ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers

View Author Information
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
*D.S. e-mail: [email protected]
*S.M. e-mail: [email protected]
Cite this: Nano Lett. 2016, 16, 8, 5080–5086
Publication Date (Web):July 26, 2016
https://doi.org/10.1021/acs.nanolett.6b01973
Copyright © 2016 American Chemical Society

    Article Views

    2070

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We present the design and room-temperature lasing characteristics of single nanowires containing coaxial GaAs/AlGaAs multiple quantum well (MQW) active regions. The TE01 mode, which has a doughnut-shaped intensity profile and is polarized predominantly in-plane to the MQWs, is predicted to lase in these nanowire heterostructures and is thus chosen for the cavity design. Through gain and loss calculations, we determine the nanowire dimensions required to minimize loss for the TE01 mode and determine the optimal thickness and number of QWs for minimizing the threshold sheet carrier density. In particular, we show that there is a limit to the minimum and maximum number of QWs that are required for room-temperature lasing. Based on our design, we grew nanowires of a suitable diameter containing eight uniform coaxial GaAs/AlGaAs MQWs. Lasing was observed at room temperature from optically pumped single nanowires and was verified to be from TE01 mode by polarization measurements. The GaAs MQW nanowire lasers have a threshold fluence that is a factor of 2 lower than that previously demonstrated for room-temperature GaAs nanowire lasers.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.6b01973.

    • Additional information on the design of GaAs MQW nanowire lasers, growth and optical characterization, and laser characterization. Figures showing a schematic of the MQW nanowire heterostructure; effective index, mode propagation loss, and mirror loss in a GaAs/AlGaAs/GaAs core-shell-cap nanowire; loss for the TE01 mode in a 5 μm long GaAs/AlGaAs/GaAs core-shell-cap nanowire with 80 nm diameter core and 5 nm thick cap; GaAs/Al0.42Ga0.58As QW material-gain spectrum; TE01 mode electric-field intensity profile, and position of the field maximum; estimated modal gain for guided modes supported in a 420 nm diameter GaAs MQW nanowire; modal gain vs pump fluence for the TE01 mode in a 420 nm diameter and 480 nm diameter GaAs MQW nanowire; SEM image of the GaAs MQW nanowires grown for this study; HAADF-STEM images of nanowire cross-sections; the average thickness of each layer in the heterostructure measured from five different nanowire cross-sections; room-temperature PL spectrum obtained from the GaAs MQW nanowire laser under very low pump fluence and an analytical fit; SEM images of nanowire lasers; lasing spectra of the nanowire laser; simulated TE01 mode profile in the cross-section of the GaAs MQW nanowire; polarization dependence of the nanowire guided modes determined from simulations; and modal gain vs carrier density and pump fluence modelled for GaAs MQW and bulk GaAs nanowire lasers. Tables showing mode confinement factor for TE01 mode in a 420 nm diameter nanowire; growth time for each shell layer in the MQW nanowire heterostructure; definition of parameters in rate equations and values used for fit; and a comparison of threshold values of III–V semiconductor nanowire lasers. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 77 publications.

    1. Wei Wen Wong, Naiyin Wang, Bryan D. Esser, Stephen A. Church, Li Li, Mark Lockrey, Igor Aharonovich, Patrick Parkinson, Joanne Etheridge, Chennupati Jagadish, Hark Hoe Tan. Bottom-up, Chip-Scale Engineering of Low Threshold, Multi-Quantum-Well Microring Lasers. ACS Nano 2023, 17 (15) , 15065-15076. https://doi.org/10.1021/acsnano.3c04234
    2. Xutao Zhang, Ruixuan Yi, Bijun Zhao, Chen Li, Li Li, Ziyuan Li, Fanlu Zhang, Naiyin Wang, Mingwen Zhang, Liang Fang, Jianlin Zhao, Pingping Chen, Wei Lu, Lan Fu, Hark Hoe Tan, Chennupati Jagadish, Xuetao Gan. Vertical Emitting Nanowire Vector Beam Lasers. ACS Nano 2023, 17 (11) , 10918-10924. https://doi.org/10.1021/acsnano.3c02786
    3. Ting-Yuan Chang, Hyunseok Kim, William A. Hubbard, Khalifa M. Azizur-Rahman, Jung Jin Ju, Je-Hyung Kim, Wook-Jae Lee, Diana Huffaker. InAsP Quantum Dot-Embedded InP Nanowires toward Silicon Photonic Applications. ACS Applied Materials & Interfaces 2022, 14 (10) , 12488-12494. https://doi.org/10.1021/acsami.1c21013
    4. Xutao Zhang, Ruixuan Yi, Nikita Gagrani, Ziyuan Li, Fanlu Zhang, Xuetao Gan, Xiaomei Yao, Xiaoming Yuan, Naiyin Wang, Jianlin Zhao, Pingping Chen, Wei Lu, Lan Fu, Hark Hoe Tan, Chennupati Jagadish. Ultralow Threshold, Single-Mode InGaAs/GaAs Multiquantum Disk Nanowire Lasers. ACS Nano 2021, 15 (5) , 9126-9133. https://doi.org/10.1021/acsnano.1c02425
    5. Dimitars Jevtics, John McPhillimy, Benoit Guilhabert, Juan A. Alanis, Hark Hoe Tan, Chennupati Jagadish, Martin D. Dawson, Antonio Hurtado, Patrick Parkinson, Michael J. Strain. Characterization, Selection, and Microassembly of Nanowire Laser Systems. Nano Letters 2020, 20 (3) , 1862-1868. https://doi.org/10.1021/acs.nanolett.9b05078
    6. Fan Fan, Zhicheng Liu, Minghua Sun, Patricia L. Nichols, Sunay Turkdogan, C. Z. Ning. Mid-Infrared Lasing in Lead Sulfide Subwavelength Wires on Silicon. Nano Letters 2020, 20 (1) , 470-477. https://doi.org/10.1021/acs.nanolett.9b04215
    7. Mohammad Karimi, Xulu Zeng, Bernd Witzigmann, Lars Samuelson, Magnus T. Borgström, Håkan Pettersson. High Responsivity of InP/InAsP Nanowire Array Broadband Photodetectors Enhanced by Optical Gating. Nano Letters 2019, 19 (12) , 8424-8430. https://doi.org/10.1021/acs.nanolett.9b02494
    8. Yunyan Zhang, George Davis, H. Aruni Fonseka, Anton Velichko, Anders Gustafsson, Tillmann Godde, Dhruv Saxena, Martin Aagesen, Patrick W. Parkinson, James A. Gott, Suguo Huo, Ana M. Sanchez, David J. Mowbray, Huiyun Liu. Highly Strained III–V–V Coaxial Nanowire Quantum Wells with Strong Carrier Confinement. ACS Nano 2019, 13 (5) , 5931-5938. https://doi.org/10.1021/acsnano.9b01775
    9. Maximilian M. Sonner, Anna Sitek, Lisa Janker, Daniel Rudolph, Daniel Ruhstorfer, Markus Döblinger, Andrei Manolescu, Gerhard Abstreiter, Jonathan J. Finley, Achim Wixforth, Gregor Koblmüller, Hubert J. Krenner. Breakdown of Corner States and Carrier Localization by Monolayer Fluctuations in Radial Nanowire Quantum Wells. Nano Letters 2019, 19 (5) , 3336-3343. https://doi.org/10.1021/acs.nanolett.9b01028
    10. Shula Chen, Mitsuki Yukimune, Ryo Fujiwara, Fumitaro Ishikawa, Weimin M. Chen, Irina A. Buyanova. Near-Infrared Lasing at 1 μm from a Dilute-Nitride-Based Multishell Nanowire. Nano Letters 2019, 19 (2) , 885-890. https://doi.org/10.1021/acs.nanolett.8b04103
    11. Juan Arturo Alanis, Mykhaylo Lysevych, Tim Burgess, Dhruv Saxena, Sudha Mokkapati, Stefan Skalsky, Xiaoyan Tang, Peter Mitchell, Alex S. Walton, Hark Hoe Tan, Chennupati Jagadish, Patrick Parkinson. Optical Study of p-Doping in GaAs Nanowires for Low-Threshold and High-Yield Lasing. Nano Letters 2019, 19 (1) , 362-368. https://doi.org/10.1021/acs.nanolett.8b04048
    12. T. Stettner, A. Thurn, M. Döblinger, M. O. Hill, J. Bissinger, P. Schmiedeke, S. Matich, T. Kostenbader, D. Ruhstorfer, H. Riedl, M. Kaniber, L. J. Lauhon, J. J. Finley, G. Koblmüller. Tuning Lasing Emission toward Long Wavelengths in GaAs-(In,Al)GaAs Core–Multishell Nanowires. Nano Letters 2018, 18 (10) , 6292-6300. https://doi.org/10.1021/acs.nanolett.8b02503
    13. Jessica L. Boland, Francesca Amaduzzi, Sabrina Sterzl, Heidi Potts, Laura M. Herz, Anna Fontcuberta i Morral, Michael B. Johnston. High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowires. Nano Letters 2018, 18 (6) , 3703-3710. https://doi.org/10.1021/acs.nanolett.8b00842
    14. Dingding Ren, Lyubomir Ahtapodov, Julie S. Nilsen, Jianfeng Yang, Anders Gustafsson, Junghwan Huh, Gavin J. Conibeer, Antonius T.J. van Helvoort, Bjørn-Ove Fimland, Helge Weman. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature. Nano Letters 2018, 18 (4) , 2304-2310. https://doi.org/10.1021/acs.nanolett.7b05015
    15. Reza R. Zamani, Fredrik S. Hage, Sebastian Lehmann, Quentin M. Ramasse, Kimberly A. Dick. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires. Nano Letters 2018, 18 (3) , 1557-1563. https://doi.org/10.1021/acs.nanolett.7b03929
    16. Bernhard Mandl, Mario Keplinger, Maria E. Messing, Dominik Kriegner, Reine Wallenberg, Lars Samuelson, Günther Bauer, Julian Stangl, Václav Holý, and Knut Deppert . Self-Seeded Axio-Radial InAs–InAs1–xPx Nanowire Heterostructures beyond “Common” VLS Growth. Nano Letters 2018, 18 (1) , 144-151. https://doi.org/10.1021/acs.nanolett.7b03668
    17. Juan Arturo Alanis, Dhruv Saxena, Sudha Mokkapati, Nian Jiang, Kun Peng, Xiaoyan Tang, Lan Fu, Hark Hoe Tan, Chennupati Jagadish, and Patrick Parkinson . Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers. Nano Letters 2017, 17 (8) , 4860-4865. https://doi.org/10.1021/acs.nanolett.7b01725
    18. Yunyan Zhang, H. Aruni Fonseka, Martin Aagesen, James A. Gott, Ana M. Sanchez, Jiang Wu, Dongyoung Kim, Pamela Jurczak, Suguo Huo, and Huiyun Liu . Growth of Pure Zinc-Blende GaAs(P) Core–Shell Nanowires with Highly Regular Morphology. Nano Letters 2017, 17 (8) , 4946-4950. https://doi.org/10.1021/acs.nanolett.7b02063
    19. Xiaoming Yuan, Dhruv Saxena, Philippe Caroff, Fan Wang, Mark Lockrey, Sudha Mokkapati, Hark Hoe Tan, and Chennupati Jagadish . Strong Amplified Spontaneous Emission from High Quality GaAs1–xSbx Single Quantum Well Nanowires. The Journal of Physical Chemistry C 2017, 121 (15) , 8636-8644. https://doi.org/10.1021/acs.jpcc.7b00744
    20. Shula Chen, Mattias Jansson, Jan E. Stehr, Yuqing Huang, Fumitaro Ishikawa, Weimin M. Chen, and Irina A. Buyanova . Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure. Nano Letters 2017, 17 (3) , 1775-1781. https://doi.org/10.1021/acs.nanolett.6b05097
    21. Esteban Bermúdez-Ureña, Gozde Tutuncuoglu, Javier Cuerda, Cameron L. C. Smith, Jorge Bravo-Abad, Sergey I. Bozhevolnyi, Anna Fontcuberta i Morral, Francisco J. García-Vidal, and Romain Quidant . Plasmonic Waveguide-Integrated Nanowire Laser. Nano Letters 2017, 17 (2) , 747-754. https://doi.org/10.1021/acs.nanolett.6b03879
    22. Xiaohang Song, Zitong Xu, Bo Gao, Xuyang Li, Qihang Lv, Rui Zhang, Bingjie Wang, Hulin Zhang, Pengfei Guo, Johnny C. Ho. Red–Green–Blue Light Emission from Composition Tunable Semiconductor Micro‐Tripods. Advanced Functional Materials 2024, 6 https://doi.org/10.1002/adfm.202403135
    23. Andreas Thurn, Jochen Bissinger, Stefan Meinecke, Paul Schmiedeke, Sang Soon Oh, Weng W. Chow, Kathy Lüdge, Gregor Koblmüller, Jonathan J. Finley. Self-Induced Ultrafast Electron-Hole-Plasma Temperature Oscillations in Nanowire Lasers. Physical Review Applied 2023, 20 (3) https://doi.org/10.1103/PhysRevApplied.20.034045
    24. Daehyun Ahn, Donghan Lee. Design of a bidirectional TM01(TE01)–LP01 mode converter with a metasurface-on-fiber. Optics Express 2023, 31 (11) , 18167. https://doi.org/10.1364/OE.487094
    25. Preksha Tiwari, Noelia Vico Triviño, Heinz Schmid, Kirsten E Moselund. Review: III–V infrared emitters on Si: fabrication concepts, device architectures and down-scaling with a focus on template-assisted selective epitaxy. Semiconductor Science and Technology 2023, 38 (5) , 053001. https://doi.org/10.1088/1361-6641/ac9f60
    26. Stephen A Church, Nikesh Patel, Ruqaiya Al‐Abri, Nawal Al‐Amairi, Yunyan Zhang, Huiyun Liu, Patrick Parkinson. Holistic Nanowire Laser Characterization as a Route to Optimal Design. Advanced Optical Materials 2023, 11 (7) https://doi.org/10.1002/adom.202202476
    27. Kaustubh Vyas, Daniel H. G. Espinosa, Daniel Hutama, Shubhendra Kumar Jain, Rania Mahjoub, Ehsan Mobini, Kashif M. Awan, Jeff Lundeen, Ksenia Dolgaleva. Group III-V semiconductors as promising nonlinear integrated photonic platforms. Advances in Physics: X 2022, 7 (1) https://doi.org/10.1080/23746149.2022.2097020
    28. Ruixuan Yi, Xutao Zhang, Chen Li, Bijun Zhao, Jing Wang, Zhiwen Li, Xuetao Gan, Li Li, Ziyuan Li, Fanlu Zhang, Liang Fang, Naiyin Wang, Pingping Chen, Wei Lu, Lan Fu, Jianlin Zhao, Hark Hoe Tan, Chennupati Jagadish. Self-frequency-conversion nanowire lasers. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00807-7
    29. Juliane Koch, Lisa Liborius, Peter Kleinschmidt, Nils Weimann, Werner Prost, Thomas Hannappel. Electrical Properties of the Base‐Substrate Junction in Freestanding Core‐Shell Nanowires. Advanced Materials Interfaces 2022, 9 (30) https://doi.org/10.1002/admi.202200948
    30. D. Jevtics, B. Guilhabert, A. Hurtado, M.D. Dawson, M.J. Strain. Deterministic integration of single nanowire devices with on-chip photonics and electronics. Progress in Quantum Electronics 2022, 85 , 100394. https://doi.org/10.1016/j.pquantelec.2022.100394
    31. Stephen A. Church, Ruqaiya Al-Abri, Patrick Parkinson, Dhruv Saxena. Optical characterisation of nanowire lasers. Progress in Quantum Electronics 2022, 85 , 100408. https://doi.org/10.1016/j.pquantelec.2022.100408
    32. Wei Wen Wong, Chennupati Jagadish, Hark Hoe Tan. III–V Semiconductor Whispering-Gallery Mode Micro-Cavity Lasers: Advances and Prospects. IEEE Journal of Quantum Electronics 2022, 58 (4) , 1-18. https://doi.org/10.1109/JQE.2022.3151082
    33. Yi Li, Xin Yan, Xia Zhang, Chao Wu, Jiahui Zheng, Chaofei Zha, Tianyang Fu, Li Gong, Xiaomin Ren. Low-threshold miniaturized core-shell GaAs/InGaAs nanowire/quantum-dot hybrid structure nanolasers. Optics & Laser Technology 2022, 152 , 108150. https://doi.org/10.1016/j.optlastec.2022.108150
    34. Xin Zhang, Hui Yang, Yunyan Zhang, Huiyun Liu. Design of high-quality reflectors for vertical III–V nanowire lasers on Si. Nanotechnology 2022, 33 (3) , 035202. https://doi.org/10.1088/1361-6528/ac2f22
    35. Fanlu Zhang, Xutao Zhang, Ziyuan Li, Ruixuan Yi, Zhe Li, Naiyin Wang, Xiaoxue Xu, Zahra Azimi, Li Li, Mykhaylo Lysevych, Xuetao Gan, Yuerui Lu, Hark Hoe Tan, Chennupati Jagadish, Lan Fu. A New Strategy for Selective Area Growth of Highly Uniform InGaAs/InP Multiple Quantum Well Nanowire Arrays for Optoelectronic Device Applications. Advanced Functional Materials 2022, 32 (3) https://doi.org/10.1002/adfm.202103057
    36. Mingjun Xia, Ying Ding, Tianyu Sun, Miao Ma. Design and analysis of an InGaAs/InGaAsP quantum well microlaser with longitudinal periodical strain distribution for single-mode lasing. Applied Optics 2022, 61 (1) , 84. https://doi.org/10.1364/AO.443488
    37. Kun Peng, Michael B. Johnston. The application of one-dimensional nanostructures in terahertz frequency devices. Applied Physics Reviews 2021, 8 (4) https://doi.org/10.1063/5.0060797
    38. Dimitars Jevtics, Jack A. Smith, John McPhillimy, Benoit Guilhabert, Paul Hill, Charalambos Klitis, Antonio Hurtado, Marc Sorel, Hark Hoe Tan, Chennupati Jagadish, Martin D. Dawson, Michael J. Strain. Spatially dense integration of micron-scale devices from multiple materials on a single chip via transfer-printing. Optical Materials Express 2021, 11 (10) , 3567. https://doi.org/10.1364/OME.432751
    39. Paola Prete, Daniel Wolf, Nico Lovergine, , , , . Correlating spectroscopic and nanoscale structural properties in quantum well tubes III-V nanowires. 2021, 6. https://doi.org/10.1117/12.2593775
    40. Masaki Nobuoka, Koshi Kamiya, Shugo Sakaguchi, Akira Idesaki, Tetsuya Yamaki, Tsuneaki Sakurai, Shu Seki. Oriented Nanowire Arrays with Phthalocyanine – C60 Multi-Heterojunctions. Journal of Photopolymer Science and Technology 2021, 34 (2) , 167-174. https://doi.org/10.2494/photopolymer.34.167
    41. Ruqaiya Al-Abri, Hoyeon Choi, Patrick Parkinson. Measuring, controlling and exploiting heterogeneity in optoelectronic nanowires. Journal of Physics: Photonics 2021, 3 (2) , 022004. https://doi.org/10.1088/2515-7647/abe282
    42. Lisa Liborius, Jan Bieniek, Alexander Possberg, Franz-Josef Tegude, Werner Prost, Artur Poloczek, Nils Weimann. Tunneling‐Related Leakage Currents in Coaxial GaAs/InGaP Nanowire Heterojunction Bipolar Transistors. physica status solidi (b) 2021, 258 (2) https://doi.org/10.1002/pssb.202000395
    43. Guoqiang Zhang, Kouta Tateno, Takehiko Tawara, Hideki Gotoh. InP/InAs Quantum Heterostructure Nanowires Toward Telecom-Band Nanowire Lasers. 2021, 433-454. https://doi.org/10.1007/978-981-15-9050-4_10
    44. Patrick Parkinson. Physics and applications of semiconductor nanowire lasers. 2021, 389-438. https://doi.org/10.1016/B978-0-12-822083-2.00010-1
    45. Nian Jiang, Hannah J. Joyce, Patrick Parkinson, Jennifer Wong-Leung, Hark Hoe Tan, Chennupati Jagadish. Facet-Related Non-uniform Photoluminescence in Passivated GaAs Nanowires. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.607481
    46. Stefan Skalsky, Yunyan Zhang, Juan Arturo Alanis, H. Aruni Fonseka, Ana M. Sanchez, Huiyun Liu, Patrick Parkinson. Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing. Light: Science & Applications 2020, 9 (1) https://doi.org/10.1038/s41377-020-0279-y
    47. Roman M. Balagula, Mattias Jansson, Mitsuki Yukimune, Jan E. Stehr, Fumitaro Ishikawa, Weimin M. Chen, Irina A. Buyanova. Effects of thermal annealing on localization and strain in core/multishell GaAs/GaNAs/GaAs nanowires. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-64958-6
    48. Motoki Asano, Guoqiang Zhang, Takehiko Tawara, Hiroshi Yamaguchi, Hajime Okamoto. Near-field cavity optomechanical coupling in a compound semiconductor nanowire. Communications Physics 2020, 3 (1) https://doi.org/10.1038/s42005-020-00498-9
    49. Bin Zhang, Mattias Jansson, Yumiko Shimizu, Weimin M. Chen, Fumitaro Ishikawa, Irina A. Buyanova. Self-assembled nanodisks in coaxial GaAs/GaAsBi/GaAs core–multishell nanowires. Nanoscale 2020, 12 (40) , 20849-20858. https://doi.org/10.1039/D0NR05488G
    50. Anders Gustafsson, Nian Jiang, Changlin Zheng, Joanne Etheridge, Qiang Gao, Hark Hoe Tan, Chennupati Jagadish, Jennifer Wong-Leung. Cathodoluminescence visualisation of local thickness variations of GaAs/AlGaAs quantum-well tubes on nanowires. Nanotechnology 2020, 31 (42) , 424001. https://doi.org/10.1088/1361-6528/ab9fb3
    51. Masaya Notomi, Masato Takiguchi, Sylvain Sergent, Guoqiang Zhang, Hisashi Sumikura. Nanowire photonics toward wide wavelength range and subwavelength confinement [Invited]. Optical Materials Express 2020, 10 (10) , 2560. https://doi.org/10.1364/OME.401317
    52. Haolin Li, Yuting Chen, Zhipeng Wei, Rui Chen. Optical property and lasing of GaAs-based nanowires. Science China Materials 2020, 63 (8) , 1364-1381. https://doi.org/10.1007/s40843-020-1288-6
    53. Kwangwook Park, Jung-Wook Min, Ram Chandra Subedi, Mohammad Khaled Shakfa, Bambar Davaasuren, Tien Khee Ng, Boon S. Ooi, Chul Kang, Jongmin Kim. THz behavior originates from different arrangements of coalescent GaN nanorods grown on Si (111) and Si (100) substrates. Applied Surface Science 2020, 522 , 146422. https://doi.org/10.1016/j.apsusc.2020.146422
    54. Luoman Ma, Peng Wang, Xuetong Yin, Yilan Liang, Shuang Liu, Lixia Li, Dong Pan, Zhen Yao, Bingbing Liu, Jianhua Zhao. Enhancing the light emission of GaAs nanowires by pressure-modulated charge transfer. Nanoscale Advances 2020, 2 (6) , 2558-2563. https://doi.org/10.1039/D0NA00188K
    55. Lisa Liborius, Jan Bieniek, Andreas Nägelein, Franz-Josef Tegude, Werner Prost, Thomas Hannappel, Artur Poloczek, Nils Weimann. n‐Doped InGaP Nanowire Shells in GaAs/InGaP Core–Shell p–n Junctions. physica status solidi (b) 2020, 257 (2) https://doi.org/10.1002/pssb.201900358
    56. A. O. Rudakov, I. A. Kokurin. Electronic States in Cylindrical Core-Multi-Shell Nanowire. Semiconductors 2019, 53 (16) , 2137-2139. https://doi.org/10.1134/S1063782619120236
    57. Wai Kit Ng, Yu Han, Kei May Lau, Kam Sing Wong. Broadband telecom emission from InP/InGaAs nano-ridge lasers on silicon-on-insulator substrate. OSA Continuum 2019, 2 (11) , 3037. https://doi.org/10.1364/OSAC.2.003037
    58. Juan Arturo Alanis, Qian Chen, Mykhaylo Lysevych, Tim Burgess, Li Li, Zhu Liu, Hark Hoe Tan, Chennupati Jagadish, Patrick Parkinson. Threshold reduction and yield improvement of semiconductor nanowire lasers via processing-related end-facet optimization. Nanoscale Advances 2019, 1 (11) , 4393-4397. https://doi.org/10.1039/C9NA00479C
    59. Giorgos Boras, Xuezhe Yu, Huiyun Liu. III–V ternary nanowires on Si substrates: growth, characterization and device applications. Journal of Semiconductors 2019, 40 (10) , 101301. https://doi.org/10.1088/1674-4926/40/10/101301
    60. Paola Prete, Daniel Wolf, Fabio Marzo, Nico Lovergine. Nanoscale spectroscopic imaging of GaAs-AlGaAs quantum well tube nanowires: correlating luminescence with nanowire size and inner multishell structure. Nanophotonics 2019, 8 (9) , 1567-1577. https://doi.org/10.1515/nanoph-2019-0156
    61. Maximilian Zapf, Themistoklis Sidiropoulos, Robert Röder. Tailoring Spectral and Temporal Properties of Semiconductor Nanowire Lasers. Advanced Optical Materials 2019, 7 (17) https://doi.org/10.1002/adom.201900504
    62. Jochen Bissinger, Daniel Ruhstorfer, Thomas Stettner, Gregor Koblmüller, Jonathan J. Finley. Optimized waveguide coupling of an integrated III-V nanowire laser on silicon. Journal of Applied Physics 2019, 125 (24) https://doi.org/10.1063/1.5097405
    63. Reza R Zamani, Jordi Arbiol. Understanding semiconductor nanostructures via advanced electron microscopy and spectroscopy. Nanotechnology 2019, 30 (26) , 262001. https://doi.org/10.1088/1361-6528/ab0b0a
    64. Yunyan Zhang, Dhruv Saxena, Martin Aagesen, Huiyun Liu. Toward electrically driven semiconductor nanowire lasers. Nanotechnology 2019, 30 (19) , 192002. https://doi.org/10.1088/1361-6528/ab000d
    65. Guoqiang Zhang, Masato Takiguchi, Kouta Tateno, Takehiko Tawara, Masaya Notomi, Hideki Gotoh. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature. Science Advances 2019, 5 (2) https://doi.org/10.1126/sciadv.aat8896
    66. Sutanu Kapri, Sayan Bhattacharyya. Molybdenum sulfide–reduced graphene oxide p–n heterojunction nanosheets with anchored oxygen generating manganese dioxide nanoparticles for enhanced photodynamic therapy. Chemical Science 2018, 9 (48) , 8982-8989. https://doi.org/10.1039/C8SC02508H
    67. Kenneth B. Crozier, Kwanyong Seo, Hyunsung Park, Amit Solanki, Shi-Qiang Li. Controlling the Light Absorption in a Photodetector Via Nanowire Waveguide Resonances for Multispectral and Color Imaging. IEEE Journal of Selected Topics in Quantum Electronics 2018, 24 (6) , 1-12. https://doi.org/10.1109/JSTQE.2018.2840342
    68. Patrick Parkinson, Juan Arturo Alanis, Kun Peng, Dhruv Saxena, Sudha Mokkapati, Nian Jiang, Lan Fu, Hark Hoe Tan, Chennupati Jagadish. Modal refractive index measurement in nanowire lasers—a correlative approach. Nano Futures 2018, 2 (3) , 035004. https://doi.org/10.1088/2399-1984/aad0c6
    69. Xiaoming Yuan, Jiabao Yang, Jun He, Hark Hoe Tan, Chennupati Jagadish. Role of surface energy in nanowire growth. Journal of Physics D: Applied Physics 2018, 51 (28) , 283002. https://doi.org/10.1088/1361-6463/aac9f4
    70. Wei Wei, Xin Yan, Xiaofeng Ma, Vittorio Giarola, Xia Zhang. A room-temperature near-infrared nanowire/quantum-well laser. 2018, 1-2. https://doi.org/10.1109/OECC.2018.8730081
    71. Xiaomin Liu, Zhipeng Wei, Jialin Liu, Wei Tan, Xuan Fang, Dan Fang, Xiaohua Wang, Dengkui Wang, Jilong Tang, Xiaofeng Fan. Oxidization of Al0.5Ga0.5As(001) surface: The electronic properties. Applied Surface Science 2018, 436 , 460-466. https://doi.org/10.1016/j.apsusc.2017.12.043
    72. P. Poopanya, K. Sivalertporn. Exciton states in asymmetric GaInNAs/GaAs coupled quantum wells in an applied electric field. Physics Letters A 2018, 382 (10) , 734-738. https://doi.org/10.1016/j.physleta.2018.01.012
    73. Gregor Koblmüller, Benedikt Mayer, Thomas Stettner, Gerhard Abstreiter, Jonathan J Finley. GaAs–AlGaAs core–shell nanowire lasers on silicon: invited review. Semiconductor Science and Technology 2017, 32 (5) , 053001. https://doi.org/10.1088/1361-6641/aa5e45
    74. Jiamin Wang, Wei Wei, Xin Yan, Jinnan Zhang, Xia Zhang, Xiaomin Ren. Near-infrared hybrid plasmonic multiple quantum well nanowire lasers. Optics Express 2017, 25 (8) , 9358. https://doi.org/10.1364/OE.25.009358
    75. Miquel Royo, Marta De Luca, Riccardo Rurali, Ilaria Zardo. A review on III–V core–multishell nanowires: growth, properties, and applications. Journal of Physics D: Applied Physics 2017, 50 (14) , 143001. https://doi.org/10.1088/1361-6463/aa5d8e
    76. Xin Yan, Wei Wei, Fengling Tang, Xi Wang, Luying Li, Xia Zhang, Xiaomin Ren. Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser. Applied Physics Letters 2017, 110 (6) https://doi.org/10.1063/1.4975780
    77. P. Dawson, D. Frey, V. Kalathingal, R. Mehfuz, J. Mitra. Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering. Faraday Discussions 2017, 205 , 121-148. https://doi.org/10.1039/C7FD00128B

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect