Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion BatteriesClick to copy article linkArticle link copied!
Abstract

We have systematically changed the number of atomic layers stacked in 2D SnO nanosheet anodes and studied their sodium ion battery (SIB) performance. The results indicate that as the number of atomic SnO layers in a sheet decreases, both the capacity and cycling stability of the Na ion battery improve. The thinnest SnO nanosheet anodes (two to six SnO monolayers) exhibited the best performance. Specifically, an initial discharge and charge capacity of 1072 and 848 mAh g–1 were observed, respectively, at 0.1 A g–1. In addition, an impressive reversible capacity of 665 mAh g–1 after 100 cycles at 0.1 A g–1 and 452 mAh g–1 after 1000 cycles at a high current density of 1.0 A g–1 was observed, with excellent rate performance. As the average number of atomic layers in the anode sheets increased, the battery performance degraded significantly. For example, for the anode sheets with 10–20 atomic layers, only a reversible capacity of 389 mAh g–1 could be obtained after 100 cycles at 0.1 A g–1. Density functional theory calculations coupled with experimental results were used to elucidate the sodiation mechanism of the SnO nanosheets. This systematic study of monolayer-dependent physical and electrochemical properties of 2D anodes shows a promising pathway to engineering and mitigating volume changes in 2D anode materials for sodium ion batteries. It also demonstrates that ultrathin SnO nanosheets are promising SIB anode materials with high specific capacity, stable cyclability, and excellent rate performance.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 128 publications.
- Wen Ji Zhang, Shao Yang Wang, Tao Tang, Yin Fen Cheng, Yi Liang, Jing Hao Zhuang, Xin Yi Hu, Min Zhang, Yao Yang Liu, Qi Jie Ma, Bao Yue Zhang, Azmira Jannat, Jian Zhen Ou, Zhong Li. Room-Temperature NO2 Sensor Based on Oxygen Vacancy-Rich SnO Nanosheets. ACS Applied Nano Materials 2025, 8
(15)
, 7806-7816. https://doi.org/10.1021/acsanm.5c01114
- Michele Re Fiorentin, Francesca Risplendi, Maurizia Palummo, Giancarlo Cicero. Multiple Linear Dichroism Inversions in SnO Monolayers for Polarization-Sensitive UV Photodetection: An Ab Initio Investigation. ACS Applied Nano Materials 2025, 8
(5)
, 2374-2381. https://doi.org/10.1021/acsanm.4c06552
- Young-Hoon Kim, Joo-Yeon Moon, Yeong-In Yoon, Jae-Chul Lee, Yong-Seok Choi. Solvent-Driven Na Storage in SnS2 Anodes: Atomistic Simulation-Guided Strategies for Reversible Reactions, Solid Electrolyte Interphase, and Morphological Transformation. ACS Nano 2024, 18
(52)
, 35595-35605. https://doi.org/10.1021/acsnano.4c13669
- Wang Yao, Qiang Li, Peng Qin, Jun Qian, Xuli Ding. Energy Band-Modulated SnO Anodes with Improved Rate Capacity and Initial Coulombic Efficiency for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2024, 16
(30)
, 39206-39214. https://doi.org/10.1021/acsami.4c03971
- Lei Zhao, Jian Yin, Jinxin Lin, Cailing Chen, Liheng Chen, Xueqing Qiu, Husam N. Alshareef, Wenli Zhang. Highly Stable ZnS Anodes for Sodium-Ion Batteries Enabled by Structure and Electrolyte Engineering. ACS Nano 2024, 18
(4)
, 3763-3774. https://doi.org/10.1021/acsnano.3c11785
- Shuangyan Qiao, Qianwen Zhou, Meng Ma, Hua Kun Liu, Shi Xue Dou, Shaokun Chong. Advanced Anode Materials for Rechargeable Sodium-Ion Batteries. ACS Nano 2023, 17
(12)
, 11220-11252. https://doi.org/10.1021/acsnano.3c02892
- Nan Gao, Jinwei Cao, Chen Wang, Zhaoqing Gao, Ruofan Li, Guoxin Ding, Haitao Ma, Yunpeng Wang, Liping Zhang. Study on the Crystallinity and Oxidation States of Nanoporous Anodized Tin Oxide Films Regulated by Annealing Treatment for Supercapacitor Application. Langmuir 2022, 38
(1)
, 164-173. https://doi.org/10.1021/acs.langmuir.1c02304
- Xiao-Cheng Liu, Cong Wei, Yishang Wu, Yanyan Fang, Wen-Qiang Li, Rong-Rong Ding, Gongming Wang, Yang Mu. Tailoring the Electrochemical Protonation Behavior of CO2 by Tuning Surface Noncovalent Interactions. ACS Catalysis 2021, 11
(24)
, 14986-14994. https://doi.org/10.1021/acscatal.1c03652
- Yu Sun, Yanling Yang, Xiao-Lei Shi, Guoquan Suo, Huajun Chen, Xiaojiang Hou, Siyu Lu, Zhi-Gang Chen. Self-Standing Film Assembled using SnS–Sn/Multiwalled Carbon Nanotubes Encapsulated Carbon Fibers: A Potential Large-Scale Production Material for Ultra-stable Sodium-Ion Battery Anodes. ACS Applied Materials & Interfaces 2021, 13
(24)
, 28359-28368. https://doi.org/10.1021/acsami.1c07152
- Lan-Fang Que, Fu-Da Yu, Yang Xia, Liang Deng, Kokswee Goh, Chang Liu, Yun-Shan Jiang, Xu-Lei Sui, Zhen-Bo Wang. Enhancing Na-Ion Storage at Subzero Temperature via Interlayer Confinement of Sn2+. ACS Nano 2020, 14
(10)
, 13765-13774. https://doi.org/10.1021/acsnano.0c05925
- Zhongtao Li, Yunfa Dong, Jianze Feng, Tao Xu, Hao Ren, Cai Gao, Yueran Li, Mingjie Cheng, Wenting Wu, Mingbo Wu. Controllably Enriched Oxygen Vacancies through Polymer Assistance in Titanium Pyrophosphate as a Super Anode for Na/K-Ion Batteries. ACS Nano 2019, 13
(8)
, 9227-9236. https://doi.org/10.1021/acsnano.9b03686
- Il Yong Choi, Changshin Jo, Won-Gwang Lim, Jong-Chan Han, Byeong-Gyu Chae, Chan Gyung Park, Jinwoo Lee, Jong Kyu Kim. Amorphous Tin Oxide Nanohelix Structure Based Electrode for Highly Reversible Na-Ion Batteries. ACS Nano 2019, 13
(6)
, 6513-6521. https://doi.org/10.1021/acsnano.8b09773
- Qiu-Li Ning, Bao-Hua Hou, Ying-Ying Wang, Dao-Sheng Liu, Zhong-Zhen Luo, Wen-Hao Li, Yang Yang, Jin-Zhi Guo, Xing-Long Wu. Hierarchical GeP5/Carbon Nanocomposite with Dual-Carbon Conductive Network as Promising Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10
(43)
, 36902-36909. https://doi.org/10.1021/acsami.8b11103
- Haomiao Li, Kangli Wang, Shijie Cheng, Kai Jiang. Controllable Electrochemical Synthesis of Copper Sulfides as Sodium-Ion Battery Anodes with Superior Rate Capability and Ultralong Cycle Life. ACS Applied Materials & Interfaces 2018, 10
(9)
, 8016-8025. https://doi.org/10.1021/acsami.7b19138
- Xiang Hu, Yan Li, Guang Zeng, Jingchun Jia, Hongbing Zhan, and Zhenhai Wen . Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS2 for Lithium and Sodium Storage. ACS Nano 2018, 12
(2)
, 1592-1602. https://doi.org/10.1021/acsnano.7b08161
- Bingsheng Qin, Huang Zhang, Thomas Diemant, Dorin Geiger, Rinaldo Raccichini, R. Jürgen Behm, Ute Kaiser, Alberto Varzi, and Stefano Passerini . Ultrafast Ionic Liquid-Assisted Microwave Synthesis of SnO Microflowers and Their Superior Sodium-Ion Storage Performance. ACS Applied Materials & Interfaces 2017, 9
(32)
, 26797-26804. https://doi.org/10.1021/acsami.7b06230
- Shaocong Tang, Jiabao Li, Quan Yuan, Tian Wang, Weiwei Xiang, Jae Su Yu. Robust Sodium Storage Enabled by Heterogeneous Engineering and Electrolyte Modification. Advanced Energy Materials 2025, 15
(13)
https://doi.org/10.1002/aenm.202404418
- Yanan Zhang, Jinpeng Ji, Sher Zaman, Chao Zhu, Na Liu, Pengfei Li, Tao Ju, Fengxia Geng. Liquid phase delamination of non-van der Waal two-dimensional sheets of tin monoxide for flexible and long lifespan sodium-ion batteries. Fundamental Research 2025, 16 https://doi.org/10.1016/j.fmre.2025.04.003
- Jia Liu, Xiaoge Peng, Xiaosa Wang, Xing Zhong, Jianguo Wang. Electrochemical ozone production: from fundamental mechanisms to advanced applications. EES Catalysis 2025, 3
(2)
, 170-204. https://doi.org/10.1039/D4EY00204K
- Xueyi Lu, Weixin Chen, Jianfang Yang, Xuemin Wu, Yan Wang, Oliver G. Schmidt, Lifeng Liu, Daiming Tang, Xia Lu. Sodium storage of -Sn/TiO2/Sn/TiO2- Superlattice heterojunctions. Energy Storage Materials 2025, 76 , 104112. https://doi.org/10.1016/j.ensm.2025.104112
- Rana Faisal Shahzad, Shahid Rasul, Mohamed Mamlouk, Ian Brewis, Rana Abdul Shakoor, Abdul Wasy Zia. Designing Tin and Hard Carbon Architecture for Stable Sodium‐Ion Battery Anode. Small Structures 2025, 6
(2)
https://doi.org/10.1002/sstr.202400367
- K. H. Yeoh, Y. H. R. Chang, K.-H. Chew, D. S. Ong, C. F. Dee, B. T. Goh, E. Y. Chang, H. W. Yu. Transition metal Si-chalcogenides: a new two-dimensional anode material for Na-ion batteries. Physical Chemistry Chemical Physics 2024, 26
(38)
, 25076-25088. https://doi.org/10.1039/D4CP01843E
- Kun Liu, Decai Guo, Deqiang Zhao, Pinyi Zhao, Rui Ma, Fengting Geng, Qingxiao Zhang, Shudong Zhang, Yongyi Song, Juncai Sun. A simple strategy for the controllable synthesis of tin-based anode materials and their lithium storage performances. Journal of Energy Storage 2024, 100 , 113600. https://doi.org/10.1016/j.est.2024.113600
- Xihao Wang, Jingyu Lu, Yehui Wu, Weiran Zheng, Hongqiang Zhang, Tiansheng Bai, Hongbin Liu, Deping Li, Lijie Ci. Building Stable Anodes for High‐Rate Na‐Metal Batteries. Advanced Materials 2024, 36
(16)
https://doi.org/10.1002/adma.202311256
- Zijing Wan, Xiaozhen Chen, Yilin Kang, Ziqi Zhou, Xiaoxue Jiang, Zheng Xiang, Dongwei Xu, Xiaobing Luo. Computational screening of 2D anode materials with robust thermal and electrical properties for lithium-ion batteries. Journal of Energy Storage 2024, 75 , 109577. https://doi.org/10.1016/j.est.2023.109577
- Bing-Xin Liu, Zong-Liang Li, . CrO<sub>2</sub> monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity. Acta Physica Sinica 2024, 73
(10)
, 106102. https://doi.org/10.7498/aps.73.20240246
- Wang Yao, Jiaojiao Zhao, Qiang Li, Chujie Yu, Xuli Ding. Sb/SnO@C composite prepared by electrospinning for high performance sodium ion battery anodes. Journal of Physics and Chemistry of Solids 2023, 183 , 111647. https://doi.org/10.1016/j.jpcs.2023.111647
- Aditya Narayan Singh, Mobinul Islam, Abhishek Meena, Muhammad Faizan, Daseul Han, Chinna Bathula, Amir Hajibabaei, Rohit Anand, Kyung‐Wan Nam. Unleashing the Potential of Sodium‐Ion Batteries: Current State and Future Directions for Sustainable Energy Storage. Advanced Functional Materials 2023, 33
(46)
https://doi.org/10.1002/adfm.202304617
- Xiaosa Wang, Jiayuan Li, Lei Ding, Huaijie Shi, Jia Liu, Xinying Yang, Min Li, Xing Zhong, Zihao Yao, Jianguo Wang. Tailoring crystal facet microenvironments for simultaneous electrochemical ozone and hydrogen peroxide production. AIChE Journal 2023, 69
(10)
https://doi.org/10.1002/aic.18152
- Antonio Vázquez-López, Ruth Martínez-Casado, Ana Cremades, David Maestre. Effect of Li-doping on the optoelectronic properties and stability of tin(II) oxide (SnO) nanostructures. Journal of Alloys and Compounds 2023, 959 , 170490. https://doi.org/10.1016/j.jallcom.2023.170490
- So Yi Lee, Honggyu Seong, Geongil Kim, Youngho Jin, Joon Ha Moon, Wonbin Nam, Sung Kuk Kim, MinHo Yang, Jaewon Choi. Synthesis and electrochemical properties of multi-layered SnO/rGO composite as anode materials for sodium ion batteries. Applied Surface Science 2023, 612 , 155859. https://doi.org/10.1016/j.apsusc.2022.155859
- Xiaojing Chen, Ning Zhang, Pengfei He, Xuli Ding. High-capacity Sb2SnO5 with controlled Sb/Sn phase modulation as advanced anode material for sodium-ion batteries. Journal of Alloys and Compounds 2023, 938 , 168472. https://doi.org/10.1016/j.jallcom.2022.168472
- Rengpeng Lin, Yishan Xu, Mingjun Xiao, Wei Du, Fuliang Zhu, Yanshuang Meng. In-situ pyrolysis preparation of Fe3O4@CNTs/CC as binder-free anode for sodium-ion batteries. Materials Chemistry and Physics 2023, 297 , 127403. https://doi.org/10.1016/j.matchemphys.2023.127403
- Qiong Peng, Javed Rehman, Mehwish Khalid Butt, Zhao Yang, Shuanhu Wang, Essam A. Al-Ammar, Mika Sillanpää, Van An Dinh, Mohamed F. Shibl. Adsorption and diffusion of potassium on layered SnO: a DFT analysis. Journal of Materials Science 2023, 58
(7)
, 3208-3218. https://doi.org/10.1007/s10853-023-08224-w
- Yuli Ma, Junyu Lang. 2D SnO/MoO3 van der Waals heterojunction with tunable electronic behavior for multifunctional applications: DFT calculations. Applied Surface Science 2023, 611 , 155719. https://doi.org/10.1016/j.apsusc.2022.155719
- Seongwook Chae, Taewoong Lee, Woong Kwon, Haisu Kang, Hyeok Jun Seo, Eunji Kim, Euigyung Jeong, Jin Hong Lee, Seung Geol Lee. Longitudinally grown pyrolyzed quinacridones for sodium-ion battery anode. Chemical Engineering Journal 2023, 453 , 139805. https://doi.org/10.1016/j.cej.2022.139805
- Kun Jiang, Jinpeng Ji, Wenbin Gong, Ling Ding, Jibiao Li, Pengfei Li, Baowen Li, Fengxia Geng. Mechanical cleavage of non-van der Waals structures towards two-dimensional crystals. Nature Synthesis 2023, 2
(1)
, 58-66. https://doi.org/10.1038/s44160-022-00182-6
- Rafael Barbosa, Danilo Kuritza, Gabriel Perin, R. H. Miwa, R. B. Pontes, J. E. Padilha. Electronic and optical properties of Janus-like hexagonal monolayer materials of group IV-VI. Physical Review Materials 2023, 7
(1)
https://doi.org/10.1103/PhysRevMaterials.7.014001
- Mehwish Khalid Butt, Javed Rehman, Ayman S. Alofi, Zhao Yang, Hafiz Muhammad Zeeshan, Shuanhu Wang, Amel Laref, Munirah D. Albaqami, Reham Ghazi Alotabi, Jin Kexin, Mohamed F. Shibl. Investigating the electrochemical properties of SnO monolayer in sodium-ion batteries. Journal of Physics and Chemistry of Solids 2022, 171 , 110975. https://doi.org/10.1016/j.jpcs.2022.110975
- Qianqian Ren, Xinping Zhang, Yuxi Guo, Manzhang Xu, Hongyang Zhu, Jiangni Yun, Wu Zhao, Zhiyong Zhang, Yingnan Wang. Shape-controlled SnO and their improved properties in the field of gas sensor, photocatalysis, and lithium-ion battery. Sensors and Actuators B: Chemical 2022, 372 , 132622. https://doi.org/10.1016/j.snb.2022.132622
- Yabei Wu, Zhao Tang, Greis J. Cruz, Ya Yang, Wenqing Zhang, Wei Ren, Peihong Zhang. Exploiting the stereoelectronic effects for selective tuning of band edge states of α-SnO:
G
W
quasiparticle calculations. Physical Review B 2022, 106
(8)
https://doi.org/10.1103/PhysRevB.106.085201
- Shiqiang Zhao, Yanjie He, Zewei Wang, Xiaoxu Bo, Shumeng Hao, Yifei Yuan, Huile Jin, Shun Wang, Zhiqun Lin. Advancing Performance and Unfolding Mechanism of Lithium and Sodium Storage in SnO
2
via Precision Synthesis of Monodisperse PEG‐Ligated Nanoparticles. Advanced Energy Materials 2022, 12
(26)
https://doi.org/10.1002/aenm.202201015
- Li Wanzhong, Sun Jian, Deng Chong. Layer-dependent electronic and optical properties of tin monoxide: a potential candidate in photovoltaic applications. Physical Chemistry Chemical Physics 2022, 24
(13)
, 7611-7616. https://doi.org/10.1039/D1CP05305A
- Peimiao Deng, Weiguang Xie, Junlong Chen, Honglong Ning, Xiao Fu, Xu Zhang, Weijian Yuan, Yiping Wang, Rihui Yao, Junbiao Peng. Thermo-oxidative stability of SnO crystals and obtained few layer crystals by mechanical exfoliation. Molecular Crystals and Liquid Crystals 2022, 733
(1)
, 69-75. https://doi.org/10.1080/15421406.2021.1971853
- mehwish butt, Javed Rehman, Ayman S. Alofi, Zhao Yang, Hafiz Muhammad Zeeshan, Shuanhu Wang, Amel Laref, Munirah D. Albaqami, Reham Ghazi Alotabi, kexin Jin. Investigating the Electrochemical Properties of Sno Monolayer in Sodium Ion Batteries. SSRN Electronic Journal 2022, 45 https://doi.org/10.2139/ssrn.4142131
- Sonia Jaśkaniec, Seán R. Kavanagh, João Coelho, Seán Ryan, Christopher Hobbs, Aron Walsh, David O. Scanlon, Valeria Nicolosi. Solvent engineered synthesis of layered SnO for high-performance anodes. npj 2D Materials and Applications 2021, 5
(1)
https://doi.org/10.1038/s41699-021-00208-1
- Ge Yao, Ping Niu, Zhiqiang Li, Yang Xu, Lingzhi Wei, Helin Niu, Yang Yang, Fangcai Zheng, Qianwang Chen. Construction of flexible V3S4@CNF films as long-term stable anodes for sodium-ion batteries. Chemical Engineering Journal 2021, 423 , 130229. https://doi.org/10.1016/j.cej.2021.130229
- Libin Fang, Naoufal Bahlawane, Wenping Sun, Hongge Pan, Ben Bin Xu, Mi Yan, Yinzhu Jiang. Conversion‐Alloying Anode Materials for Sodium Ion Batteries. Small 2021, 17
(37)
https://doi.org/10.1002/smll.202101137
- Susmita Sarkar, Ankit Verma, Partha P. Mukherjee. Quantifying Sodiation Kinetics in Alloying Tin Electrodes for Sodium-Ion Batteries. Journal of The Electrochemical Society 2021, 168
(9)
, 090550. https://doi.org/10.1149/1945-7111/ac2708
- Gracita M. Tomboc, Yunting Wang, Heryn Wang, Jinghong Li, Kwangyeol Lee. Sn-based metal oxides and sulfides anode materials for Na ion battery. Energy Storage Materials 2021, 39 , 21-44. https://doi.org/10.1016/j.ensm.2021.04.009
- Ying-Ge Xu, Jian Liu, Ling-Bin Kong. CoS2 nanoparticles grown in situ on rGO nanosheet as a potential anode material toward high-performance sodium-ion hybrid capacitors. Journal of Materials Science: Materials in Electronics 2021, 32
(11)
, 15251-15264. https://doi.org/10.1007/s10854-021-06076-1
- Pinxian Jiang, Yifei Liao, Wei Liu, Yungui Chen. Alternating nanolayers as lithiophilic scaffolds for Li-metal anode. Journal of Energy Chemistry 2021, 57 , 131-139. https://doi.org/10.1016/j.jechem.2020.08.034
- Partha Kumbhakar, Chinmayee Chowde Gowda, Preeti Lata Mahapatra, Madhubanti Mukherjee, Kirtiman Deo Malviya, Mohamed Chaker, Amreesh Chandra, Basudev Lahiri, P.M. Ajayan, Deep Jariwala, Abhishek Singh, Chandra Sekhar Tiwary. Emerging 2D metal oxides and their applications. Materials Today 2021, 45 , 142-168. https://doi.org/10.1016/j.mattod.2020.11.023
- Hongshuai Zhang, Yanshuang Meng, Wail Hafiz Zaki Ahmed, Jian Hu, Mingjun Xiao, Fuliang Zhu, Yue Zhang. FeS under wrinkled thin-layer carbon derived from ionic liquid as a high-performance sodium-ion battery anode material. Journal of Electroanalytical Chemistry 2021, 886 , 115102. https://doi.org/10.1016/j.jelechem.2021.115102
- Antonio Vázquez-López, David Maestre, Julio Ramírez-Castellanos, Ana Cremades. In Situ Local Oxidation of SnO Induced by Laser Irradiation: A Stability Study. Nanomaterials 2021, 11
(4)
, 976. https://doi.org/10.3390/nano11040976
- Nadeem Baig, Irshad Kammakakam, Wail Falath. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances 2021, 2
(6)
, 1821-1871. https://doi.org/10.1039/D0MA00807A
- Keming Song, Chuntai Liu, Liwei Mi, Shulei Chou, Weihua Chen, Changyu Shen. Recent Progress on the Alloy‐Based Anode for Sodium‐Ion Batteries and Potassium‐Ion Batteries. Small 2021, 17
(9)
https://doi.org/10.1002/smll.201903194
- Devesh R. Kripalani, Ping-Ping Sun, Pamela Lin, Ming Xue, Kun Zhou. Vacancies and dopants in two-dimensional tin monoxide: An ab initio study. Applied Surface Science 2021, 538 , 147988. https://doi.org/10.1016/j.apsusc.2020.147988
- Xu Yang, Hao-Jie Liang, Xin-Xin Zhao, Hai-Yue Yu, Mei-Yi Wang, Xue-Jiao Nie, Xing-Long Wu. A sandwich nanocomposite composed of commercially available SnO and reduced graphene oxide as advanced anode materials for sodium-ion full batteries. Inorganic Chemistry Frontiers 2021, 8
(2)
, 396-404. https://doi.org/10.1039/D0QI01033B
- Peng Jiang, Lili Kang, Xiaohong Zheng, Zhi Zeng, Stefano Sanvito. Computational prediction of a two-dimensional semiconductor
SnO
2
with negative Poisson's ratio and tunable magnetism by doping. Physical Review B 2020, 102
(19)
https://doi.org/10.1103/PhysRevB.102.195408
- Lin Xue, Zhi Yang, Bo Chen, Hui Li, Jihua Zhang. The first-principles study of
n
H–V
Sn
complex: impurity effects on p-type SnO monolayer. Physical Chemistry Chemical Physics 2020, 22
(34)
, 19275-19281. https://doi.org/10.1039/D0CP00776E
- Hengcong Tao, Qun Fan, Tao Ma, Shizhen Liu, Henry Gysling, John Texter, Fen Guo, Zhenyu Sun. Two-dimensional materials for energy conversion and storage. Progress in Materials Science 2020, 111 , 100637. https://doi.org/10.1016/j.pmatsci.2020.100637
- Yuanwen Zhang, Jun Mei, Cheng Yan, Ting Liao, John Bell, Ziqi Sun. Bioinspired 2D Nanomaterials for Sustainable Applications. Advanced Materials 2020, 32
(18)
https://doi.org/10.1002/adma.201902806
- Yi Sun, Pengcheng Shi, Jingjuan Chen, Qiujie Wu, Xin Liang, Xianhong Rui, Hongfa Xiang, Yan Yu. Development and challenge of advanced nonaqueous sodium ion batteries. EnergyChem 2020, 2
(2)
, 100031. https://doi.org/10.1016/j.enchem.2020.100031
- Rui Zhang, Jianlei Kuang, Qipeng Lu, Qi Wang, Peng Sun, Wenxiu Liu, Shu Yin, Wenbin Cao. Tunable thickness and band structure of SnO sheets for improved photocatalytic activity. CrystEngComm 2020, 22
(12)
, 2219-2226. https://doi.org/10.1039/C9CE01969C
- Yingjuan Sun, Liansheng Jiao, Dongxue Han, Faxing Wang, Panpan Zhang, Hongyan Li, Li Niu. Hierarchical architecture of polyaniline nanoneedle arrays on electrochemically exfoliated graphene for supercapacitors and sodium batteries cathode. Materials & Design 2020, 188 , 108440. https://doi.org/10.1016/j.matdes.2019.108440
- Jing Zeng, Chaoqun Peng, Richu Wang, Caiyu Cao, Xiaofeng Wang, Jun Liu. Magnetic Sn/SnO/FeSn2 nanocomposite as a high-performance anode material for lithium-ion batteries. Powder Technology 2020, 364 , 719-724. https://doi.org/10.1016/j.powtec.2020.01.057
- Fengrong He, Qi Xu, Baoping Zheng, Jun Zhang, Zhenguo Wu, Yanjun Zhong, Yanxiao Chen, Wei Xiang, Benhe Zhong, Xiaodong Guo. Synthesis of hierarchical Sn/SnO nanosheets assembled by carbon-coated hollow nanospheres as anode materials for lithium/sodium ion batteries. RSC Advances 2020, 10
(10)
, 6035-6042. https://doi.org/10.1039/C9RA08897K
- Ahmed Yousef Mohamed, Seung Jun Lee, Younjin Jang, Jun Shik Kim, Cheol Seong Hwang, Deok-Yong Cho. X-ray spectroscopy study on the electronic structure of Sn-added p-type SnO films. Journal of Physics: Condensed Matter 2020, 32
(6)
, 065502. https://doi.org/10.1088/1361-648X/ab4f51
- Pedro H. Suman. Electrical properties of tin oxide materials. 2020, 41-60. https://doi.org/10.1016/B978-0-12-815924-8.00003-7
- Shrabani De, Rashmi Madhuri. Functionalized nanomaterials for electronics and electrical and energy industries. 2020, 269-296. https://doi.org/10.1016/B978-0-12-816787-8.00011-9
- Pinxian Jiang, Jialun Jing, Yizhe Wang, Hongju Li, Xiaoying He, Yungui Chen, Wei Liu. Facilely transforming bulk materials to SnO/pristine graphene 2D-2D heterostructures for stable and fast lithium storage. Journal of Alloys and Compounds 2020, 812 , 152114. https://doi.org/10.1016/j.jallcom.2019.152114
- Jing Zeng, Jingdong Huang, Jun Liu, Tian Xie, Chaoqun Peng, Yakun Lu, Peijie Lu, Ruizhi Zhang, Jie Min. Self-assembly of single layer V2O5 nanoribbon/graphene heterostructures as ultrahigh-performance cathode materials for lithium-ion batteries. Carbon 2019, 154 , 24-32. https://doi.org/10.1016/j.carbon.2019.07.046
- Hongjian Chen, Xue Wang, Lixiu Guan, Lei Chen, Junguang Tao. Surface engineering of layered SnO micro-plates for impressive high supercapacitor performance. Materials Chemistry and Physics 2019, 238 , 121889. https://doi.org/10.1016/j.matchemphys.2019.121889
- Huan Li, Anmin Liu, Xuefeng Ren, Yanan Yang, Liguo Gao, Meiqiang Fan, Tingli Ma. A black phosphorus/Ti
3
C
2
MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale 2019, 11
(42)
, 19862-19869. https://doi.org/10.1039/C9NR04790E
- Jing Zeng, Chaoqun Peng, Richu Wang, Yajing Liu, Caiyu Cao, Xiaofeng Wang, Jun Liu. SnO@amorphous TiO2core-shell composite for advanced lithium storage. Ceramics International 2019, 45
(15)
, 19404-19408. https://doi.org/10.1016/j.ceramint.2019.06.193
- Antonio B. Mei, Ludi Miao, Matthew J. Wahila, Guru Khalsa, Zhe Wang, Matthew Barone, Nathaniel J. Schreiber, Lindsey E. Noskin, Hanjong Paik, Thomas E. Tiwald, Qiye Zheng, Richard T. Haasch, Davide G. Sangiovanni, Louis F. J. Piper, Darrell G. Schlom. Adsorption-controlled growth and properties of epitaxial SnO films. Physical Review Materials 2019, 3
(10)
https://doi.org/10.1103/PhysRevMaterials.3.105202
- Wenli Zhang, Fan Zhang, Fangwang Ming, Husam N. Alshareef. Sodium-ion battery anodes: Status and future trends. EnergyChem 2019, 1
(2)
, 100012. https://doi.org/10.1016/j.enchem.2019.100012
- Dan Yang, Weihua Chen, Xixue Zhang, Liwei Mi, Chuntai Liu, Linjie Chen, Xinxin Guan, Yuliang Cao, Changyu Shen. Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. Journal of Materials Chemistry A 2019, 7
(34)
, 19709-19718. https://doi.org/10.1039/C9TA05664E
- Timotheus Jahnke, Stefan Kilper, Andrea Knöller, Franz Brümmer, Marc Widenmeyer, Dirk Rothenstein, Zaklina Burghard, Joachim Bill. Bioinspired synthesis of SnO crosses as backbone in artificial sponges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2019, 377
(2150)
, 20190130. https://doi.org/10.1098/rsta.2019.0130
- Xixia Zhao, Qi Yang, Zewei Quan. Tin-based nanomaterials: colloidal synthesis and battery applications. Chemical Communications 2019, 55
(60)
, 8683-8694. https://doi.org/10.1039/C9CC02811K
- Madeline S. Stark, Kaci L. Kuntz, Sean J. Martens, Scott C. Warren. Intercalation of Layered Materials from Bulk to 2D. Advanced Materials 2019, 31
(27)
https://doi.org/10.1002/adma.201808213
- Bin Tian, Wei Gao, Xiaofeng Ning, Yuqi Wu, Gongxuan Lu. Enhancing water splitting activity by protecting hydrogen evolution activity site from poisoning of oxygen species. Applied Catalysis B: Environmental 2019, 249 , 138-146. https://doi.org/10.1016/j.apcatb.2019.02.051
- Baochen Sun, Xinqiang Wang, Dongxu Yang, Yuanfu Chen. Self-assembled Co
0.85
Se/carbon nanowires as a highly effective and stable electrocatalyst for the hydrogen evolution reaction. RSC Advances 2019, 9
(30)
, 17238-17245. https://doi.org/10.1039/C9RA02007A
- Haidong Bian, Zebiao Li, Xufen Xiao, Patrik Schmuki, Jian Lu, Yang Yang Li. Anodic Synthesis of Hierarchical SnS/SnO
x
Hollow Nanospheres and Their Application for High‐Performance Na‐Ion Batteries. Advanced Functional Materials 2019, 29
(24)
https://doi.org/10.1002/adfm.201901000
- Shi Li, Jiaqi Pan, Hongli Li, Yanyan Liu, Wei Ou, Jingjing Wang, Changsheng Song, Weijie Zhao, Yingying Zheng, Chaorong Li. The transparent SnO/ZnO quantum dots/SnO2 p-n junction towards the enhancement of photovoltaic conversion. Chemical Engineering Journal 2019, 366 , 305-312. https://doi.org/10.1016/j.cej.2019.02.062
- Mohammed-Ibrahim Jamesh. Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries. Journal of Energy Chemistry 2019, 32 , 15-44. https://doi.org/10.1016/j.jechem.2018.06.011
- David J. Hynek, Joshua V. Pondick, Judy J. Cha. The development of 2D materials for electrochemical energy applications: A mechanistic approach. APL Materials 2019, 7
(3)
https://doi.org/10.1063/1.5085187
- Han Wu, Zhong Ma, Zixia Lin, Haizeng Song, Shancheng Yan, Yi Shi. High-Sensitive Ammonia Sensors Based on Tin Monoxide Nanoshells. Nanomaterials 2019, 9
(3)
, 388. https://doi.org/10.3390/nano9030388
- Shancheng Yan, Haizeng Song, Shuren Lin, Han Wu, Yi Shi, Jie Yao. GeO
2
Encapsulated Ge Nanostructure with Enhanced Lithium‐Storage Properties. Advanced Functional Materials 2019, 29
(8)
https://doi.org/10.1002/adfm.201807946
- Tuan Loi Nguyen, Tejaswi Tanaji Salunkhe, Thuan Ngoc Vo, Hyung Wook Choi, Young-Chul Lee, Jin-Seok Choi, Jaehyun Hur, Il Tae Kim. Tailored synthesis of antimony-based alloy/oxides nanosheets for high-performance sodium-ion battery anodes. Journal of Power Sources 2019, 414 , 470-478. https://doi.org/10.1016/j.jpowsour.2019.01.033
- Xudong Hu, Xiaohong Sun, Seung Joon Yoo, Brian Evanko, Fengru Fan, Shu Cai, Chunming Zheng, Wenbin Hu, Galen D. Stucky. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy 2019, 56 , 828-839. https://doi.org/10.1016/j.nanoen.2018.11.081
- Wenhui Wan, Yanfeng Ge, Yong Liu. Strong phonon anharmonicity and low thermal conductivity of monolayer tin oxides driven by lone-pair electrons. Applied Physics Letters 2019, 114
(3)
https://doi.org/10.1063/1.5063560
- Daniela Nunes, Ana Pimentel, Lidia Santos, Pedro Barquinha, Luis Pereira, Elvira Fortunato, Rodrigo Martins. Structural, optical, and electronic properties of metal oxide nanostructures. 2019, 59-102. https://doi.org/10.1016/B978-0-12-811512-1.00003-5
- Lu Shi, Ying Li, Fanglei Zeng, Sijia Ran, Chengyu Dong, Shao-Yuan Leu, Steven T. Boles, Kwok Ho Lam. In situ growth of amorphous Fe2O3 on 3D interconnected nitrogen-doped carbon nanofibers as high-performance anode materials for sodium-ion batteries. Chemical Engineering Journal 2019, 356 , 107-116. https://doi.org/10.1016/j.cej.2018.09.018
- Jing Zeng, Chaoqun Peng, Richu Wang, Yajing Liu, Xiaofeng Wang, Jun Liu. Large-scale synthesis of hierarchical SnO spheres assisted with poly (N-isopropylacrylamide) for high lithium storage capacity. Ceramics International 2019, 45
(1)
, 1246-1250. https://doi.org/10.1016/j.ceramint.2018.10.006
- Lei Wang, Zengxi Wei, Minglei Mao, Hongxia Wang, Yutao Li, Jianmin Ma. Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Materials 2019, 16 , 434-454. https://doi.org/10.1016/j.ensm.2018.06.027
- Anchali Jain, Baboo Joseph Paul, Sungjin Kim, V.K. Jain, Jaekook Kim, Alok Kumar Rai. Two-dimensional porous nanodisks of NiCo2O4 as anode material for high-performance rechargeable lithium-ion battery. Journal of Alloys and Compounds 2019, 772 , 72-79. https://doi.org/10.1016/j.jallcom.2018.09.051
- Tyler B. Bishop, Erin E. Farmer, Afsana Sharmin, Alejandro Pacheco-Sanjuan, Pierre Darancet, Salvador Barraza-Lopez. Quantum Paraelastic Two-Dimensional Materials. Physical Review Letters 2019, 122
(1)
https://doi.org/10.1103/PhysRevLett.122.015703
- Dongliang Chao, Bo Ouyang, Pei Liang, Tran Thi Thu Huong, Guichong Jia, Hui Huang, Xinhui Xia, Rajdeep Singh Rawat, Hong Jin Fan. C‐Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na‐Ion Storage. Advanced Materials 2018, 30
(49)
https://doi.org/10.1002/adma.201804833
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.