Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Light-Triggered Release of Bioactive Molecules from DNA Nanostructures
My Activity
    Letter

    Light-Triggered Release of Bioactive Molecules from DNA Nanostructures
    Click to copy article linkArticle link copied!

    View Author Information
    Biomedical Engineering Department, Boston University, Boston, Massachusetts 02215, United States
    Biology Department, Boston University, Boston, Massachusetts 02215, United States
    Other Access OptionsSupporting Information (3)

    Nano Letters

    Cite this: Nano Lett. 2016, 16, 4, 2781–2785
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.6b00530
    Published March 3, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Recent innovations in DNA nanofabrication allow the creation of intricately shaped nanostructures ideally suited for many biological applications. To advance the use of DNA nanotechnology for the controlled release of bioactive molecules, we report a general strategy that uses light to liberate encapsulated cargoes from DNA nanostructures with high spatiotemporal precision. Through the incorporation of a custom, photolabile cross-linker, we encapsulated cargoes ranging in size from small molecules to full-sized proteins within DNA nanocages and then released such cargoes upon brief exposure to light. This novel molecular uncaging technique offers a general approach for precisely releasing a large variety of bioactive molecules, allowing investigation into their mechanism of action, or finely tuned delivery with high temporal precision for broad biomedical and materials applications.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.6b00530.

    • Synthetic schemes, synthetic details, bioconjugation details, experimental details of glutamate uncaging, additional TEM images, and DNA sequences. (PDF)

    • Supplemental Video S1: In the presence of DNA nanocages containing glutamate, neurons exhibited an increase in intracellular calcium levels after 1 ms light pulse illumination. (AVI)

    • Supplement Video S2: In the absence of the DNA nanocages, no neurons exhibited a change in calcium levels after 1 ms light pulse illumination. (AVI)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 87 publications.

    1. Devanathan Perumal, Qi Yang, Maciej Jeziorek, Jung Yeon Lee, Jean-Pierre Etchegaray, Fei Zhang. Guided Self-Assembly of DNA Tiles into One- and Two-Dimensional Patterns Using Strand-Displacement and Optochemical Pathways. ACS Applied Optical Materials 2024, Article ASAP.
    2. Justin M. Horn, Allie C. Obermeyer. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021, 22 (12) , 4883-4904. https://doi.org/10.1021/acs.biomac.1c00745
    3. Sami Nummelin, Boxuan Shen, Petteri Piskunen, Qing Liu, Mauri A. Kostiainen, Veikko Linko. Robotic DNA Nanostructures. ACS Synthetic Biology 2020, 9 (8) , 1923-1940. https://doi.org/10.1021/acssynbio.0c00235
    4. Paige J. LeValley, Raghupathi Neelarapu, Bryan P. Sutherland, Srimoyee Dasgupta, Christopher J. Kloxin, April M. Kloxin. Photolabile Linkers: Exploiting Labile Bond Chemistry to Control Mode and Rate of Hydrogel Degradation and Protein Release. Journal of the American Chemical Society 2020, 142 (10) , 4671-4679. https://doi.org/10.1021/jacs.9b11564
    5. Fei Wang, Zhenwei Yuan, Patrick McMullen, Ruixi Li, Jinrong Zheng, Yue Xu, Mingjun Xu, Qing He, Bowen Li, Haiyan Chen. Near-Infrared-Light-Responsive Lipid Nanoparticles as an Intelligent Drug Release System for Cancer Therapy. Chemistry of Materials 2019, 31 (11) , 3948-3956. https://doi.org/10.1021/acs.chemmater.9b00150
    6. Alessia Amodio, Erica Del Grosso, Alessandra Troina, Ernesto Placidi, Francesco Ricci. Remote Electronic Control of DNA-Based Reactions and Nanostructure Assembly. Nano Letters 2018, 18 (5) , 2918-2923. https://doi.org/10.1021/acs.nanolett.8b00179
    7. Anton Kuzyk, Ralf Jungmann, Guillermo P. Acuna, Na Liu. DNA Origami Route for Nanophotonics. ACS Photonics 2018, 5 (4) , 1151-1163. https://doi.org/10.1021/acsphotonics.7b01580
    8. Jonathan R. Burns, Baptiste Lamarre, Alice L. B. Pyne, James E. Noble, Maxim G. Ryadnov. DNA Origami Inside-Out Viruses. ACS Synthetic Biology 2018, 7 (3) , 767-773. https://doi.org/10.1021/acssynbio.7b00278
    9. Fan Hong, Fei Zhang, Yan Liu, and Hao Yan . DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews 2017, 117 (20) , 12584-12640. https://doi.org/10.1021/acs.chemrev.6b00825
    10. Mahdi Karimi, Parham Sahandi Zangabad, Soodeh Baghaee-Ravari, Mehdi Ghazadeh, Hamid Mirshekari, and Michael R. Hamblin . Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. Journal of the American Chemical Society 2017, 139 (13) , 4584-4610. https://doi.org/10.1021/jacs.6b08313
    11. Muhammad Raza Shah, Tooba Jabri, Maria Khalid. Light-responsive nanocarriers for drug delivery. 2025, 127-155. https://doi.org/10.1016/B978-0-443-22389-1.00005-5
    12. Shirin Khakpour, Nushin Hosano, Zahra Moosavi-Nejad, Amir A. Farajian, Hamid Hosano. Advancing Tumor Therapy: Development and Utilization of Protein-Based Nanoparticles. Pharmaceutics 2024, 16 (7) , 887. https://doi.org/10.3390/pharmaceutics16070887
    13. Jielin Shi, Chao Tan, Xiaoqian Ge, Zhenpeng Qin, Hejian Xiong. Recent advances in stimuli-responsive controlled release systems for neuromodulation. Journal of Materials Chemistry B 2024, 12 (24) , 5769-5786. https://doi.org/10.1039/D4TB00720D
    14. Sanjay Kosara, Ramesh Singh, Dhiraj Bhatia. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. Nanoscale Advances 2024, 6 (2) , 386-401. https://doi.org/10.1039/D3NA00692A
    15. Yihao Zhou, Jinyi Dong, Qiangbin Wang. Fabricating higher-order functional DNA origami structures to reveal biological processes at multiple scales. NPG Asia Materials 2023, 15 (1) https://doi.org/10.1038/s41427-023-00470-3
    16. Jiayi Li, Yuanfang Chen, Yuhe R. Yang. DNA nanotechnology-based biomolecular assembly and imaging. Chinese Science Bulletin 2023, 68 (32) , 4383-4400. https://doi.org/10.1360/TB-2023-0511
    17. Shan Zhou, Xin Zhang, Lei Xie, Yanjun He, Miao Yan, Tianyi Liu, Hui Zeng, Lei Jiang, Biao Kong. Dual‐Functional Super‐Assembled Mesoporous Carbon‐Titania/AAO Hetero‐Channels for Bidirectionally Photo‐Regulated Ion Transport. Small 2023, 19 (32) https://doi.org/10.1002/smll.202301038
    18. Mojtaba Shamsipur, Atefeh Ghavidast, Afshin Pashabadi. Phototriggered structures: Latest advances in biomedical applications. Acta Pharmaceutica Sinica B 2023, 13 (7) , 2844-2876. https://doi.org/10.1016/j.apsb.2023.04.005
    19. Benhao Li, Mengyao Zhao, Weiping Lai, Xuanbo Zhang, Bowei Yang, Xiaoyuan Chen, Qianqian Ni. Activatable NIR‐II Photothermal Lipid Nanoparticles for Improved Messenger RNA Delivery. Angewandte Chemie 2023, 135 (25) https://doi.org/10.1002/ange.202302676
    20. Benhao Li, Mengyao Zhao, Weiping Lai, Xuanbo Zhang, Bowei Yang, Xiaoyuan Chen, Qianqian Ni. Activatable NIR‐II Photothermal Lipid Nanoparticles for Improved Messenger RNA Delivery. Angewandte Chemie International Edition 2023, 62 (25) https://doi.org/10.1002/anie.202302676
    21. Yanna Lin, Yulong Xu, Yanzhi Xing, Nazhen Liu, Xuwei Chen. Photoreversible DNA nanoswitch-based eluent-free strategy for the direct and effective isolation of highly-active thrombin from whole blood. International Journal of Biological Macromolecules 2023, 239 , 124359. https://doi.org/10.1016/j.ijbiomac.2023.124359
    22. Jing Huang, Sabrina Gambietz, Barbara Saccà. Self‐Assembled Artificial DNA Nanocompartments and Their Bioapplications. Small 2023, 19 (13) https://doi.org/10.1002/smll.202202253
    23. Qing Liu, Hong-Bo Cheng, Rui Ma, Mingming Yu, Yuanyu Huang, Lele Li, Jian Zhao. A DNA-based nanodevice for near-infrared light-controlled drug release and bioimaging. Nano Today 2023, 48 , 101747. https://doi.org/10.1016/j.nantod.2022.101747
    24. Grant A. Knappe, Eike-Christian Wamhoff, Mark Bathe. Functionalizing DNA origami to investigate and interact with biological systems. Nature Reviews Materials 2023, 8 (2) , 123-138. https://doi.org/10.1038/s41578-022-00517-x
    25. Hejian Xiong, Kevin A. Alberto, Jonghae Youn, Jaume Taura, Johannes Morstein, Xiuying Li, Yang Wang, Dirk Trauner, Paul A. Slesinger, Steven O. Nielsen, Zhenpeng Qin. Optical control of neuronal activities with photoswitchable nanovesicles. Nano Research 2023, 16 (1) , 1033-1041. https://doi.org/10.1007/s12274-022-4853-x
    26. Rameshroo Kenwat, Vijay Singh, Shivani Rai Paliwal, Rishi Paliwal. Photoresponsive nanocarriers for the delivery of bioactives. 2023, 109-128. https://doi.org/10.1016/B978-0-323-91248-8.00010-6
    27. Liwei Chen, Yanfei Liu, Weisheng Guo, Zhenbao Liu. Light responsive nucleic acid for biomedical application. Exploration 2022, 2 (5) https://doi.org/10.1002/EXP.20210099
    28. Shamini Anboo, Sie Yon Lau, Jibrail Kansedo, Pow‐Seng Yap, Tony Hadibarata, Jaison Jeevanandam, Azlina H. Kamaruddin. Recent advancements in enzyme‐incorporated nanomaterials: Synthesis, mechanistic formation, and applications. Biotechnology and Bioengineering 2022, 119 (10) , 2609-2638. https://doi.org/10.1002/bit.28185
    29. Yixin Wang, Ting‐Jing Chen‐Mayfield, Zhaoting Li, Muhsin H. Younis, Weibo Cai, Quanyin Hu. Harnessing DNA for Immunotherapy: Cancer, Infectious Diseases, and Beyond. Advanced Functional Materials 2022, 32 (37) https://doi.org/10.1002/adfm.202112273
    30. Shupei Liu, Chijia Wang, Shuyi Liu, Kaka Li, Hongxin Luo, Weihao Fan, Qianqian Yin, Huaiyuan Wang. pH-responsive smart composite coating with active anticorrosion and efficient scale inhibition properties. Progress in Organic Coatings 2022, 170 , 106973. https://doi.org/10.1016/j.porgcoat.2022.106973
    31. Huiyi Wang, Matias L. Picchio, Marcelo Calderón. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. WIREs Nanomedicine and Nanobiotechnology 2022, 14 (4) https://doi.org/10.1002/wnan.1791
    32. Xinwei Wang, Xiao Zhao. Controllable protein network based on DNA‐origami and biomedical applications. MedComm – Biomaterials and Applications 2022, 1 (1) https://doi.org/10.1002/mba2.17
    33. Sayuri L. Higashi, Ayaka Isogami, Junko Takahashi, Aya Shibata, Koichiro M. Hirosawa, Kenichi G. N. Suzuki, Shunsuke Sawada, Shinya Tsukiji, Kazunori Matsuura, Masato Ikeda. Construction of a Reduction‐responsive DNA Microsphere using a Reduction‐cleavable Spacer based on a Nitrobenzene Scaffold. Chemistry – An Asian Journal 2022, 17 (10) https://doi.org/10.1002/asia.202200142
    34. Ziyuan Li, Yanzi Zhou, Tianyue Li, Junji Zhang, He Tian. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022, 3 (2) https://doi.org/10.1002/VIW.20200112
    35. Jinzhao Liu, Weirong Kang, Weiping Wang. Photocleavage‐based Photoresponsive Drug Delivery †. Photochemistry and Photobiology 2022, 98 (2) , 288-302. https://doi.org/10.1111/php.13570
    36. Yu-Fon Chen, Wei-Chen Lin, Cheng-Ju Wu, Chien-Hsiang Chang, Jeng-Shiung Jan. Effect of oil–water interface and payload-DNA interactions on payload-encapsulated DNA nanogels. Journal of Polymer Research 2022, 29 (1) https://doi.org/10.1007/s10965-021-02859-6
    37. Keren Chen, Yangzi Zhang, Longjiao Zhu, Huashuo Chu, Xiangli Shao, Charles Asakiya, Kunlun Huang, Wentao Xu. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. Journal of Controlled Release 2022, 341 , 869-891. https://doi.org/10.1016/j.jconrel.2021.12.020
    38. Ting Wang, Yanfei Liu, Qing Wu, Beibei Lou, Zhenbao Liu. DNA nanostructures for stimuli-responsive drug delivery. Smart Materials in Medicine 2022, 3 , 66-84. https://doi.org/10.1016/j.smaim.2021.12.003
    39. Hao Dong, Wenxue Zhang, Shengmin Zhou, Jiaofang Huang, Ping Wang. Engineering bioscaffolds for enzyme assembly. Biotechnology Advances 2021, 53 , 107721. https://doi.org/10.1016/j.biotechadv.2021.107721
    40. Swarup Dey, Chunhai Fan, Kurt V. Gothelf, Jiang Li, Chenxiang Lin, Longfei Liu, Na Liu, Minke A. D. Nijenhuis, Barbara Saccà, Friedrich C. Simmel, Hao Yan, Pengfei Zhan. DNA origami. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-020-00009-8
    41. Jiahui Zhang, Khalid Salaita. Smart Nucleic Acids as Future Therapeutics. Trends in Biotechnology 2021, 39 (12) , 1289-1307. https://doi.org/10.1016/j.tibtech.2021.03.007
    42. Jiahao Ji, Deepak Karna, Hanbin Mao. DNA origami nano-mechanics. Chemical Society Reviews 2021, 50 (21) , 11966-11978. https://doi.org/10.1039/D1CS00250C
    43. Katsuhiko Abe, Hiroshi Sugiyama, Masayuki Endo. Construction of an optically controllable CRISPR-Cas9 system using a DNA origami nanostructure. Chemical Communications 2021, 57 (45) , 5594-5596. https://doi.org/10.1039/D1CC00876E
    44. Wonmoon Song, Junghyeon Ko, Young Hwan Choi, Nathaniel S. Hwang. Recent advancements in enzyme-mediated crosslinkable hydrogels: In vivo -mimicking strategies. APL Bioengineering 2021, 5 (2) https://doi.org/10.1063/5.0037793
    45. Jorieke Weiden, Maartje M.C. Bastings. DNA origami nanostructures for controlled therapeutic drug delivery. Current Opinion in Colloid & Interface Science 2021, 52 , 101411. https://doi.org/10.1016/j.cocis.2020.101411
    46. So Yeon Ahn, Jin Liu, Srivithya Vellampatti, Yuzhou Wu, Soong Ho Um. DNA Transformations for Diagnosis and Therapy. Advanced Functional Materials 2021, 31 (12) https://doi.org/10.1002/adfm.202008279
    47. Youngdo Yoon, Chungha Lee, Seung Joong Kim. Structural DNA nanotechnology towards therapeutic applications. Journal of the Korean Physical Society 2021, 78 (5) , 343-350. https://doi.org/10.1007/s40042-020-00049-z
    48. Chiara Martinelli. Smart Nanocarriers for Targeted Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry 2021, 21 (5) , 546-557. https://doi.org/10.2174/1871520620666200619181425
    49. Gezhi Kong, Mengyi Xiong, Lu Liu, Ling Hu, Hong-Min Meng, Guoliang Ke, Xiao-Bing Zhang, Weihong Tan. DNA origami-based protein networks: from basic construction to emerging applications. Chemical Society Reviews 2021, 50 (3) , 1846-1873. https://doi.org/10.1039/D0CS00255K
    50. Eqvinshi Yadav, Anil Kumar Khatana, Sharol Sebastian, Manoj K. Gupta. DAP derived fatty acid amide organogelators as novel carrier for drug incorporation and pH-responsive release. New Journal of Chemistry 2021, 45 (1) , 415-422. https://doi.org/10.1039/D0NJ04611F
    51. Yu Tao, Hon Fai Chan, Bingyang Shi, Mingqiang Li, Kam W. Leong. Light: A Magical Tool for Controlled Drug Delivery. Advanced Functional Materials 2020, 30 (49) https://doi.org/10.1002/adfm.202005029
    52. Geun Won Gang, Jihoon Shin, Young Heon Kim, Tai Hwan Ha, Takashi Ogawa. Visualization of unstained homo/heterogeneous DNA nanostructures by low-voltage scanning transmission electron microscopy. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-61751-3
    53. Yu-Fon Chen, Ming-Wei Hsu, Yu-Chu Su, Ho-Min Chang, Chien-Hsiang Chang, Jeng-Shiung Jan. Naturally derived DNA nanogels as pH- and glutathione-triggered anticancer drug carriers. Materials Science and Engineering: C 2020, 114 , 111025. https://doi.org/10.1016/j.msec.2020.111025
    54. Joshua B. McCluskey, Douglas S. Clark, Dominic J. Glover. Functional Applications of Nucleic Acid–Protein Hybrid Nanostructures. Trends in Biotechnology 2020, 38 (9) , 976-989. https://doi.org/10.1016/j.tibtech.2020.02.007
    55. Yaqin Hu, Ying Wang, Jianhua Yan, Nachuan Wen, Hongjie Xiong, Shundong Cai, Qunye He, Dongming Peng, Zhenbao Liu, Yanfei Liu. Dynamic DNA Assemblies in Biomedical Applications. Advanced Science 2020, 7 (14) https://doi.org/10.1002/advs.202000557
    56. Jinglin Fu, Zhicheng Wang, Xiao Hua Liang, Sung Won Oh, Ezry St. Iago-McRae, Ting Zhang. DNA-Scaffolded Proximity Assembly and Confinement of Multienzyme Reactions. Topics in Current Chemistry 2020, 378 (3) https://doi.org/10.1007/s41061-020-0299-3
    57. Qirong Xiong, Yun Lim, Di Li, Kanyi Pu, Li Liang, Hongwei Duan. Photoactive Nanocarriers for Controlled Delivery. Advanced Functional Materials 2020, 30 (2) https://doi.org/10.1002/adfm.201903896
    58. Stéphanie Coantic-Castex, Agathe Martinez, Dominique Harakat, Dominique Guillaume, Pascale Clivio. The remarkable UV light invulnerability of thymine GNA dinucleotides. Chemical Communications 2019, 55 (83) , 12571-12574. https://doi.org/10.1039/C9CC04355A
    59. Vibhav A. Valsangkar, Arun Richard Chandrasekaran, Lifeng Zhuo, Song Mao, Goh Woon Lee, Megan Kizer, Xing Wang, Ken Halvorsen, Jia Sheng. Click and photo-release dual-functional nucleic acid nanostructures. Chemical Communications 2019, 55 (65) , 9709-9712. https://doi.org/10.1039/C9CC03806J
    60. Yang Yu, Bang Jin, Yulin Li, Zhaoxiang Deng. Stimuli‐Responsive DNA Self‐Assembly: From Principles to Applications. Chemistry – A European Journal 2019, 25 (42) , 9785-9798. https://doi.org/10.1002/chem.201900491
    61. Arun Richard Chandrasekaran, Jibin Abraham Punnoose, Vibhav Valsangkar, Jia Sheng, Ken Halvorsen. Integration of a photocleavable element into DNA nanoswitches. Chemical Communications 2019, 55 (46) , 6587-6590. https://doi.org/10.1039/C9CC03069G
    62. Megan E. Kizer, Robert J. Linhardt, Arun Richard Chandrasekaran, Xing Wang. A Molecular Hero Suit for In Vitro and In Vivo DNA Nanostructures. Small 2019, 15 (26) https://doi.org/10.1002/smll.201805386
    63. Dick Yan Tam, Xinyu Zhuang, Sze Wing Wong, Pik Kwan Lo. Photoresponsive Self‐Assembled DNA Nanomaterials: Design, Working Principles, and Applications. Small 2019, 15 (26) https://doi.org/10.1002/smll.201805481
    64. Jinglin Fu, Sung Won Oh, Kristin Monckton, Georgia Arbuckle‐Keil, Yonggang Ke, Ting Zhang. Biomimetic Compartments Scaffolded by Nucleic Acid Nanostructures. Small 2019, 15 (26) https://doi.org/10.1002/smll.201900256
    65. Wei Li, Jing Lin, Tianfu Wang, Peng Huang. Photo-triggered Drug Delivery Systems for Neuron-related Applications. Current Medicinal Chemistry 2019, 26 (8) , 1406-1422. https://doi.org/10.2174/0929867325666180622121801
    66. Arun Richard Chandrasekaran, Ken Halvorsen. Controlled disassembly of a DNA tetrahedron using strand displacement. Nanoscale Advances 2019, 1 (3) , 969-972. https://doi.org/10.1039/C8NA00340H
    67. Congcong Xu, Hui Li, Kaiming Zhang, Daniel W. Binzel, Hongran Yin, Wah Chiu, Peixuan Guo. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Research 2019, 12 (1) , 41-48. https://doi.org/10.1007/s12274-018-2174-x
    68. Louis Beauté, Nathan McClenaghan, Sébastien Lecommandoux. Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Advanced Drug Delivery Reviews 2019, 138 , 148-166. https://doi.org/10.1016/j.addr.2018.12.010
    69. Bharath Raj Madhanagopal, Shunqing Zhang, Esra Demirel, Heitham Wady, Arun Richard Chandrasekaran. DNA Nanocarriers: Programmed to Deliver. Trends in Biochemical Sciences 2018, 43 (12) , 997-1013. https://doi.org/10.1016/j.tibs.2018.09.010
    70. Andreia F. Jorge, Ramon Eritja. Overview of DNA Self-Assembling: Progresses in Biomedical Applications. Pharmaceutics 2018, 10 (4) , 268. https://doi.org/10.3390/pharmaceutics10040268
    71. Jasleen Kaur Daljit Singh, Minh Tri Luu, Ali Abbas, Shelley F. J. Wickham. Switchable DNA-origami nanostructures that respond to their environment and their applications. Biophysical Reviews 2018, 10 (5) , 1283-1293. https://doi.org/10.1007/s12551-018-0462-z
    72. Yonggang Ke, Carlos Castro, Jong Hyun Choi. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research. Annual Review of Biomedical Engineering 2018, 20 (1) , 375-401. https://doi.org/10.1146/annurev-bioeng-062117-120904
    73. Richie E. Kohman, Aditya M. Kunjapur, Eriona Hysolli, Yu Wang, George M. Church. Vom Design der Moleküle des Lebens zum Design von Leben: Zukünftige Anwendungen von DNA‐Technologien. Angewandte Chemie 2018, 130 (16) , 4395-4411. https://doi.org/10.1002/ange.201707976
    74. Richie E. Kohman, Aditya M. Kunjapur, Eriona Hysolli, Yu Wang, George M. Church. From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. Angewandte Chemie International Edition 2018, 57 (16) , 4313-4328. https://doi.org/10.1002/anie.201707976
    75. Laurent Azéma, Servane Bonnet-Salomon, Masayuki Endo, Yosuke Takeuchi, Guillaume Durand, Tomoko Emura, Kumi Hidaka, Eric Dausse, Hiroshi Sugiyama, Jean-Jacques Toulmé. Triggering nucleic acid nanostructure assembly by conditional kissing interactions. Nucleic Acids Research 2018, 46 (3) , 1052-1058. https://doi.org/10.1093/nar/gkx1267
    76. Emily R. Ruskowitz, Cole A. DeForest. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nature Reviews Materials 2018, 3 (2) https://doi.org/10.1038/natrevmats.2017.87
    77. Reza M. Zadegan, Elias G. Lindau, William P. Klein, Christopher Green, Elton Graugnard, Bernard Yurke, Wan Kuang, William L. Hughes. Twisting of DNA Origami from Intercalators. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-07796-3
    78. Chunlei Zhu, Da Huo, Qiaoshan Chen, Jiajia Xue, Song Shen, Younan Xia. A Eutectic Mixture of Natural Fatty Acids Can Serve as the Gating Material for Near‐Infrared‐Triggered Drug Release. Advanced Materials 2017, 29 (40) https://doi.org/10.1002/adma.201703702
    79. Anuttara Udomprasert, Thaned Kangsamaksin. DNA origami applications in cancer therapy. Cancer Science 2017, 108 (8) , 1535-1543. https://doi.org/10.1111/cas.13290
    80. Xiuying Li, Zifan Che, Khadijah Mazhar, Theodore J. Price, Zhenpeng Qin. Ultrafast Near‐Infrared Light‐Triggered Intracellular Uncaging to Probe Cell Signaling. Advanced Functional Materials 2017, 27 (11) https://doi.org/10.1002/adfm.201605778
    81. Ziwen Dai, Hoi Man Leung, Pik Kwan Lo. Stimuli‐Responsive Self‐Assembled DNA Nanomaterials for Biomedical Applications. Small 2017, 13 (7) https://doi.org/10.1002/smll.201602881
    82. Craig LaBoda, Chris Dwyer, Alvin R. Lebeck. Exploiting Dark Fluorophore States to Implement Resonance Energy Transfer Pre-Charge Logic. IEEE Micro 2017, 37 (4) , 52-62. https://doi.org/10.1109/MM.2017.3211112
    83. Pei Li, Ganhua Xie, Xiang‐Yu Kong, Zhen Zhang, Kai Xiao, Liping Wen, Lei Jiang. Light‐Controlled Ion Transport through Biomimetic DNA‐Based Channels. Angewandte Chemie International Edition 2016, 55 (50) , 15637-15641. https://doi.org/10.1002/anie.201609161
    84. Pei Li, Ganhua Xie, Xiang‐Yu Kong, Zhen Zhang, Kai Xiao, Liping Wen, Lei Jiang. Light‐Controlled Ion Transport through Biomimetic DNA‐Based Channels. Angewandte Chemie 2016, 128 (50) , 15866-15870. https://doi.org/10.1002/ange.201609161
    85. Xiao Huang, Qirui Hu, Yifan Lai, Demosthenes P. Morales, Dennis O. Clegg, Norbert O. Reich. Light‐Patterned RNA Interference of 3D‐Cultured Human Embryonic Stem Cells. Advanced Materials 2016, 28 (48) , 10732-10737. https://doi.org/10.1002/adma.201603318
    86. Pengyao Xing, Yanli Zhao. Multifunctional Nanoparticles Self‐Assembled from Small Organic Building Blocks for Biomedicine. Advanced Materials 2016, 28 (34) , 7304-7339. https://doi.org/10.1002/adma.201600906
    87. Veikko Linko, Sami Nummelin, Laura Aarnos, Kosti Tapio, J. Toppari, Mauri Kostiainen. DNA-Based Enzyme Reactors and Systems. Nanomaterials 2016, 6 (8) , 139. https://doi.org/10.3390/nano6080139

    Nano Letters

    Cite this: Nano Lett. 2016, 16, 4, 2781–2785
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.6b00530
    Published March 3, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    2870

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.