ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Energy Dissipation in Monolayer MoS2 Electronics

View Author Information
† § ∥ Department of Electrical Engineering, Department of Chemistry, §Department of Materials Science and Engineering, and Precourt Institute for Energy, Stanford University, Stanford, California 94305, United States
Cite this: Nano Lett. 2017, 17, 6, 3429–3433
Publication Date (Web):April 7, 2017
https://doi.org/10.1021/acs.nanolett.7b00252
Copyright © 2017 American Chemical Society

    Article Views

    6296

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multilayered processors, both being critical thermal bottlenecks. To shed light into fundamental aspects of this problem, here we report the first direct measurement of spatially resolved temperature in functioning 2D monolayer MoS2 transistors. Using Raman thermometry, we simultaneously obtain temperature maps of the device channel and its substrate. This differential measurement reveals the thermal boundary conductance of the MoS2 interface with SiO2 (14 ± 4 MW m–2 K–1) is an order magnitude larger than previously thought, yet near the low end of known solid–solid interfaces. Our study also reveals unexpected insight into nonuniformities of the MoS2 transistors (small bilayer regions) which do not cause significant self-heating, suggesting that such semiconductors are less sensitive to inhomogeneity than expected. These results provide key insights into energy dissipation of 2D semiconductors and pave the way for the future design of energy-efficient 2D electronics.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b00252.

    • Electrical contact resistance; temperature maps of exfoliated 1L MoS2 devices; nontemperature related Raman peak shifts; corrections for stage drift; temperature-dependent Raman spectroscopy of monolayer MoS2; SThM; temperature estimates at 1L-2L junctions; thermal analysis and modeling; molecular dynamics (MD) simulations; MoS2 oxidation (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 176 publications.

    1. Likuan Ma, Yiliu Wang, Yuan Liu. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides. Chemical Reviews 2024, 124 (5) , 2583-2616. https://doi.org/10.1021/acs.chemrev.3c00697
    2. Sumit Kumar, Rajneesh Chaurasiya, Shashank Shekhar Mishra, Partha Kumbhakar, Gang Meng, Chandra Sekhar Tiwary, Krishanu Biswas, Mahesh Kumar. Nanocomposites of Quasicrystal Nanosheets and MoS2 Nanoflakes for NO2 Gas Sensors. ACS Applied Nano Materials 2023, 6 (7) , 5952-5962. https://doi.org/10.1021/acsanm.3c00346
    3. Shizhou Jiang, Dmitry Lebedev, Loren Andrews, J. Tyler Gish, Thomas W. Song, Mark C. Hersam, Oluwaseyi Balogun. Quantitative Characterization of the Anisotropic Thermal Properties of Encapsulated Two-Dimensional MoS2 Nanofilms. ACS Applied Materials & Interfaces 2023, 15 (7) , 10123-10132. https://doi.org/10.1021/acsami.2c18755
    4. Yongliang Chen, Chi Li, Tieshan Yang, Evgeny A. Ekimov, Carlo Bradac, Son Tung Ha, Milos Toth, Igor Aharonovich, Toan Trong Tran. Real-Time Ratiometric Optical Nanoscale Thermometry. ACS Nano 2023, 17 (3) , 2725-2736. https://doi.org/10.1021/acsnano.2c10974
    5. Quanjie Wang, Jie Zhang, Yucheng Xiong, Shouhang Li, Vladimir Chernysh, Xiangjun Liu. Atomic-Scale Surface Engineering for Giant Thermal Transport Enhancement Across 2D/3D van der Waals Interfaces. ACS Applied Materials & Interfaces 2023, 15 (2) , 3377-3386. https://doi.org/10.1021/acsami.2c20717
    6. Xiao Liu, Jinxin Liu, Mengke Fang, Yuehua Wei, Yue Su, Yangbo Chen, Gang Peng, Weiwei Cai, Wei Luo, Chuyun Deng, Xueao Zhang. Energy Dissipation and Electrical Breakdown in Multilayer PtSe2 Electronics. ACS Applied Materials & Interfaces 2022, 14 (45) , 51122-51129. https://doi.org/10.1021/acsami.2c15252
    7. Xinhang Shi, Xuefei Li, Qi Guo, Han Gao, Min Zeng, Yibo Han, Shiwei Yan, Yanqing Wu. Improved Self-Heating in Short-Channel Monolayer WS2 Transistors with High-Thermal Conductivity BeO Dielectrics. Nano Letters 2022, 22 (18) , 7667-7673. https://doi.org/10.1021/acs.nanolett.2c02901
    8. Maheswari Sivan, Jin Feng Leong, Joydeep Ghosh, Baoshan Tang, Jieming Pan, Evgeny Zamburg, Aaron Voon-Yew Thean. Physical Insights into Vacancy-Based Memtransistors: Toward Power Efficiency, Reliable Operation, and Scalability. ACS Nano 2022, 16 (9) , 14308-14322. https://doi.org/10.1021/acsnano.2c04504
    9. Weidong Zheng, Connor J. McClellan, Eric Pop, Yee Kan Koh. Nonequilibrium Phonon Thermal Resistance at MoS2/Oxide and Graphene/Oxide Interfaces. ACS Applied Materials & Interfaces 2022, 14 (19) , 22372-22380. https://doi.org/10.1021/acsami.2c02062
    10. Jishnu V, Shashank Shekhar Mishra, Kusuma Urs MB, Sanchu P Thomas, Chandra Sekhar Tiwary, Krishanu Biswas, Vinayak B. Kamble. Highly Sensitive and Selective Triethylamine Sensing through High-Entropy Alloy (Ti–Zr–Cr–V–Ni) Nanoparticle-Induced Fermi Energy Control of MoS2 Nanosheets. ACS Applied Materials & Interfaces 2022, 14 (11) , 13653-13664. https://doi.org/10.1021/acsami.2c00531
    11. Shibo Wang, Xiangbin Zeng, Yufei Zhou, Jingjing Lu, Yishuo Hu, Wenzhao Wang, Junhao Wang, Yonghong Xiao, Xiya Wang, Duo Chen, Tingwei Xu, Maofa Zhang, Xiaoqing Bao. High-Performance MoS2 Complementary Inverter Prepared by Oxygen Plasma Doping. ACS Applied Electronic Materials 2022, 4 (3) , 955-963. https://doi.org/10.1021/acsaelm.1c01070
    12. Aditya Sood, Charles Sievers, Yong Cheol Shin, Victoria Chen, Shunda Chen, Kirby K. H. Smithe, Sukti Chatterjee, Davide Donadio, Kenneth E. Goodson, Eric Pop. Engineering Thermal Transport across Layered Graphene–MoS2 Superlattices. ACS Nano 2021, 15 (12) , 19503-19512. https://doi.org/10.1021/acsnano.1c06299
    13. Lenan Zhang, Yang Zhong, Xin Qian, Qichen Song, Jiawei Zhou, Long Li, Liang Guo, Gang Chen, Evelyn N. Wang. Toward Optimal Heat Transfer of 2D–3D Heterostructures via van der Waals Binding Effects. ACS Applied Materials & Interfaces 2021, 13 (38) , 46055-46064. https://doi.org/10.1021/acsami.1c08131
    14. Bishnu Pada Majee, Jay Deep Gupta, Abhishek Sanskrityayn, Ashish Kumar Mishra. Thermal Sensitive Quantum and Phonon Confinement in Semiconducting Triangular-Shaped MoS2. The Journal of Physical Chemistry C 2021, 125 (27) , 14865-14873. https://doi.org/10.1021/acs.jpcc.1c00589
    15. Heungdong Kwon, Christopher Perez, Hyojin K. Kim, Mehdi Asheghi, Woosung Park, Kenneth E. Goodson. Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition. ACS Applied Materials & Interfaces 2021, 13 (18) , 21905-21913. https://doi.org/10.1021/acsami.0c19197
    16. Connor J. McClellan, Eilam Yalon, Kirby K. H. Smithe, Saurabh V. Suryavanshi, Eric Pop. High Current Density in Monolayer MoS2 Doped by AlOx. ACS Nano 2021, 15 (1) , 1587-1596. https://doi.org/10.1021/acsnano.0c09078
    17. Nicholas Hunter, Nurul Azam, Hamidreza Zobeiri, Ridong Wang, Masoud Mahjouri-Samani, Xinwei Wang. Interfacial Thermal Conductance between Monolayer WSe2 and SiO2 under Consideration of Radiative Electron–Hole Recombination. ACS Applied Materials & Interfaces 2020, 12 (45) , 51069-51081. https://doi.org/10.1021/acsami.0c14990
    18. Arnab K. Majee, Zahra Hemmat, Cameron J. Foss, Amin Salehi-Khojin, Zlatan Aksamija. Current Rerouting Improves Heat Removal in Few-Layer WSe2 Devices. ACS Applied Materials & Interfaces 2020, 12 (12) , 14323-14330. https://doi.org/10.1021/acsami.9b22039
    19. Sahin Sorifi, Monika Moun, Shuchi Kaushik, Rajendra Singh. High-Temperature Performance of a GaSe Nanosheet-Based Broadband Photodetector. ACS Applied Electronic Materials 2020, 2 (3) , 670-676. https://doi.org/10.1021/acsaelm.9b00770
    20. Akshay A. Murthy, Teodor K. Stanev, Roberto dos Reis, Shiqiang Hao, Christopher Wolverton, Nathaniel P. Stern, Vinayak P. Dravid. Direct Visualization of Electric-Field-Induced Structural Dynamics in Monolayer Transition Metal Dichalcogenides. ACS Nano 2020, 14 (2) , 1569-1576. https://doi.org/10.1021/acsnano.9b06581
    21. Niu Huang, Yuyue Ding, Shufang Yan, Liu Yang, Panpan Sun, Caihua Huang, Xiaohua Sun. Ultrathin MoS2 Nanosheets Vertically Grown on CoS2 Acicular Nanorod Arrays: A Synergistic Three-Dimensional Shell/Core Heterostructure for High-Efficiency Hydrogen Evolution at Full pH. ACS Applied Energy Materials 2019, 2 (9) , 6751-6760. https://doi.org/10.1021/acsaem.9b01219
    22. David B. Brown, Wenqing Shen, Xufan Li, Kai Xiao, David B. Geohegan, Satish Kumar. Spatial Mapping of Thermal Boundary Conductance at Metal–Molybdenum Diselenide Interfaces. ACS Applied Materials & Interfaces 2019, 11 (15) , 14418-14426. https://doi.org/10.1021/acsami.8b22702
    23. Aditya Sood, Feng Xiong, Shunda Chen, Ramez Cheaito, Feifei Lian, Mehdi Asheghi, Yi Cui, Davide Donadio, Kenneth E. Goodson, Eric Pop. Quasi-Ballistic Thermal Transport Across MoS2 Thin Films. Nano Letters 2019, 19 (4) , 2434-2442. https://doi.org/10.1021/acs.nanolett.8b05174
    24. Poya Yasaei, Qing Tu, Yaobin Xu, Louisiane Verger, Jinsong Wu, Michel W. Barsoum, Gajendra S. Shekhawat, Vinayak P. Dravid. Mapping Hot Spots at Heterogeneities of Few-Layer Ti3C2 MXene Sheets. ACS Nano 2019, 13 (3) , 3301-3309. https://doi.org/10.1021/acsnano.8b09103
    25. Mei Er Pam, Zibo Li, Yee Sin Ang, Yumeng Shi, Dechao Geng, Shaozhuan Huang, Xiaoxu Zhao, Stephen J. Pennycook, Huizhen Yao, Xue Gong, Lay Kee Ang, Hui Ying Yang. Thermal-Assisted Vertical Electron Injections in Few-Layer Pyramidal-Structured MoS2 Crystals. The Journal of Physical Chemistry Letters 2019, 10 (6) , 1292-1299. https://doi.org/10.1021/acs.jpclett.9b00274
    26. Amirhossein Behranginia, Zahra Hemmat, Arnab K. Majee, Cameron J. Foss, Poya Yasaei, Zlatan Aksamija, Amin Salehi-Khojin. Power Dissipation of WSe2 Field-Effect Transistors Probed by Low-Frequency Raman Thermometry. ACS Applied Materials & Interfaces 2018, 10 (29) , 24892-24898. https://doi.org/10.1021/acsami.8b04724
    27. Jinsu Pak, Yeonsik Jang, Junghwan Byun, Kyungjune Cho, Tae-Young Kim, Jae-Keun Kim, Barbara Yuri Choi, Jiwon Shin, Yongtaek Hong, Seungjun Chung, Takhee Lee. Two-Dimensional Thickness-Dependent Avalanche Breakdown Phenomena in MoS2 Field-Effect Transistors under High Electric Fields. ACS Nano 2018, 12 (7) , 7109-7116. https://doi.org/10.1021/acsnano.8b02925
    28. Kirby K. H. Smithe, Chris D. English, Saurabh V. Suryavanshi, Eric Pop. High-Field Transport and Velocity Saturation in Synthetic Monolayer MoS2. Nano Letters 2018, 18 (7) , 4516-4522. https://doi.org/10.1021/acs.nanolett.8b01692
    29. Wei Zou, Qixing Zhou, Xingli Zhang, Xiangang Hu. Environmental Transformations and Algal Toxicity of Single-Layer Molybdenum Disulfide Regulated by Humic Acid. Environmental Science & Technology 2018, 52 (5) , 2638-2648. https://doi.org/10.1021/acs.est.7b04397
    30. Milad Yarali, Hatem Brahmi, Zhequan Yan, Xufan Li, Lixin Xie, Shuo Chen, Satish Kumar, Mina Yoon, Kai Xiao, and Anastassios Mavrokefalos . Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide. ACS Applied Materials & Interfaces 2018, 10 (5) , 4921-4928. https://doi.org/10.1021/acsami.7b14310
    31. Xuefei Li, Xiong Xiong, Tiaoyang Li, Sichao Li, Zhenfeng Zhang, and Yanqing Wu . Effect of Dielectric Interface on the Performance of MoS2 Transistors. ACS Applied Materials & Interfaces 2017, 9 (51) , 44602-44608. https://doi.org/10.1021/acsami.7b14031
    32. Eilam Yalon, Burak Aslan, Kirby K. H. Smithe, Connor J. McClellan, Saurabh V. Suryavanshi, Feng Xiong, Aditya Sood, Christopher M. Neumann, Xiaoqing Xu, Kenneth E. Goodson, Tony F. Heinz, Eric Pop. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry. ACS Applied Materials & Interfaces 2017, 9 (49) , 43013-43020. https://doi.org/10.1021/acsami.7b11641
    33. Kirby K. H. Smithe, Saurabh V. Suryavanshi, Miguel Muñoz Rojo, Aria D. Tedjarati, and Eric Pop . Low Variability in Synthetic Monolayer MoS2 Devices. ACS Nano 2017, 11 (8) , 8456-8463. https://doi.org/10.1021/acsnano.7b04100
    34. Jing Liu, Ibrahim Al Keyyam, Yangsu Xie, Xinwei Wang. Perspectives on interfacial thermal resistance of 2D materials: Raman characterization and underlying physics. Surface Science and Technology 2024, 2 (1) https://doi.org/10.1007/s44251-024-00037-6
    35. Cichun Li, Jinhao Peng, Jiayi Ou, Tianyu Wang, Yangsu Xie. Interfacial thermal resistance between mechanically exfoliated nm-thick MoS2 and silicon from −60 °C to 50 °C based on ns-ET Raman technique. International Journal of Heat and Mass Transfer 2024, 229 , 125703. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125703
    36. Zhixiang Xu, Siyuan Hu, Dimeng Zhao, Jinrui Xiong, Caiqing Li, Yitao Ma, Siyuan Li, Bin Huang, Xuejun Pan. Molybdenum disulfide nanosheets promote the plasmid-mediated conjugative transfer of antibiotic resistance genes. Journal of Environmental Management 2024, 358 , 120827. https://doi.org/10.1016/j.jenvman.2024.120827
    37. Darsith Jayachandran, Najam U Sakib, Saptarshi Das. 3D integration of 2D electronics. Nature Reviews Electrical Engineering 2024, 1 (5) , 300-316. https://doi.org/10.1038/s44287-024-00038-5
    38. Fanfan Wang, Zexin Liu, Jinfeng Li, Jian Huang, Li Fang, Xiaofeng Wang, Ruiwen Dai, Kangyong Li, Rong Zhang, Xiaoran Yang, Yue Yue, Zhiqiang Wang, Yuan Gao, Kai Yang, Lifu Zhang, Guoqing Xin. Lateral Heterostructure Formed by Highly Thermally Conductive Fluorinated Graphene for Efficient Device Thermal Management. Advanced Science 2024, 517 https://doi.org/10.1002/advs.202401586
    39. Emanuel Ber, Eilam Yalon. High-Speed Electrical Transient Thermometry of Monolayer MoS 2. 2024, 1-3. https://doi.org/10.1109/EDTM58488.2024.10511997
    40. Ayush Vikram Singh, Deepak Panchal, Abhishek Sharma, Chetankumar Nandanwar, M. Suresh Kumar, Sukdeb Pal, Pravin K. Naoghare. Dispersion behaviour of molybdenum disulfide (MoS2) nanosheets in different exposure media and determination of its toxicity using in-vitro and in-silico approaches. Applied Materials Today 2024, 36 , 102023. https://doi.org/10.1016/j.apmt.2023.102023
    41. Benjamin Spetzler, Dilara Abdel, Frank Schwierz, Martin Ziegler, Patricio Farrell. The Role of Vacancy Dynamics in Two‐Dimensional Memristive Devices. Advanced Electronic Materials 2024, 10 (1) https://doi.org/10.1002/aelm.202300635
    42. Boubacar Tanda Bonkano, Samuel Palato, Jannis Krumland, Sergey Kovalenko, Philipp Schwendke, Michele Guerrini, Qiuyang Li, Xiaoyang Zhu, Caterina Cocchi, Julia Stähler. Evidence for Hybrid Inorganic–Organic Transitions at the WS 2 /Terrylene Interface. physica status solidi (a) 2024, 221 (1) https://doi.org/10.1002/pssa.202300346
    43. Mehdi Rouhani, Jonathan Hobley, Kuang-I Lin, Mario Hofmann, Yu-Chi Yao, Yung-Huang Chang, Robert William Carpick, J. David Schall, Yeau-Ren Jeng. High-temperature strain-mediated oxidation of 2D MoS2. Materials & Design 2023, 236 , 112490. https://doi.org/10.1016/j.matdes.2023.112490
    44. Weidong Zheng, Cheng Shao, Qi Wang, Guojun Li, Hongkun Li. Understanding and engineering interfacial thermal conductance of two-dimensional materials. Surfaces and Interfaces 2023, 43 , 103538. https://doi.org/10.1016/j.surfin.2023.103538
    45. Wenwu Jiang, Ting Liang, Jianbin Xu, Wengen Ouyang. Twist-Dependent Anisotropic Thermal Conductivity in Homogeneous MoS2 Stacks. International Journal of Heat and Mass Transfer 2023, 217 , 124662. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124662
    46. Jing Zhou, Haibo Zhao, Xuanhui Fan, Kunpeng Yuan, Zhitong Wang, Zhongyin Zhang, Donghao Li, Xiaoliang Zhang, Haisheng Chen, Dawei Tang, Xinghua Zheng, Jie Zhu. The effect of binding energy on optimizing the interfacial thermal transport in metal-MoS2-dielectric nanostructures. Materials Today Physics 2023, 38 , 101272. https://doi.org/10.1016/j.mtphys.2023.101272
    47. Yifan Li, Yuan Zhang, Xiaojun Xiong, Wei Yu. Investigation of contact thermal resistance at the probe-sample interface in scanning thermal microscopy based on the fractal network model through numerical analysis. Numerical Heat Transfer, Part A: Applications 2023, , 1-14. https://doi.org/10.1080/10407782.2023.2276322
    48. Yingchun Jiang, Zihan Liu, Huimin Zhou, Anju Sharma, Jia Deng, Changhong Ke. Physical adsorption and oxidation of ultra-thin MoS 2 crystals: insights into surface engineering for 2D electronics and beyond. Nanotechnology 2023, 34 (40) , 405701. https://doi.org/10.1088/1361-6528/ace1f7
    49. Weifeng Jin. High Electric Field Transport Characteristics in Field-Effect Transistors Based on Monolayer/Few-Layer MoS 2. IEEE Transactions on Electron Devices 2023, 70 (8) , 3992-4000. https://doi.org/10.1109/TED.2023.3283374
    50. Zhibin Zhang, Stiven Forti, Wanqing Meng, Sergio Pezzini, Zehua Hu, Camilla Coletti, Xinran Wang, Kaihui Liu. Growth and applications of two-dimensional single crystals. 2D Materials 2023, 10 (3) , 032001. https://doi.org/10.1088/2053-1583/acc95a
    51. Sandip Thakur, Ashutosh Giri. Role of Anharmonicity in Dictating the Thermal Boundary Conductance across Interfaces Comprised of Two-Dimensional Materials. Physical Review Applied 2023, 20 (1) https://doi.org/10.1103/PhysRevApplied.20.014039
    52. Robert Szoszkiewicz. A brief review on thermally induced oxidation and oxidative etching of thin MoS 2 crystals. Physical Chemistry Chemical Physics 2023, 25 (18) , 12555-12564. https://doi.org/10.1039/D3CP00421J
    53. Yi-Hsun Chan, Che-Yi Lin, Yu-Chang Chou, Alice Chinghsuan Chang, Yen-Fu Lin, Yu-Ze Chen. Chloride-assisted synthesis of tellurene directly on SiO 2 /Si substrates: growth mechanism, thermal properties, and device applications. Materials Advances 2023, 4 (8) , 2008-2016. https://doi.org/10.1039/D3MA00038A
    54. Timm Swoboda, Nicolás Wainstein, Sanchit Deshmukh, Çağıl Köroğlu, Xing Gao, Mario Lanza, Hans Hilgenkamp, Eric Pop, Eilam Yalon, Miguel Muñoz Rojo. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy. Nanoscale 2023, 15 (15) , 7139-7146. https://doi.org/10.1039/D3NR00343D
    55. Yuxuan Cosmi Lin, Cheng-Ming Lin, Hung-Yu Chen, Sam Vaziri, Xinyu Bao, Wei-Yen Woon, Han Wang, Szuya Sandy Liao. Dielectric Material Technologies for 2-D Semiconductor Transistor Scaling. IEEE Transactions on Electron Devices 2023, 70 (4) , 1454-1473. https://doi.org/10.1109/TED.2022.3224100
    56. Mingyu Jang, Swati Singh, Joonki Suh. Anisotropic thermal conductivity in two-dimensional van der Waals crystals. Ceramist 2023, 26 (1) , 106-120. https://doi.org/10.31613/ceramist.2023.26.1.08
    57. Fan Ye, Qingchang Liu, Baoxing Xu, Philip X.‐L. Feng, Xian Zhang. Ultra‐High Interfacial Thermal Conductance via Double hBN Encapsulation for Efficient Thermal Management of 2D Electronics. Small 2023, 19 (12) https://doi.org/10.1002/smll.202205726
    58. Cameron Foss, Zlatan Aksamija. Machine learning enables robust prediction of thermal boundary conductance of 2D substrate interfaces. Applied Physics Letters 2023, 122 (6) https://doi.org/10.1063/5.0142105
    59. Aditya Sood, Jonah B. Haber, Johan Carlström, Elizabeth A. Peterson, Elyse Barre, Johnathan D. Georgaras, Alexander H. M. Reid, Xiaozhe Shen, Marc E. Zajac, Emma C. Regan, Jie Yang, Takashi Taniguchi, Kenji Watanabe, Feng Wang, Xijie Wang, Jeffrey B. Neaton, Tony F. Heinz, Aaron M. Lindenberg, Felipe H. da Jornada, Archana Raja. Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer. Nature Nanotechnology 2023, 18 (1) , 29-35. https://doi.org/10.1038/s41565-022-01253-7
    60. Fulin Zhuo, Jie Wu, Binhong Li, Moyang Li, Chee Leong Tan, Zhongzhong Luo, Huabin Sun, Yong Xu, Zhihao Yu. Modifying the Power and Performance of 2-Dimensional MoS 2 Field Effect Transistors. Research 2023, 6 https://doi.org/10.34133/research.0057
    61. Quan-Jie Wang, Yu-Ge Deng, Ren-Zong Wang, Xiang-Jun Liu, . Interface engineering moderated interfacial thermal conductance of GaN-based heterointerfaces. Acta Physica Sinica 2023, 72 (22) , 226301. https://doi.org/10.7498/aps.72.20230791
    62. Ang-Sheng Chou, Yu-Tung Lin, Yuxuan Cosmi Lin, Ching-Hao Hsu, Ming-Yang Li, San-Lin Liew, Sui-An Chou, Hung-Yu Chen, Hsin-Yuan Chiu, Po-Hsun Ho, Ming-Chun Hsu, Yu-Wei Hsu, Ning Yang, Wei-Yen Woon, Szuya Liao, Duen-Huei Hou, Chao-Hsin Chien, Wen-Hao Chang, Iuliana Radu, Chih-I Wu, H.-S. Philip Wong, Han Wang. High-Performance Monolayer WSe2 p/n FETs via Antimony-Platinum Modulated Contact Technology towards 2D CMOS Electronics. 2022, 7.2.1-7.2.4. https://doi.org/10.1109/IEDM45625.2022.10019491
    63. Joel M. Solomon, Sabeeh Irfan Ahmad, Arpit Dave, Li-Syuan Lu, Fatemeh HadavandMirzaee, Shih-Chu Lin, Sih-Hua Chen, Chih-Wei Luo, Wen-Hao Chang, Tsing-Hua Her. Ultrafast laser ablation, intrinsic threshold, and nanopatterning of monolayer molybdenum disulfide. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-10820-w
    64. Yang Zhong, Lenan Zhang, Ji-Hoon Park, Samuel Cruz, Long Li, Liang Guo, Jing Kong, Evelyn N. Wang. A unified approach and descriptor for the thermal expansion of two-dimensional transition metal dichalcogenide monolayers. Science Advances 2022, 8 (46) https://doi.org/10.1126/sciadv.abo3783
    65. Theresia Knobloch, Siegfried Selberherr, Tibor Grasser. Challenges for Nanoscale CMOS Logic Based on Two-Dimensional Materials. Nanomaterials 2022, 12 (20) , 3548. https://doi.org/10.3390/nano12203548
    66. Xiaoming Zheng, Yuehua Wei, Zhenhua Wei, Wei Luo, Xiao Guo, Xiangzhe Zhang, Jinxin Liu, Yangbo Chen, Gang Peng, Weiwei Cai, Shiqiao Qin, Han Huang, Chuyun Deng, Xueao Zhang. Highly anisotropic thermal conductivity of few-layer CrOCl for efficient heat dissipation in graphene device. Nano Research 2022, 15 (10) , 9377-9385. https://doi.org/10.1007/s12274-022-4611-0
    67. Xiaoyan Peng, Jiazheng Chen, Shun Wang, Lidan Wang, Shukai Duan, Peter Feng, Jin Chu. High-temperature operation of v-MoS2 nanowalls/TiO2 photodetectors with excellent performances. Applied Surface Science 2022, 599 , 153904. https://doi.org/10.1016/j.apsusc.2022.153904
    68. Ridong Wang, Nicholas Hunter, Hamidreza Zobeiri, Shen Xu, Xinwei Wang. Critical problems faced in Raman-based energy transport characterization of nanomaterials. Physical Chemistry Chemical Physics 2022, 24 (37) , 22390-22404. https://doi.org/10.1039/D2CP02126A
    69. Roisul H. Galib, Prabhakar R. Bandaru. Component wise contribution to total thermal resistance in 2D material based device stacks. International Journal of Thermal Sciences 2022, 179 , 107623. https://doi.org/10.1016/j.ijthermalsci.2022.107623
    70. Siming Ren, Yanbin Shi, Chaozhi Zhang, Mingjun Cui, Jibin Pu. Anomalous enhancement oxidation of few-layer MoS2 and MoS2/h-BN heterostructure. Nano Research 2022, 15 (8) , 7081-7090. https://doi.org/10.1007/s12274-022-4384-5
    71. Marina Garrido, Myriam Barrejón, José Augusto Berrocal, Zois Syrgiannis, Maurizio Prato. Polyaromatic cores for the exfoliation of popular 2D materials. Nanoscale 2022, 14 (25) , 8986-8994. https://doi.org/10.1039/D2NR00894G
    72. Alexander J. Gabourie, Çağıl Köroğlu, Eric Pop. Substrate-dependence of monolayer MoS2 thermal conductivity and thermal boundary conductance. Journal of Applied Physics 2022, 131 (19) https://doi.org/10.1063/5.0089247
    73. Jie Chen, Xiangfan Xu, Jun Zhou, Baowen Li. Interfacial thermal resistance: Past, present, and future. Reviews of Modern Physics 2022, 94 (2) https://doi.org/10.1103/RevModPhys.94.025002
    74. Gwanmu Lee, Sehwan Park, Dongseok Suh, Sung Ju Hong, Jaewan Choi, Hyunjin Ji. Asymmetric Joule heating effect on a monolayer MoS2 device measured by a thermal imaging microscope. Journal of the Korean Physical Society 2022, 80 (7) , 619-627. https://doi.org/10.1007/s40042-022-00439-5
    75. Sanchit Deshmukh, Miguel Muñoz Rojo, Eilam Yalon, Sam Vaziri, Cagil Koroglu, Raisul Islam, Ricardo A. Iglesias, Krishna Saraswat, Eric Pop. Direct measurement of nanoscale filamentary hot spots in resistive memory devices. Science Advances 2022, 8 (13) https://doi.org/10.1126/sciadv.abk1514
    76. Yuehua Wei, Chuyun Deng, Xiaoming Zheng, Yangbo Chen, Xiangzhe Zhang, Wei Luo, Yi Zhang, Gang Peng, Jinxin Liu, Han Huang, Weiwei Cai, Qi Ge, Renyan Zhang, Xueao Zhang, Shiqiao Qin. Anisotropic in-plane thermal conductivity for multi-layer WTe2. Nano Research 2022, 15 (1) , 401-407. https://doi.org/10.1007/s12274-021-3492-y
    77. Lin Qiu, Xiaoxin Yan, Xiaoliang Zhang, Fengcheng Li. Thermal transport mechanism for different structure. 2022, 47-113. https://doi.org/10.1016/B978-0-12-823539-3.00011-8
    78. Saeed Sovizi, Sergio Tosoni, Robert Szoszkiewicz. MoS 2 oxidative etching caught in the act: formation of single (MoO 3 ) n molecules. Nanoscale Advances 2022, 7 https://doi.org/10.1039/D2NA00374K
    79. Onurcan Kaya, Nazli Donmezer. Investigation of the Thermal Transport Properties Across Van der Waals Interfaces of 2D Materials. IEEE Transactions on Nanotechnology 2022, 21 , 592-597. https://doi.org/10.1109/TNANO.2022.3179329
    80. Amritanand Sebastian, Rahul Pendurthi, Tanushree H. Choudhury, Joan M. Redwing, Saptarshi Das. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20732-w
    81. Oliver M G Ward, Edward McCann. The heat equation for nanoconstrictions in 2D materials with Joule self-heating. Journal of Physics D: Applied Physics 2021, 54 (47) , 475303. https://doi.org/10.1088/1361-6463/ac21fe
    82. Xiaoxiao Guo, Shujian Cheng, Weiwei Cai, Yufeng Zhang, Xue-ao Zhang. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties. Materials & Design 2021, 209 , 109936. https://doi.org/10.1016/j.matdes.2021.109936
    83. Saptarshi Das, Amritanand Sebastian, Eric Pop, Connor J. McClellan, Aaron D. Franklin, Tibor Grasser, Theresia Knobloch, Yury Illarionov, Ashish V. Penumatcha, Joerg Appenzeller, Zhihong Chen, Wenjuan Zhu, Inge Asselberghs, Lain-Jong Li, Uygar E. Avci, Navakanta Bhat, Thomas D. Anthopoulos, Rajendra Singh. Transistors based on two-dimensional materials for future integrated circuits. Nature Electronics 2021, 4 (11) , 786-799. https://doi.org/10.1038/s41928-021-00670-1
    84. Cameron Foss, Zlatan Aksamija. Thermal boundary conductance of monolayer beyond-graphene two-dimensional materials on SiO 2 and GaN. Nanotechnology 2021, 32 (40) , 405206. https://doi.org/10.1088/1361-6528/ac0d7d
    85. Victoria Chen, Yong Cheol Shin, Evgeny Mikheev, Qing Lin, Joel Martis, Ze Zhang, Sukti Chatterjee, Arun Majumdar, H-S Philip Wong, David Goldhaber-Gordon, Eric Pop. Application-driven synthesis and characterization of hexagonal boron nitride deposited on metals and carbon nanotubes. 2D Materials 2021, 8 (4) , 045024. https://doi.org/10.1088/2053-1583/ac10f1
    86. Robert Szoszkiewicz. Local Interactions of Atmospheric Oxygen with MoS2 Crystals. Materials 2021, 14 (20) , 5979. https://doi.org/10.3390/ma14205979
    87. Yuehua Wei, Zhenhua Wei, Xiaoming Zheng, Jinxin Liu, Yangbo Chen, Yue Su, Wei Luo, Gang Peng, Han Huang, Weiwei Cai, Chuyun Deng, Xueao Zhang, Shiqiao Qin. Stress Effects on Temperature-Dependent In-Plane Raman Modes of Supported Monolayer Graphene Induced by Thermal Annealing. Nanomaterials 2021, 11 (10) , 2751. https://doi.org/10.3390/nano11102751
    88. Shi En Kim, Fauzia Mujid, Akash Rai, Fredrik Eriksson, Joonki Suh, Preeti Poddar, Ariana Ray, Chibeom Park, Erik Fransson, Yu Zhong, David A. Muller, Paul Erhart, David G. Cahill, Jiwoong Park. Extremely anisotropic van der Waals thermal conductors. Nature 2021, 597 (7878) , 660-665. https://doi.org/10.1038/s41586-021-03867-8
    89. Qi Liang, Ya-Ling He, Tzu-Chen Hung. Manipulating thermal conductivity of silicon nanowires through surrounded fins and Ge dopant. International Journal of Heat and Mass Transfer 2021, 176 , 121425. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121425
    90. Yeonsu Kim, Ben Kaczer, Devin Verreck, Alexander Grill, Doyoon Kim, Jaeick Song, Javier Diaz‐Fortuny, Andrea Vici, Jongseon Park, Simon Van Beek, Marko Simicic, Erik Bury, Adrian Chasin, Dimitri Linten, Jaewoo Lee, Jungu Chun, Seongji Kim, Beumgeun Seo, Junhee Choi, Joon Hyung Shim, Kookjin Lee, Gyu‐Tae Kim. Cyclic Thermal Effects on Devices of Two‐Dimensional Layered Semiconducting Materials. Advanced Electronic Materials 2021, 7 (9) https://doi.org/10.1002/aelm.202100348
    91. Onurcan Kaya, Nazli Donmezer. Investigation of the Thermal Conductivity of Materials in 2D/3D Heterostructures. 2021, 374-377. https://doi.org/10.1109/NANO51122.2021.9514284
    92. Yunshan Zhao, Xiangliang Zeng, Linlin Ren, Xinnian Xia, Xiaoliang Zeng, Jun Zhou. Heat conduction of electrons and phonons in thermal interface materials. Materials Chemistry Frontiers 2021, 5 (15) , 5617-5638. https://doi.org/10.1039/D0QM01136C
    93. Maciej Rogala, Stanisław Sokołowski, Ugonna Ukegbu, Aneta Mierzwa, Robert Szoszkiewicz. Direct Identification of Surface Bound MoO 3 on Single MoS 2 Flakes Heated in Dry and Humid Air. Advanced Materials Interfaces 2021, 8 (13) https://doi.org/10.1002/admi.202100328
    94. Feng Xiong, Eilam Yalon, Connor J McClellan, Jinsong Zhang, Burak Aslan, Aditya Sood, Jie Sun, Christopher M Andolina, Wissam A Saidi, Kenneth E Goodson, Tony F Heinz, Yi Cui, Eric Pop. Tuning electrical and interfacial thermal properties of bilayer MoS 2 via electrochemical intercalation. Nanotechnology 2021, 32 (26) , 265202. https://doi.org/10.1088/1361-6528/abe78a
    95. Ronald J. Warzoha, Adam A. Wilson, Brian F. Donovan, Nazli Donmezer, Ashutosh Giri, Patrick E. Hopkins, Sukwon Choi, Darshan Pahinkar, Jingjing Shi, Samuel Graham, Zhiting Tian, Laura Ruppalt. Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging. Journal of Electronic Packaging 2021, 143 (2) https://doi.org/10.1115/1.4049293
    96. Sangwook Park, Angel T. Garcia‐Esparza, Hadi Abroshan, Baxter Abraham, John Vinson, Alessandro Gallo, Dennis Nordlund, Joonsuk Park, Taeho Roy Kim, Lauren Vallez, Roberto Alonso‐Mori, Dimosthenis Sokaras, Xiaolin Zheng. Operando Study of Thermal Oxidation of Monolayer MoS 2. Advanced Science 2021, 8 (9) https://doi.org/10.1002/advs.202002768
    97. Zhun-Yong Ong, Yongqing Cai, Gang Zhang, Yong-Wei Zhang. Theoretical analysis of thermal boundary conductance of MoS 2 -SiO 2 and WS 2 -SiO 2 interface. Nanotechnology 2021, 32 (13) , 135402. https://doi.org/10.1088/1361-6528/abd208
    98. Yuan Liu, Xidong Duan, Hyeon-Jin Shin, Seongjun Park, Yu Huang, Xiangfeng Duan. Promises and prospects of two-dimensional transistors. Nature 2021, 591 (7848) , 43-53. https://doi.org/10.1038/s41586-021-03339-z
    99. Alexandros El Sachat, Francesc Alzina, Clivia M. Sotomayor Torres, Emigdio Chavez-Angel. Heat Transport Control and Thermal Characterization of Low-Dimensional Materials: A Review. Nanomaterials 2021, 11 (1) , 175. https://doi.org/10.3390/nano11010175
    100. Alexander J Gabourie, Saurabh V Suryavanshi, Amir Barati Farimani, Eric Pop. Reduced thermal conductivity of supported and encased monolayer and bilayer MoS 2. 2D Materials 2021, 8 (1) , 011001. https://doi.org/10.1088/2053-1583/aba4ed
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect