics. ACS Photonics 2018, 5 (2) , 329-336. https://doi.org/10.1021/acsphotonics.7b01132
  8. Victor W. Brar, Andrew R. Koltonow, and Jiaxing Huang . New Discoveries and Opportunities from Two-Dimensional Materials. ACS Photonics 2017, 4 (3) , 407-411. https://doi.org/10.1021/acsphotonics.7b00194
  9. Hai I. Wang, Marie-Luise Braatz, Nils Richter, Klaas-Jan Tielrooij, Zoltan Mics, Hao Lu, Nils-Eike Weber, Klaus Müllen, Dmitry Turchinovich, Mathias Kläui, and Mischa Bonn . Reversible Photochemical Control of Doping Levels in Supported Graphene. The Journal of Physical Chemistry C 2017, 121 (7) , 4083-4091. https://doi.org/10.1021/acs.jpcc.7b00347
  10. Zav Shotan, Harishankar Jayakumar, Christopher R. Considine, Mažena Mackoit, Helmut Fedder, Jörg Wrachtrup, Audrius Alkauskas, Marcus W. Doherty, Vinod M. Menon, and Carlos A. Meriles . Photoinduced Modification of Single-Photon Emitters in Hexagonal Boron Nitride. ACS Photonics 2016, 3 (12) , 2490-2496. https://doi.org/10.1021/acsphotonics.6b00736
  11. Zachary J. Krebs, Wyatt A. Behn, Songci Li, Keenan J. Smith, Kenji Watanabe, Takashi Taniguchi, Alex Levchenko, Victor W. Brar. Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids. Science 2023, 379 (6633) , 671-676. https://doi.org/10.1126/science.abm6073
  12. Chen-Di Han, Ying-Cheng Lai. Generating extreme quantum scattering in graphene with machine learning. Physical Review B 2022, 106 (21) https://doi.org/10.1103/PhysRevB.106.214307
  13. Kun Zhao, Dawei He, Shaohua Fu, Zhiying Bai, Qing Miao, Mohan Huang, Yongsheng Wang, Xiaoxian Zhang. Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices. Nanomaterials 2022, 12 (19) , 3418. https://doi.org/10.3390/nano12193418
  14. G Ciampalini, C V Blaga, N Tappy, S Pezzini, K Watanabe, T Taniguchi, F Bianco, S Roddaro, A Fontcuberta I Morral, F Fabbri. Light emission properties of mechanical exfoliation induced extended defects in hexagonal boron nitride flakes. 2D Materials 2022, 9 (3) , 035018. https://doi.org/10.1088/2053-1583/ac6f09
  15. Qian Yang, Yu Zhang, Zhong-Qiu Fu, Yulong Chen, Zengfeng Di, Lin He. Creating custom-designed patterns of nanoscale graphene quantum dots. 2D Materials 2022, 9 (2) , 021002. https://doi.org/10.1088/2053-1583/ac4e71
  16. Xiao-Feng Zhou, Yi-Wen Liu, Hong-Yi Yan, Zhong-Qiu Fu, Haiwen Liu, Lin He. Electronic confinement in quantum dots of twisted bilayer graphene. Physical Review B 2021, 104 (23) https://doi.org/10.1103/PhysRevB.104.235417
  17. Vishal Kumar, Nisika, Mukesh Kumar. Temporal-spatial-energy resolved advance multidimensional techniques to probe photovoltaic materials from atomistic viewpoint for next-generation energy solutions. Energy & Environmental Science 2021, 14 (9) , 4760-4802. https://doi.org/10.1039/D1EE01165K
  18. Xiao‐Tong Liu, Jin‐Rui Chen, Yan Wang, Su‐Ting Han, Ye Zhou. Building Functional Memories and Logic Circuits with 2D Boron Nitride. Advanced Functional Materials 2021, 31 (4) , 2004733. https://doi.org/10.1002/adfm.202004733
  19. Enxiu Wu, Yuan Xie, Shijie Wang, Daihua Zhang, Xiaodong Hu, Jing Liu. Non-volatile programmable homogeneous lateral MoTe2 junction for multi-bit flash memory and high-performance optoelectronics. Nano Research 2020, 13 (12) , 3445-3451. https://doi.org/10.1007/s12274-020-3041-0
  20. Xiaorui Zheng, Annalisa Calò, Tengfei Cao, Xiangyu Liu, Zhujun Huang, Paul Masih Das, Marija Drndic, Edoardo Albisetti, Francesco Lavini, Tai-De Li, Vishal Narang, William P. King, John W. Harrold, Michele Vittadello, Carmela Aruta, Davood Shahrjerdi, Elisa Riedo. Spatial defects nanoengineering for bipolar conductivity in MoS2. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17241-1
  21. Chen-Di Han, Hong-Ya Xu, Ying-Cheng Lai. Pseudospin modulation in coupled graphene systems. Physical Review Research 2020, 2 (3) https://doi.org/10.1103/PhysRevResearch.2.033406
  22. Dillon Wong, Kevin P. Nuckolls, Myungchul Oh, Biao Lian, Yonglong Xie, Sangjun Jeon, Kenji Watanabe, Takashi Taniguchi, B. Andrei Bernevig, Ali Yazdani. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 2020, 582 (7811) , 198-202. https://doi.org/10.1038/s41586-020-2339-0
  23. Eberth A. Quezada-López, Zhehao Ge, Takashi Taniguchi, Kenji Watanabe, Frédéric Joucken, Jairo Velasco. Comprehensive Electrostatic Modeling of Exposed Quantum Dots in Graphene/Hexagonal Boron Nitride Heterostructures. Nanomaterials 2020, 10 (6) , 1154. https://doi.org/10.3390/nano10061154
  24. Chen-Di Han, Hong-Ya Xu, Ying-Cheng Lai. Electrical confinement in a spectrum of two-dimensional Dirac materials with classically integrable, mixed, and chaotic dynamics. Physical Review Research 2020, 2 (1) https://doi.org/10.1103/PhysRevResearch.2.013116
  25. Wu Shi, Salman Kahn, Lili Jiang, Sheng-Yu Wang, Hsin-Zon Tsai, Dillon Wong, Takashi Taniguchi, Kenji Watanabe, Feng Wang, Michael F. Crommie, Alex Zettl. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nature Electronics 2020, 3 (2) , 99-105. https://doi.org/10.1038/s41928-019-0351-x
  26. Sung-Joon Lee, Zhaoyang Lin, Xiangfeng Duan, Yu Huang. Doping on demand in 2D devices. Nature Electronics 2020, 3 (2) , 77-78. https://doi.org/10.1038/s41928-020-0376-1
  27. E. A. Quezada-Lopez, F. Joucken, H. Chen, A. Lara, J. L. Davenport, K. Hellier, T. Taniguchi, K. Watanabe, S. Carter, A. P. Ramirez, J. Velasco. Persistent and reversible electrostatic control of doping in graphene/hexagonal boron nitride heterostructures. Journal of Applied Physics 2020, 127 (4) , 044303. https://doi.org/10.1063/1.5127770
  28. Daniel Walkup, Fereshte Ghahari, Christopher Gutiérrez, Kenji Watanabe, Takashi Taniguchi, Nikolai B. Zhitenev, Joseph A. Stroscio. Tuning single-electron charging and interactions between compressible Landau level islands in graphene. Physical Review B 2020, 101 (3) https://doi.org/10.1103/PhysRevB.101.035428
  29. Wonhee Ko, Chuanxu Ma, Giang D. Nguyen, Marek Kolmer, An‐Ping Li. Atomic‐Scale Manipulation and In Situ Characterization with Scanning Tunneling Microscopy. Advanced Functional Materials 2019, 29 (52) , 1903770. https://doi.org/10.1002/adfm.201903770
  30. Markus J. Klug, Sergey V. Syzranov. Chaos and the dynamics of information in dissipative electronic systems. Physical Review B 2019, 100 (9) https://doi.org/10.1103/PhysRevB.100.094304
  31. Zhiyuan Fan, Shourya Dutta-Gupta, Ran Gladstone, Simeon Trendafilov, Melissa Bosch, Minwoo Jung, Ganjigunte R. Swathi Iyer, Alexander J. Giles, Maxim Shcherbakov, Boris Feigelson, Joshua D. Caldwell, Monica Allen, Jeffery Allen, Gennady Shvets. Electrically defined topological interface states of graphene surface plasmons based on a gate-tunable quantum Bragg grating. Nanophotonics 2019, 8 (8) , 1417-1431. https://doi.org/10.1515/nanoph-2019-0108
  32. JiaoJiao Zhou, ShuGuang Cheng, WenLong You, Hua Jiang. Numerical study of Klein quantum dots in graphene systems. Science China Physics, Mechanics & Astronomy 2019, 62 (6) https://doi.org/10.1007/s11433-018-9314-2
  33. Jianan Li, Qing Guo, Lu Chen, Shan Hao, Yang Hu, Jen-Feng Hsu, Hyungwoo Lee, Jung-Woo Lee, Chang-Beom Eom, Brian D'Urso, Patrick Irvin, Jeremy Levy. Reconfigurable edge-state engineering in graphene using LaAlO 3 /SrTiO 3 nanostructures. Applied Physics Letters 2019, 114 (12) , 123103. https://doi.org/10.1063/1.5080251
  34. Willi Auwärter. Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures. Surface Science Reports 2019, 74 (1) , 1-95. https://doi.org/10.1016/j.surfrep.2018.10.001
  35. Alessio Scavuzzo, Shai Mangel, Ji-Hoon Park, Sanghyup Lee, Dinh Loc Duong, Christian Strelow, Alf Mews, Marko Burghard, Klaus Kern. Electrically tunable quantum emitters in an ultrathin graphene–hexagonal boron nitride van der Waals heterostructure. Applied Physics Letters 2019, 114 (6) , 062104. https://doi.org/10.1063/1.5067385
  36. Muhammad Zahir Iqbal, Salma Siddique, Abbas Khan, Dongchul Sung, Jonghwa Eom, Suklyun Hong. Ultraviolet-light-driven charge carriers tunability mechanism in graphene. Materials & Design 2018, 159 , 232-239. https://doi.org/10.1016/j.matdes.2018.08.049
  37. Lara Misseeuw, Tymoteusz Ciuk, Aleksandra Krajewska, Iwona Pasternak, Wlodek Strupinski, Benjamin Feigel, Mulham Khoder, Isabelle Vandriessche, Jürgen Van Erps, Sandra Van Vlierberghe, Hugo Thienpont, Peter Dubruel, Nathalie Vermeulen. Localized optical-quality doping of graphene on silicon waveguides through a TFSA-containing polymer matrix. Journal of Materials Chemistry C 2018, 6 (40) , 10739-10750. https://doi.org/10.1039/C8TC03198C
  38. Milad Zoghi, Arash Yazdanpanah Goharrizi, Seyed Mohammad Mirjalili, M Z Kabir. Electronic and transport properties of zigzag carbon nanotubes with the presence of periodical antidot and boron/nitride doping defects. Semiconductor Science and Technology 2018, 33 (6) , 065015. https://doi.org/10.1088/1361-6641/aac161
  39. Jingang Wang, Xuefeng Xu, Xijiao Mu, Fengcai Ma, Mengtao Sun. Magnetics and spintronics on two-dimensional composite materials of graphene/hexagonal boron nitride. Materials Today Physics 2017, 3 , 93-117. https://doi.org/10.1016/j.mtphys.2017.10.003
  40. Feng Wu, Andrew Galatas, Ravishankar Sundararaman, Dario Rocca, Yuan Ping. First-principles engineering of charged defects for two-dimensional quantum technologies. Physical Review Materials 2017, 1 (7) https://doi.org/10.1103/PhysRevMaterials.1.071001
  41. Pavel Procházka, David Mareček, Zuzana Lišková, Jan Čechal, Tomáš Šikola. X-ray induced electrostatic graphene doping via defect charging in gate dielectric. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-00673-z
  42. Fereshte Ghahari, Daniel Walkup, Christopher Gutiérrez, Joaquin F. Rodriguez-Nieva, Yue Zhao, Jonathan Wyrick, Fabian D. Natterer, William G. Cullen, Kenji Watanabe, Takashi Taniguchi, Leonid S. Levitov, Nikolai B. Zhitenev, Joseph A. Stroscio. An on/off Berry phase switch in circular graphene resonators. Science 2017, 356 (6340) , 845-849. https://doi.org/10.1126/science.aal0212
  43. Dillon Wong, Fabiano Corsetti, Yang Wang, Victor W. Brar, Hsin-Zon Tsai, Qiong Wu, Roland K. Kawakami, Alex Zettl, Arash A. Mostofi, Johannes Lischner, Michael F. Crommie. Spatially resolving density-dependent screening around a single charged atom in graphene. Physical Review B 2017, 95 (20) https://doi.org/10.1103/PhysRevB.95.205419
  44. Pablo Solís-Fernández, Mark Bissett, Hiroki Ago. Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society Reviews 2017, 46 (15) , 4572-4613. https://doi.org/10.1039/C7CS00160F
  45. Kailiang Zhang, Yulin Feng, Fang Wang, Zhengchun Yang, John Wang. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C 2017, 5 (46) , 11992-12022. https://doi.org/10.1039/C7TC04300G
  46. Juwon Lee, Dillon Wong, Jairo Velasco Jr, Joaquin F. Rodriguez-Nieva, Salman Kahn, Hsin-Zon Tsai, Takashi Taniguchi, Kenji Watanabe, Alex Zettl, Feng Wang, Leonid S. Levitov, Michael F. Crommie. Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nature Physics 2016, 12 (11) , 1032-1036. https://doi.org/10.1038/nphys3805
  47. Heejun Yang. Graphene traps. Nature Physics 2016, 12 (11) , 994-995. https://doi.org/10.1038/nphys3817
  48. D. N. Basov, M. M. Fogler, F. J. García de Abajo. Polaritons in van der Waals materials. Science 2016, 354 (6309) https://doi.org/10.1126/science.aag1992

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE