ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Scalable Quantum Photonics with Single Color Centers in Silicon Carbide

View Author Information
E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, United States
3rd Institute of Physics, IQST, and Research Center SCOPE, University of Stuttgart, 70569 Stuttgart, Germany
§ Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
Department of Physics, Chemistry, and Biology, Linköping University, SE-58183 Linköping, Sweden
⊥r National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
Cite this: Nano Lett. 2017, 17, 3, 1782–1786
Publication Date (Web):February 22, 2017
https://doi.org/10.1021/acs.nanolett.6b05102
Copyright © 2017 American Chemical Society

    Article Views

    4643

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Silicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400–1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.6b05102.

    • Additional modeling, spectroscopic and setup information (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 114 publications.

    1. Zhen-Xuan He, Qiang Li, Xiao-Lei Wen, Ji-Yang Zhou, Wu-Xi Lin, Zhi-He Hao, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Maskless Generation of Single Silicon Vacancy Arrays in Silicon Carbide by a Focused He+ Ion Beam. ACS Photonics 2023, 10 (7) , 2234-2240. https://doi.org/10.1021/acsphotonics.2c01209
    2. Ji-Yang Zhou, Qiang Li, Zhi-He Hao, Wu-Xi Lin, Zhen-Xuan He, Rui-Jian Liang, Liping Guo, Hao Li, Lixing You, Jian-Shun Tang, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Plasmonic-Enhanced Bright Single Spin Defects in Silicon Carbide Membranes. Nano Letters 2023, 23 (10) , 4334-4343. https://doi.org/10.1021/acs.nanolett.3c00568
    3. Srivatsa Chakravarthi, Nicholas S. Yama, Alex Abulnaga, Ding Huang, Christian Pederson, Karine Hestroffer, Fariba Hatami, Nathalie P. de Leon, Kai-Mei C. Fu. Hybrid Integration of GaP Photonic Crystal Cavities with Silicon-Vacancy Centers in Diamond by Stamp-Transfer. Nano Letters 2023, 23 (9) , 3708-3715. https://doi.org/10.1021/acs.nanolett.2c04890
    4. Stefania Castelletto, Alberto Peruzzo, Cristian Bonato, Brett C. Johnson, Marina Radulaski, Haiyan Ou, Florian Kaiser, Joerg Wrachtrup. Silicon Carbide Photonics Bridging Quantum Technology. ACS Photonics 2022, 9 (5) , 1434-1457. https://doi.org/10.1021/acsphotonics.1c01775
    5. Otto Schaeper, Ziwei Yang, Mehran Kianinia, Johannes E. Fröch, Andrei Komar, Zhao Mu, Weibo Gao, Dragomir N. Neshev, Igor Aharonovich. Monolithic Silicon Carbide Metalenses. ACS Photonics 2022, 9 (4) , 1409-1414. https://doi.org/10.1021/acsphotonics.2c00178
    6. Jin Hee Lee, Woong Bae Jeon, Jong Sung Moon, Junghyun Lee, Sang-Wook Han, Zoltán Bodrog, Adam Gali, Sang-Yun Lee, Je-Hyung Kim. Strong Zero-Phonon Transition from Point Defect-Stacking Fault Complexes in Silicon Carbide Nanowires. Nano Letters 2021, 21 (21) , 9187-9194. https://doi.org/10.1021/acs.nanolett.1c03013
    7. Ji-Yang Zhou, Qiang Li, Ze-Yan Hao, Fei-Fei Yan, Mu Yang, Jun-Feng Wang, Wu-Xi Lin, Zheng-Hao Liu, Wen Liu, Hao Li, Lixing You, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Experimental Determination of the Dipole Orientation of Single Color Centers in Silicon Carbide. ACS Photonics 2021, 8 (8) , 2384-2391. https://doi.org/10.1021/acsphotonics.1c00541
    8. G. C. Vásquez, M. E. Bathen, A. Galeckas, C. Bazioti, K. M. Johansen, D. Maestre, A. Cremades, Ø. Prytz, A. M. Moe, A. Yu. Kuznetsov, L. Vines. Strain Modulation of Si Vacancy Emission from SiC Micro- and Nanoparticles. Nano Letters 2020, 20 (12) , 8689-8695. https://doi.org/10.1021/acs.nanolett.0c03472
    9. Seong-Woo Jeon, Junghyun Lee, Hojoong Jung, Sang-Wook Han, Young-Wook Cho, Yong-Su Kim, Hyang-Tag Lim, Yanghee Kim, Matthias Niethammer, Weon Cheol Lim, Jonghan Song, Shinobu Onoda, Takeshi Ohshima, Rolf Reuter, Andrej Denisenko, Joerg Wrachtrup, Sang-Yun Lee. Bright Nitrogen-Vacancy Centers in Diamond Inverted Nanocones. ACS Photonics 2020, 7 (10) , 2739-2747. https://doi.org/10.1021/acsphotonics.0c00813
    10. Mehran Kianinia, Simon White, Johannes E. Fröch, Carlo Bradac, Igor Aharonovich. Generation of Spin Defects in Hexagonal Boron Nitride. ACS Photonics 2020, 7 (8) , 2147-2152. https://doi.org/10.1021/acsphotonics.0c00614
    11. Jun-Feng Wang, Zheng-Hao Liu, Fei-Fei Yan, Qiang Li, Xin-Ge Yang, Liping Guo, Xiong Zhou, Wei Huang, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Experimental Optical Properties of Single Nitrogen Vacancy Centers in Silicon Carbide at Room Temperature. ACS Photonics 2020, 7 (7) , 1611-1616. https://doi.org/10.1021/acsphotonics.0c00218
    12. Johannes E. Fröch, Sejeong Kim, Noah Mendelson, Mehran Kianinia, Milos Toth, Igor Aharonovich. Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities. ACS Nano 2020, 14 (6) , 7085-7091. https://doi.org/10.1021/acsnano.0c01818
    13. Jun-Feng Wang, Qiang Li, Fei-Fei Yan, He Liu, Guo-Ping Guo, Wei-Ping Zhang, Xiong Zhou, Li-Ping Guo, Zhi-Hai Lin, Jin-Ming Cui, Xiao-Ye Xu, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. On-Demand Generation of Single Silicon Vacancy Defects in Silicon Carbide. ACS Photonics 2019, 6 (7) , 1736-1743. https://doi.org/10.1021/acsphotonics.9b00451
    14. Peng Xing, Danhao Ma, Kelvin J. A. Ooi, Ju Won Choi, Anuradha Murthy Agarwal, Dawn Tan. CMOS-Compatible PECVD Silicon Carbide Platform for Linear and Nonlinear Optics. ACS Photonics 2019, 6 (5) , 1162-1167. https://doi.org/10.1021/acsphotonics.8b01468
    15. Hanh Ngoc My Duong, Minh Anh Phan Nguyen, Mehran Kianinia, Takeshi Ohshima, Hiroshi Abe, Kenji Watanabe, Takashi Taniguchi, James H. Edgar, Igor Aharonovich, Milos Toth. Effects of High-Energy Electron Irradiation on Quantum Emitters in Hexagonal Boron Nitride. ACS Applied Materials & Interfaces 2018, 10 (29) , 24886-24891. https://doi.org/10.1021/acsami.8b07506
    16. Lunet E. Luna, David Gardner, Velimir Radmilovic, Roya Maboudian, Carlo Carraro. Atomic-Scale Electronic Characterization of Defects in Silicon Carbide Nanowires by Electron Energy-Loss Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (22) , 12047-12051. https://doi.org/10.1021/acs.jpcc.8b01661
    17. Junfeng Wang, Xiaoming Zhang, Yu Zhou, Ke Li, Ziyu Wang, Phani Peddibhotla, Fucai Liu, Sven Bauerdick, Axel Rudzinski, Zheng Liu, and Weibo Gao . Scalable Fabrication of Single Silicon Vacancy Defect Arrays in Silicon Carbide Using Focused Ion Beam. ACS Photonics 2017, 4 (5) , 1054-1059. https://doi.org/10.1021/acsphotonics.7b00230
    18. H. Kraus, D. Simin, C. Kasper, Y. Suda, S. Kawabata, W. Kada, T. Honda, Y. Hijikata, T. Ohshima, V. Dyakonov, and G. V. Astakhov . Three-Dimensional Proton Beam Writing of Optically Active Coherent Vacancy Spins in Silicon Carbide. Nano Letters 2017, 17 (5) , 2865-2870. https://doi.org/10.1021/acs.nanolett.6b05395
    19. Pranta Saha, Sridhar Majety, Marina Radulaski. Utilizing photonic band gap in triangular silicon carbide structures for efficient quantum nanophotonic hardware. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-31362-9
    20. Qin-Yue Luo, Qiang Li, Jun-Feng Wang, Pei-Jie Guo, Wu-Xi Lin, Shuang Zhao, Qi-Cheng Hu, Zi-Qi Zhu, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Fabrication and quantum sensing of spin defects in silicon carbide. Frontiers in Physics 2023, 11 https://doi.org/10.3389/fphy.2023.1270602
    21. Vivek Vashist, Megha Khokhar, Faraz A. Inam, Rajesh V. Nair. Enhancing the Emission Rate of the Inherent Silicon‐Vacancy Center Using Optimized Multipolar Moments in a Silicon Carbide Metasurface. Advanced Quantum Technologies 2023, 12 https://doi.org/10.1002/qute.202300123
    22. Meysam Mohseni, Péter Udvarhelyi, Gergő Thiering, Adam Gali. Positively charged carbon vacancy defect as a near-infrared emitter in 4H-SiC. Physical Review Materials 2023, 7 (9) https://doi.org/10.1103/PhysRevMaterials.7.096202
    23. T. Vasselon, A. Hernández-Mínguez, M. Hollenbach, G.V. Astakhov, P.V. Santos. Acoustically Induced Spin Resonances of Silicon-Vacancy Centers in 4 H -SiC. Physical Review Applied 2023, 20 (3) https://doi.org/10.1103/PhysRevApplied.20.034017
    24. Stefania Castelletto, Alberto Boretti. Perspective on Solid‐State Single‐Photon Sources in the Infrared for Quantum Technology. Advanced Quantum Technologies 2023, 361 https://doi.org/10.1002/qute.202300145
    25. Vigneshwaran Chandrasekaran, Michael Titze, Anthony R. Flores, Deanna Campbell, Jacob Henshaw, Andrew C. Jones, Edward S. Bielejec, Han Htoon. High‐Yield Deterministic Focused Ion Beam Implantation of Quantum Defects Enabled by In Situ Photoluminescence Feedback. Advanced Science 2023, 10 (18) https://doi.org/10.1002/advs.202300190
    26. Qin-Yue Luo, Shuang Zhao, Qi-Cheng Hu, Wei-Ke Quan, Zi-Qi Zhu, Jia-Jun Li, Jun-Feng Wang. High-sensitivity silicon carbide divacancy-based temperature sensing. Nanoscale 2023, 15 (18) , 8432-8436. https://doi.org/10.1039/D3NR00430A
    27. Yuma Takahashi, Tomoki Ishii, Kaisei Uchida, Takumi Zushi, Lindsay Coe, Shin-ichiro Sato, Enrico Prati, Takahiro Shinada, Takashi Tanii. Enhancing Room-temperature Photoluminescence from Erbium-doped Silicon by Fabricating Nanopillars in a Silicon-on-Insulator Layer. e-Journal of Surface Science and Nanotechnology 2023, 21 (4) , 262-266. https://doi.org/10.1380/ejssnt.2023-041
    28. . Optically detected magnetic resonance of silicon vacancies in 4H-SiC at elevated temperatures toward magnetic sensing under harsh environments. Journal of Applied Physics 2023https://doi.org/10.1063/5.0139801
    29. Sridhar Majety, Stefan Strohauer, Pranta Saha, Fabian Wietschorke, Jonathan J Finley, Kai Müller, Marina Radulaski. Triangular quantum photonic devices with integrated detectors in silicon carbide. Materials for Quantum Technology 2023, 3 (1) , 015004. https://doi.org/10.1088/2633-4356/acc302
    30. Faraz Ahmed Inam, Stefania Castelletto. Metal-Dielectric Nanopillar Antenna-Resonators for Efficient Collected Photon Rate from Silicon Carbide Color Centers. Nanomaterials 2023, 13 (1) , 195. https://doi.org/10.3390/nano13010195
    31. I. D. Breev, Z. Shang, A. V. Poshakinskiy, H. Singh, Y. Berencén, M. Hollenbach, S. S. Nagalyuk, E. N. Mokhov, R. A. Babunts, P. G. Baranov, D. Suter, S. A. Tarasenko, G. V. Astakhov, A. N. Anisimov. Inverted fine structure of a 6H-SiC qubit enabling robust spin-photon interface. npj Quantum Information 2022, 8 (1) https://doi.org/10.1038/s41534-022-00534-2
    32. Yifan Zhu, Wenqi Wei, Ailun Yi, Tingting Jin, Chen Shen, Xudong Wang, Liping Zhou, Chengli Wang, Weiwen Ou, Sannian Song, Ting Wang, Jianjun Zhang, Xin Ou, Jiaxiang Zhang. Hybrid Integration of Deterministic Quantum Dot‐Based Single‐Photon Sources with CMOS‐Compatible Silicon Carbide Photonics. Laser & Photonics Reviews 2022, 16 (9) https://doi.org/10.1002/lpor.202200172
    33. Shi-Wen Xu, Yu-Ming Wei, Rong-Bin Su, Xue-Shi Li, Pei-Nian Huang, Shun-Fa Liu, Xiao-Ying Huang, Ying Yu, Jin Liu, Xue-Hua Wang. Bright single-photon sources in the telecom band by deterministically coupling single quantum dots to a hybrid circular Bragg resonator. Photonics Research 2022, 10 (8) , B1. https://doi.org/10.1364/PRJ.461034
    34. Michael Hollenbach, Nagesh S. Jagtap, Ciarán Fowley, Juan Baratech, Verónica Guardia-Arce, Ulrich Kentsch, Anna Eichler-Volf, Nikolay V. Abrosimov, Artur Erbe, ChaeHo Shin, Hakseong Kim, Manfred Helm, Woo Lee, Georgy V. Astakhov, Yonder Berencén. Metal-assisted chemically etched silicon nanopillars hosting telecom photon emitters. Journal of Applied Physics 2022, 132 (3) https://doi.org/10.1063/5.0094715
    35. Qiang Li, Jun-Feng Wang, Fei-Fei Yan, Ji-Yang Zhou, Han-Feng Wang, He Liu, Li-Ping Guo, Xiong Zhou, Adam Gali, Zheng-Hao Liu, Zu-Qing Wang, Kai Sun, Guo-Ping Guo, Jian-Shun Tang, Hao Li, Li-Xing You, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Room-temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast. National Science Review 2022, 9 (5) https://doi.org/10.1093/nsr/nwab122
    36. Marc Sartison, Oscar Camacho Ibarra, Ioannis Caltzidis, Dirk Reuter, Klaus D Jöns. Scalable integration of quantum emitters into photonic integrated circuits. Materials for Quantum Technology 2022, 2 (2) , 023002. https://doi.org/10.1088/2633-4356/ac6f3e
    37. Tamanna Joshi, Pratibha Dev. Site-Dependent Properties of Quantum Emitters in Nanostructured Silicon Carbide. PRX Quantum 2022, 3 (2) https://doi.org/10.1103/PRXQuantum.3.020325
    38. Eli Baum, Amelia Broman, Trevor Clarke, Natanael C. Costa, Jack Mucciaccio, Alexander Yue, Yuxi Zhang, Victoria Norman, Jesse Patton, Marina Radulaski, Richard T. Scalettar. Effect of emitters on quantum state transfer in coupled cavity arrays. Physical Review B 2022, 105 (19) https://doi.org/10.1103/PhysRevB.105.195429
    39. Shun Kanai, F. Joseph Heremans, Hosung Seo, Gary Wolfowicz, Christopher P. Anderson, Sean E. Sullivan, Mykyta Onizhuk, Giulia Galli, David D. Awschalom, Hideo Ohno. Generalized scaling of spin qubit coherence in over 12,000 host materials. Proceedings of the National Academy of Sciences 2022, 119 (15) https://doi.org/10.1073/pnas.2121808119
    40. Sridhar Majety, Pranta Saha, Victoria A. Norman, Marina Radulaski. Quantum information processing with integrated silicon carbide photonics. Journal of Applied Physics 2022, 131 (13) https://doi.org/10.1063/5.0077045
    41. A. Csóré, I. G. Ivanov, N. T. Son, A. Gali. Fluorescence spectrum and charge state control of divacancy qubits via illumination at elevated temperatures in 4 H silicon carbide. Physical Review B 2022, 105 (16) https://doi.org/10.1103/PhysRevB.105.165108
    42. Jiawen Jiang, Q. Chen. Selective nuclear-spin interaction based on a dissipatively stabilized nitrogen-vacancy center. Physical Review A 2022, 105 (4) https://doi.org/10.1103/PhysRevA.105.042426
    43. Tieshan Yang, Noah Mendelson, Chi Li, Andreas Gottscholl, John Scott, Mehran Kianinia, Vladimir Dyakonov, Milos Toth, Igor Aharonovich. Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays. Nanoscale 2022, 14 (13) , 5239-5244. https://doi.org/10.1039/D1NR07919K
    44. András Csóré, Nain Mukesh, Gyula Károlyházy, David Beke, Adam Gali. Photoluminescence spectrum of divacancy in porous and nanocrystalline cubic silicon carbide. Journal of Applied Physics 2022, 131 (7) https://doi.org/10.1063/5.0080514
    45. A. F. M. Almutairi, J. G. Partridge, Chenglong Xu, I. S. Cole, A. S. Holland. Direct writing of divacancy centers in silicon carbide by femtosecond laser irradiation and subsequent thermal annealing. Applied Physics Letters 2022, 120 (1) https://doi.org/10.1063/5.0070014
    46. Galan Moody, Volker J Sorger, Daniel J Blumenthal, Paul W Juodawlkis, William Loh, Cheryl Sorace-Agaskar, Alex E Jones, Krishna C Balram, Jonathan C F Matthews, Anthony Laing, Marcelo Davanco, Lin Chang, John E Bowers, Niels Quack, Christophe Galland, Igor Aharonovich, Martin A Wolff, Carsten Schuck, Neil Sinclair, Marko Lončar, Tin Komljenovic, David Weld, Shayan Mookherjea, Sonia Buckley, Marina Radulaski, Stephan Reitzenstein, Benjamin Pingault, Bartholomeus Machielse, Debsuvra Mukhopadhyay, Alexey Akimov, Aleksei Zheltikov, Girish S Agarwal, Kartik Srinivasan, Juanjuan Lu, Hong X Tang, Wentao Jiang, Timothy P McKenna, Amir H Safavi-Naeini, Stephan Steinhauer, Ali W Elshaari, Val Zwiller, Paul S Davids, Nicholas Martinez, Michael Gehl, John Chiaverini, Karan K Mehta, Jacquiline Romero, Navin B Lingaraju, Andrew M Weiner, Daniel Peace, Robert Cernansky, Mirko Lobino, Eleni Diamanti, Luis Trigo Vidarte, Ryan M Camacho. 2022 Roadmap on integrated quantum photonics. Journal of Physics: Photonics 2022, 4 (1) , 012501. https://doi.org/10.1088/2515-7647/ac1ef4
    47. Charles Babin, Rainer Stöhr, Naoya Morioka, Tobias Linkewitz, Timo Steidl, Raphael Wörnle, Di Liu, Erik Hesselmeier, Vadim Vorobyov, Andrej Denisenko, Mario Hentschel, Christian Gobert, Patrick Berwian, Georgy V. Astakhov, Wolfgang Knolle, Sridhar Majety, Pranta Saha, Marina Radulaski, Nguyen Tien Son, Jawad Ul-Hassan, Florian Kaiser, Jörg Wrachtrup. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nature Materials 2022, 21 (1) , 67-73. https://doi.org/10.1038/s41563-021-01148-3
    48. Yueyang Chen, David Sharp, Abhi Saxena, Hao Nguyen, Brandi M. Cossairt, Arka Majumdar. Integrated Quantum Nanophotonics with Solution‐Processed Materials. Advanced Quantum Technologies 2022, 5 (1) https://doi.org/10.1002/qute.202100078
    49. Xiao‐Jie Wang, Hong‐Hua Fang, Fang‐Wen Sun, Hong‐Bo Sun. Laser Writing of Color Centers. Laser & Photonics Reviews 2022, 16 (1) https://doi.org/10.1002/lpor.202100029
    50. Faraz Ahmed Inam, Stefania Castelletto. Using multi-polar scattering and near-field plasmonic resonances to achieve optimal emission enhancement from quantum emitters embedded in dielectric pillars. Journal of the Optical Society of America B 2021, 38 (12) , 3697. https://doi.org/10.1364/JOSAB.434605
    51. András Csóré, Adam Gali. Point Defects in Silicon Carbide for Quantum Technology. 2021, 503-528. https://doi.org/10.1002/9783527824724.ch17
    52. Otto Cranwell Schaeper, Johannes E. Fröch, Sejeong Kim, Zhao Mu, Milos Toth, Weibo Gao, Igor Aharonovich. Fabrication of Photonic Resonators in Bulk 4H‐SiC. Advanced Materials Technologies 2021, 6 (11) https://doi.org/10.1002/admt.202100589
    53. R. A. Parker, N. Dontschuk, S.-I. Sato, C. T.-K. Lew, P. Reineck, A. Nadarajah, T. Ohshima, B. C. Gibson, S. Castelletto, J. C. McCallum, B. C. Johnson. Infrared erbium photoluminescence enhancement in silicon carbide nano-pillars. Journal of Applied Physics 2021, 130 (14) https://doi.org/10.1063/5.0055100
    54. Faraz A. Inam, S. Castelletto. Understanding the photonics of single color-center emission in a high-indexed nano-pillar. Journal of Applied Physics 2021, 130 (8) https://doi.org/10.1063/5.0054413
    55. Scott E. Crawford, Roman A. Shugayev, Hari P. Paudel, Ping Lu, Madhava Syamlal, Paul R. Ohodnicki, Benjamin Chorpening, Randall Gentry, Yuhua Duan. Quantum Sensing for Energy Applications: Review and Perspective. Advanced Quantum Technologies 2021, 4 (8) https://doi.org/10.1002/qute.202100049
    56. Victoria A. Norman, Sridhar Majety, Zhipan Wang, William H. Casey, Nicholas Curro, Marina Radulaski. Novel color center platforms enabling fundamental scientific discovery. InfoMat 2021, 3 (8) , 869-890. https://doi.org/10.1002/inf2.12128
    57. A. Csóré, N. T. Son, A. Gali. Towards identification of silicon vacancy-related electron paramagnetic resonance centers in 4 H -SiC. Physical Review B 2021, 104 (3) https://doi.org/10.1103/PhysRevB.104.035207
    58. Marianne Etzelmüller Bathen, Lasse Vines. Manipulating Single‐Photon Emission from Point Defects in Diamond and Silicon Carbide. Advanced Quantum Technologies 2021, 4 (7) https://doi.org/10.1002/qute.202100003
    59. Nguyen T. Son, Ivan G. Ivanov. Charge state control of the silicon vacancy and divacancy in silicon carbide. Journal of Applied Physics 2021, 129 (21) https://doi.org/10.1063/5.0052131
    60. Stefania Castelletto. Silicon carbide single-photon sources: challenges and prospects. Materials for Quantum Technology 2021, 1 (2) , 023001. https://doi.org/10.1088/2633-4356/abe04a
    61. Tuan Minh Hoang, Hitoshi Ishiwata, Yuta Masuyama, Yuichi Yamazaki, Kazutoshi Kojima, Sang-Yun Lee, Takeshi Ohshima, Takayuki Iwasaki, Digh Hisamoto, Mutsuko Hatano. Thermometric quantum sensor using excited state of silicon vacancy centers in 4H-SiC devices. Applied Physics Letters 2021, 118 (4) https://doi.org/10.1063/5.0027603
    62. Benedikt Tratzmiller, Jan F. Haase, Zhenyu Wang, Martin B. Plenio. Parallel selective nuclear-spin addressing for fast high-fidelity quantum gates. Physical Review A 2021, 103 (1) https://doi.org/10.1103/PhysRevA.103.012607
    63. Srivatsa Chakravarthi, Pengning Chao, Christian Pederson, Sean Molesky, Andrew Ivanov, Karine Hestroffer, Fariba Hatami, Alejandro W. Rodriguez, Kai-Mei C. Fu. Inverse-designed photon extractors for optically addressable defect qubits. Optica 2020, 7 (12) , 1805. https://doi.org/10.1364/OPTICA.408611
    64. Nadeem Ahmed, Saba Akhtar, Faraz A. Inam. Hyperbolic metamaterial-based metal–dielectric resonator-antenna designs for GHz photon collection rates from wide-range solid-state single-photon sources. Journal of the Optical Society of America B 2020, 37 (11) , 3469. https://doi.org/10.1364/JOSAB.402890
    65. Tuan‐Anh Pham, Afzaal Qamar, Toan Dinh, Mostafa Kamal Masud, Mina Rais‐Zadeh, Debbie G. Senesky, Yusuke Yamauchi, Nam‐Trung Nguyen, Hoang‐Phuong Phan. Nanoarchitectonics for Wide Bandgap Semiconductor Nanowires: Toward the Next Generation of Nanoelectromechanical Systems for Environmental Monitoring. Advanced Science 2020, 7 (21) https://doi.org/10.1002/advs.202001294
    66. Simon J.U. White, Ngoc My Hanh Duong, Alexander S. Solntsev, Je-Hyung Kim, Mehran Kianinia, Igor Aharonovich. Optical Repumping of Resonantly Excited Quantum Emitters in Hexagonal Boron Nitride. Physical Review Applied 2020, 14 (4) https://doi.org/10.1103/PhysRevApplied.14.044017
    67. Lue Tao, Weiwen Ou, Yang Li, Han Liao, Jiaxiang Zhang, Fuwan Gan, Xin Ou. Recent advances in mechanical strain engineering of low-dimensional semiconductors and their applications in high-performance quantum emitters. Semiconductor Science and Technology 2020, 35 (10) , 103002. https://doi.org/10.1088/1361-6641/ab8e0b
    68. F. Sardi, T. Kornher, M. Widmann, R. Kolesov, F. Schiller, T. Reindl, M. Hagel, J. Wrachtrup. Scalable production of solid-immersion lenses for quantum emitters in silicon carbide. Applied Physics Letters 2020, 117 (2) https://doi.org/10.1063/5.0011366
    69. Peng Xing, Danhao Ma, Lionel C. Kimerling, Anuradha M. Agarwal, Dawn T. H. Tan. High efficiency four wave mixing and optical bistability in amorphous silicon carbide ring resonators. APL Photonics 2020, 5 (7) , 076110. https://doi.org/10.1063/5.0009692
    70. Wenzheng Dong, F A Calderon-Vargas, Sophia E Economou. Precise high-fidelity electron–nuclear spin entangling gates in NV centers via hybrid dynamical decoupling sequences. New Journal of Physics 2020, 22 (7) , 073059. https://doi.org/10.1088/1367-2630/ab9bc0
    71. Jun-Feng Wang, Fei-Fei Yan, Qiang Li, Zheng-Hao Liu, He Liu, Guo-Ping Guo, Li-Ping Guo, Xiong Zhou, Jin-Ming Cui, Jian Wang, Zong-Quan Zhou, Xiao-Ye Xu, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. Physical Review Letters 2020, 124 (22) https://doi.org/10.1103/PhysRevLett.124.223601
    72. Daniil M. Lukin, Constantin Dory, Melissa A. Guidry, Ki Youl Yang, Sattwik Deb Mishra, Rahul Trivedi, Marina Radulaski, Shuo Sun, Dries Vercruysse, Geun Ho Ahn, Jelena Vučković. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nature Photonics 2020, 14 (5) , 330-334. https://doi.org/10.1038/s41566-019-0556-6
    73. Sven Rodt, Stephan Reitzenstein, Tobias Heindel. Deterministically fabricated solid-state quantum-light sources. Journal of Physics: Condensed Matter 2020, 32 (15) , 153003. https://doi.org/10.1088/1361-648X/ab5e15
    74. C. Kasper, D. Klenkert, Z. Shang, D. Simin, A. Gottscholl, A. Sperlich, H. Kraus, C. Schneider, S. Zhou, M. Trupke, W. Kada, T. Ohshima, V. Dyakonov, G. V. Astakhov. Influence of Irradiation on Defect Spin Coherence in Silicon Carbide. Physical Review Applied 2020, 13 (4) https://doi.org/10.1103/PhysRevApplied.13.044054
    75. Stefania Castelletto, Alberto Boretti. Silicon carbide color centers for quantum applications. Journal of Physics: Photonics 2020, 2 (2) , 022001. https://doi.org/10.1088/2515-7647/ab77a2
    76. Gregory Ya. Slepyan, Svetlana Vlasenko, Dmitri Mogilevtsev. Quantum Antennas. Advanced Quantum Technologies 2020, 3 (4) https://doi.org/10.1002/qute.201900120
    77. M. E. Bathen, A. Galeckas, J. Coutinho, L. Vines. Influence of hydrogen implantation on emission from the silicon vacancy in 4H-SiC. Journal of Applied Physics 2020, 127 (8) https://doi.org/10.1063/1.5140659
    78. Hadiseh Alaeian, Ralf Ritter, Muamera Basic, Robert Löw, Tilman Pfau. Cavity QED based on room temperature atoms interacting with a photonic crystal cavity: a feasibility study. Applied Physics B 2020, 126 (2) https://doi.org/10.1007/s00340-019-7367-9
    79. Jun-Feng Wang, Jin-Ming Cui, Fei-Fei Yan, Qiang Li, Ze-Di Cheng, Zheng-Hao Liu, Zhi-Hai Lin, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Optimization of power broadening in optically detected magnetic resonance of defect spins in silicon carbide. Physical Review B 2020, 101 (6) https://doi.org/10.1103/PhysRevB.101.064102
    80. Sven Rodt, Philipp-Immanuel Schneider, Lin Zschiedrich, Tobias Heindel, Samir Bounouar, Markus Kantner, Thomas Koprucki, Uwe Bandelow, Sven Burger, Stephan Reitzenstein. Deterministic Quantum Devices for Optical Quantum Communication. 2020, 285-359. https://doi.org/10.1007/978-3-030-35656-9_8
    81. Ilya M. Fradkin, Mario Agio, Dmitry Yu. Fedyanin. Highly-Efficient Extraction of Single Photons from Single SiV Centers in Diamond Using Plasmonic Nanoantenna. 2020, FW1C.2. https://doi.org/10.1364/FIO.2020.FW1C.2
    82. Stefania Castelletto, F. A. Inam, A. Boretti, J. M. Bluet, , . Integrated color centers in arrays of silicon carbide micropillars. 2019, 311. https://doi.org/10.1117/12.2556256
    83. M. E. Bathen, A. Galeckas, J. Müting, H. M. Ayedh, U. Grossner, J. Coutinho, Y. K. Frodason, L. Vines. Electrical charge state identification and control for the silicon vacancy in 4H-SiC. npj Quantum Information 2019, 5 (1) https://doi.org/10.1038/s41534-019-0227-y
    84. Viktor Ivády, Joel Davidsson, Nazar Delegan, Abram L. Falk, Paul V. Klimov, Samuel J. Whiteley, Stephan O. Hruszkewycz, Martin V. Holt, F. Joseph Heremans, Nguyen Tien Son, David D. Awschalom, Igor A. Abrikosov, Adam Gali. Stabilization of point-defect spin qubits by quantum wells. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13495-6
    85. Qiang Li, Jun-Feng Wang, Fei-Fei Yan, Ze-Di Cheng, Zheng-Hao Liu, Kun Zhou, Li-Ping Guo, Xiong Zhou, Wei-Ping Zhang, Xiu-Xia Wang, Wei Huang, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Nanoscale depth control of implanted shallow silicon vacancies in silicon carbide. Nanoscale 2019, 11 (43) , 20554-20561. https://doi.org/10.1039/C9NR05938E
    86. Yue Luo, Na Liu, Xiangzhi Li, James C Hone, Stefan Strauf. Single photon emission in WSe 2 up 160 K by quantum yield control. 2D Materials 2019, 6 (3) , 035017. https://doi.org/10.1088/2053-1583/ab15fe
    87. Qiang Li, Ji-Yang Zhou, Zheng-Hao Liu, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Stable single photon sources in the near C-band range above 400 K. Journal of Semiconductors 2019, 40 (7) , 072902. https://doi.org/10.1088/1674-4926/40/7/072902
    88. Rahul Trivedi, Marina Radulaski, Kevin A. Fischer, Shanhui Fan, Jelena Vučković. Photon Blockade in Weakly Driven Cavity Quantum Electrodynamics Systems with Many Emitters. Physical Review Letters 2019, 122 (24) https://doi.org/10.1103/PhysRevLett.122.243602
    89. Nguyen Tien Son, Pontus Stenberg, Valdas Jokubavicius, Hiroshi Abe, Takeshi Ohshima, Jawad Ul Hassan, Ivan G. Ivanov. Energy levels and charge state control of the carbon antisite-vacancy defect in 4H-SiC. Applied Physics Letters 2019, 114 (21) https://doi.org/10.1063/1.5098070
    90. Nguyen Tien Son, Pontus Stenberg, Valdas Jokubavicius, Takeshi Ohshima, Jawad Ul Hassan, Ivan G Ivanov. Ligand hyperfine interactions at silicon vacancies in 4H-SiC. Journal of Physics: Condensed Matter 2019, 31 (19) , 195501. https://doi.org/10.1088/1361-648X/ab072b
    91. Wenzheng Dong, M. W. Doherty, Sophia E. Economou. Spin polarization through intersystem crossing in the silicon vacancy of silicon carbide. Physical Review B 2019, 99 (18) https://doi.org/10.1103/PhysRevB.99.184102
    92. E. V. Stolyarov. Few-photon Fock-state wave packet interacting with a cavity-atom system in a waveguide: Exact quantum state dynamics. Physical Review A 2019, 99 (2) https://doi.org/10.1103/PhysRevA.99.023857
    93. Daniel White, Artur Branny, Robert J. Chapman, Raphaël Picard, Mauro Brotons-Gisbert, Andreas Boes, Alberto Peruzzo, Cristian Bonato, Brian D. Gerardot. Atomically-thin quantum dots integrated with lithium niobate photonic chips [Invited]. Optical Materials Express 2019, 9 (2) , 441. https://doi.org/10.1364/OME.9.000441
    94. Stefania Castelletto, Abdul Salam Al Atem, Faraz Ahmed Inam, Hans Jürgen von Bardeleben, Sophie Hameau, Ahmed Fahad Almutairi, Gérard Guillot, Shin-ichiro Sato, Alberto Boretti, Jean Marie Bluet. Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars. Beilstein Journal of Nanotechnology 2019, 10 , 2383-2395. https://doi.org/10.3762/bjnano.10.229
    95. S. Castelletto, A. F. M. Almutairi, K. Kumagai, T. Katkus, Y. Hayasaki, B. C. Johnson, S. Juodkazis. Photoluminescence in hexagonal silicon carbide by direct femtosecond laser writing. Optics Letters 2018, 43 (24) , 6077. https://doi.org/10.1364/OL.43.006077
    96. Bong-Shik Song, Seungwoo Jeon, Heungjoon Kim, Dongyeon Daniel Kang, Takashi Asano, Susumu Noda. High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide. Applied Physics Letters 2018, 113 (23) https://doi.org/10.1063/1.5058194
    97. Yu Zhou, Zhao Mu, Giorgio Adamo, Sven Bauerdick, Axel Rudzinski, Igor Aharonovich, Wei-bo Gao. Direct writing of single germanium vacancy center arrays in diamond. New Journal of Physics 2018, 20 (12) , 125004. https://doi.org/10.1088/1367-2630/aaf2ac
    98. Shula Chen, Yuqing Huang, Dennis Visser, Srinivasan Anand, Irina A. Buyanova, Weimin M. Chen. Room-temperature polarized spin-photon interface based on a semiconductor nanodisk-in-nanopillar structure driven by few defects. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06035-1
    99. Junfeng Wang, Yu Zhou, Ziyu Wang, Abdullah Rasmita, Jianqun Yang, Xingji Li, Hans Jürgen von Bardeleben, Weibo Gao. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06605-3
    100. Igor A. Khramtsov, Andrey A. Vyshnevyy, Dmitry Yu. Fedyanin. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide. npj Quantum Information 2018, 4 (1) https://doi.org/10.1038/s41534-018-0066-2
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect