ACS Publications. Most Trusted. Most Cited. Most Read
Non-Faradaic Li+ Migration and Chemical Coordination across Solid-State Battery Interfaces
My Activity
    Letter

    Non-Faradaic Li+ Migration and Chemical Coordination across Solid-State Battery Interfaces
    Click to copy article linkArticle link copied!

    View Author Information
    Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2017, 17, 11, 6974–6982
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.7b03498
    Published October 23, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode–electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO2–LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to the electrolyte, which reduces reversible cathodic capacity by ∼15%. Inserting a thin, ion-conducting LiNbO3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b03498.

    • Details on the experimental procedures. Figures showing X-ray diffraction patterns, SEM micrographs, X-ray photoelectron spectra, Raman spectra, and electrochemical characterization data. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 61 publications.

    1. Guofei Chen, Lei Guan, Yang Chen, Huijie Xu, Jianqiu Zhou, Rui Cai. Optimization Effect on the Interfacial Impedance and Contact Stress of the ASSLB with Porous Polymer Buffer Layer. The Journal of Physical Chemistry C 2024, 128 (47) , 20407-20422. https://doi.org/10.1021/acs.jpcc.4c05666
    2. Zoey Warecki, Victoria Castagna Ferrari, Donald A. Robinson, Joshua D. Sugar, Jonathan Lee, Anton V. Ievlev, Nam Soo Kim, David Murdock Stewart, Sang Bok Lee, Paul Albertus, Gary Rubloff, A. Alec Talin. Simultaneous Solid Electrolyte Deposition and Cathode Lithiation for Thin Film Batteries and Lithium Iontronic Devices. ACS Energy Letters 2024, 9 (5) , 2065-2074. https://doi.org/10.1021/acsenergylett.4c00674
    3. Zach Levy, Victoria Castagna Ferrari, Pablo Rosas, Mitchell J. Walker, Kalpak Duddella, Micah Haseman, David Stewart, Gary Rubloff, Leonard J. Brillson. Lithium Spatial Distribution and Split-Off Electronic Bands at Nanoscale V2O5/LiPON Interfaces. ACS Applied Energy Materials 2023, 6 (9) , 4538-4548. https://doi.org/10.1021/acsaem.2c03683
    4. Shigeru Kobayashi, Elvis F. Arguelles, Tetsuroh Shirasawa, Shusuke Kasamatsu, Koji Shimizu, Kazunori Nishio, Yuki Watanabe, Yusuke Kubota, Ryota Shimizu, Satoshi Watanabe, Taro Hitosugi. Drastic Reduction of the Solid Electrolyte–Electrode Interface Resistance via Annealing in Battery Form. ACS Applied Materials & Interfaces 2022, 14 (2) , 2703-2710. https://doi.org/10.1021/acsami.1c17945
    5. Xiaohan Wu, Marta Mirolo, Carlos A. F. Vaz, Petr Novák, Mario El Kazzi. Reactivity and Potential Profile across the Electrochemical LiCoO2–Li3PS4 Interface Probed by Operando X-ray Photoelectron Spectroscopy. ACS Applied Materials & Interfaces 2021, 13 (36) , 42670-42681. https://doi.org/10.1021/acsami.1c09605
    6. Deepak P. Singh, Yorick A. Birkhölzer, Daniel M. Cunha, Thijs Dubbelink, Sizhao Huang, Theodoor A. Hendriks, Caroline Lievens, Mark Huijben. Enhanced Cycling and Rate Capability by Epitaxially Matched Conductive Cubic TiO Coating on LiCoO2 Cathode Films. ACS Applied Energy Materials 2021, 4 (5) , 5024-5033. https://doi.org/10.1021/acsaem.1c00603
    7. Yao Liu, Yang Bai, Wolfram Jaegermann, René Hausbrand, Bai-Xiang Xu. Impedance Modeling of Solid-State Electrolytes: Influence of the Contacted Space Charge Layer. ACS Applied Materials & Interfaces 2021, 13 (4) , 5895-5906. https://doi.org/10.1021/acsami.0c22986
    8. James L. White, Forrest S. Gittleson, Mark Homer, Farid El Gabaly. Nickel and Cobalt Oxidation State Evolution at Ni-Rich NMC Cathode Surfaces during Treatment. The Journal of Physical Chemistry C 2020, 124 (30) , 16508-16514. https://doi.org/10.1021/acs.jpcc.0c04794
    9. Abhik Banerjee, Xuefeng Wang, Chengcheng Fang, Erik A. Wu, Ying Shirley Meng. Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews 2020, 120 (14) , 6878-6933. https://doi.org/10.1021/acs.chemrev.0c00101
    10. Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama. Li+ Transport Mechanism at the Heterogeneous Cathode/Solid Electrolyte Interface in an All-Solid-State Battery via the First-Principles Structure Prediction Scheme. Chemistry of Materials 2020, 32 (1) , 85-96. https://doi.org/10.1021/acs.chemmater.9b02311
    11. Sami Oukassi, Loic Baggetto, Christophe Dubarry, Lucie Le Van-Jodin, Séverine Poncet, Raphaël Salot. Transparent Thin Film Solid-State Lithium Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (1) , 683-690. https://doi.org/10.1021/acsami.8b16364
    12. Erwin Hüger, Harald Schmidt. Lithium Permeability Increase in Nanosized Amorphous Silicon Layers. The Journal of Physical Chemistry C 2018, 122 (50) , 28528-28536. https://doi.org/10.1021/acs.jpcc.8b09719
    13. Anirudha Jena, Yedukondalu Meesala, Shu-Fen Hu, Ho Chang, Ru-Shi Liu. Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications. ACS Energy Letters 2018, 3 (11) , 2775-2795. https://doi.org/10.1021/acsenergylett.8b01564
    14. Jia-Yan Liang, Xian-Xiang Zeng, Xu-Dong Zhang, Peng-Fei Wang, Jing-Yuan Ma, Ya-Xia Yin, Xiong-Wei Wu, Yu-Guo Guo, Li-Jun Wan. Mitigating Interfacial Potential Drop of Cathode–Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. Journal of the American Chemical Society 2018, 140 (22) , 6767-6770. https://doi.org/10.1021/jacs.8b03319
    15. Amina Amarray, Amina Boutahar, Hiba El Fallah, Kabore Thierry Silvère, Ayoub EL Bendali, Lamia Boutajanouit, Mohamed Aqil, Jones Alami, Mouad Dahbi. Recovery of lithium from spent LFP and NCA batteries by electro-oxidation process and synthesis of cathode material from recycled precursors. Journal of Energy Storage 2024, 102 , 114001. https://doi.org/10.1016/j.est.2024.114001
    16. Jiashuai Wang, Chengdeng Wang, Haofeng Shi, Zhaokun Wang, Zhi Wang, Jin peng Li, Xiangrui Chen, Yan Gao, Zhiming Bai, Xiaoqin Yan. Enabling superior cathode/sulfide electrolyte interfacial stability by Li3BO3 coating for all solid-state Li battery. Journal of Materials Science 2024, 59 (44) , 20671-20685. https://doi.org/10.1007/s10853-024-10409-w
    17. Qichanghao Li, Wei Liu, Jinshi Wang, Qiuying Xia, Hui Xia. Long-cycle-life Li2MnO3 thin-film cathode enabled by all-solid-state battery configuration. Journal of Power Sources 2024, 602 , 234371. https://doi.org/10.1016/j.jpowsour.2024.234371
    18. Hamed Pourzolfaghar, Soraya Hosseini, Po-Yuan Wang, Yuan-Yao Li. In-situ polymerization of the electrolyte on the electrode surface: A novel process to eliminate interfacial impedance in flexible Zn-air batteries. Journal of Energy Storage 2024, 75 , 109573. https://doi.org/10.1016/j.est.2023.109573
    19. Tianchen Hu, Mark C. Messner, Pallab Barai, Bipul Barua. A Three-Dimensional, Thermodynamically and Variationally Consistent, Fully Coupled, Electro-Chemo-Thermo-Mechanical Model of Solid-State Batteries. Journal of The Electrochemical Society 2023, 170 (12) , 123501. https://doi.org/10.1149/1945-7111/ad09f5
    20. Shaowen Dong, Li Sheng, Li Wang, Jie Liang, Hao Zhang, Zonghai Chen, Hong Xu, Xiangming He. Challenges and Prospects of All‐Solid‐State Electrodes for Solid‐State Lithium Batteries. Advanced Functional Materials 2023, 33 (49) https://doi.org/10.1002/adfm.202304371
    21. Xilong Chen, Xiangjie Li, Lingjie Luo, Shengnan He, Jian Chen, Yongfeng Liu, Hongge Pan, Yun Song, Renzong Hu. Practical Application of All‐Solid‐State Lithium Batteries Based on High‐Voltage Cathodes: Challenges and Progress. Advanced Energy Materials 2023, 13 (35) https://doi.org/10.1002/aenm.202301230
    22. Yongkun Yu, Minjian Gong, Chenxu Dong, Xu Xu. Thin-film deposition techniques in surface and interface engineering of solid-state lithium batteries. Next Nanotechnology 2023, 3-4 , 100028. https://doi.org/10.1016/j.nxnano.2023.100028
    23. Mohamad A. Brza, Shujahadeen B. Aziz, Niyaz M. Sadiq. Dielectric properties and ion transport studies from Trukhan, EIS, and Bandara-Mellander approaches for plasticized sodium ion conducting polymer blend electrolytes. Ionics 2023, 29 (5) , 1847-1861. https://doi.org/10.1007/s11581-023-04933-z
    24. Constantin Bubulinca, Natalia E. Kazantseva, Viera Pechancova, Nikhitha Joseph, Haojie Fei, Mariana Venher, Anna Ivanichenko, Petr Saha. Development of All-Solid-State Li-Ion Batteries: From Key Technical Areas to Commercial Use. Batteries 2023, 9 (3) , 157. https://doi.org/10.3390/batteries9030157
    25. Baolin Wu, Chunguang Chen, Dmitri L. Danilov, Rüdiger-A. Eichel, Peter H. L. Notten. All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs. Batteries 2023, 9 (3) , 186. https://doi.org/10.3390/batteries9030186
    26. Jiabao Gu, Haoyue Zhong, Zirong Chen, Jingwen Shi, Zhengliang Gong, Yong Yang. Advances in sulfide-based all-solid-state lithium-sulfur battery: Materials, composite electrodes and electrochemo-mechanical effects. Chemical Engineering Journal 2023, 454 , 139923. https://doi.org/10.1016/j.cej.2022.139923
    27. Qiuying Xia, Feng Zan, Qianyu Zhang, Wei Liu, Qichanghao Li, Yan He, Jingyi Hua, Jiahao Liu, Jing Xu, Jinshi Wang, Chuanzhi Wu, Hui Xia. All‐Solid‐State Thin Film Lithium/Lithium‐Ion Microbatteries for Powering the Internet of Things. Advanced Materials 2023, 35 (2) https://doi.org/10.1002/adma.202200538
    28. Qian Zhang, YaQi Kong, KeXin Gao, YaJing Wen, Qi Zhang, HuaYi Fang, ChunJie Ma, YaPing Du. Research progress on space charge layer effect in lithium-ion solid-state battery. Science China Technological Sciences 2022, 65 (10) , 2246-2258. https://doi.org/10.1007/s11431-021-2027-3
    29. Michael W. Swift, Harsh Jagad, Jiyun Park, Yu Qie, Yuqin Wu, Yue Qi. Predicting low-impedance interfaces for solid-state batteries. Current Opinion in Solid State and Materials Science 2022, 26 (3) , 100990. https://doi.org/10.1016/j.cossms.2022.100990
    30. Jia Liu, Hong Yuan, He Liu, Chen‐Zi Zhao, Yang Lu, Xin‐Bing Cheng, Jia‐Qi Huang, Qiang Zhang. Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Advanced Energy Materials 2022, 12 (4) https://doi.org/10.1002/aenm.202100748
    31. Wei He, Lei Zhou, Muhammad Khurram Tufail, Pengfei Zhai, Peiwen Yu, Renjie Chen, Wen Yang. Space Charge Layer Effect in Sulfide Solid Electrolytes in All-Solid-State Batteries: In-situ Characterization and Resolution. Transactions of Tianjin University 2021, 27 (6) , 423-433. https://doi.org/10.1007/s12209-021-00294-8
    32. Eunho Cha, Jong Hyuk Yun, Rubha Ponraj, Do Kyung Kim. A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries. Materials Chemistry Frontiers 2021, 5 (17) , 6294-6314. https://doi.org/10.1039/D1QM00579K
    33. Ouwei Sheng, Chengbin Jin, Xufen Ding, Tiefeng Liu, Yuehua Wan, Yujing Liu, Jianwei Nai, Yao Wang, Chuntai Liu, Xinyong Tao. A Decade of Progress on Solid‐State Electrolytes for Secondary Batteries: Advances and Contributions. Advanced Functional Materials 2021, 31 (27) https://doi.org/10.1002/adfm.202100891
    34. Liansheng Li, Huanhuan Duan, Jia Li, Lei Zhang, Yuanfu Deng, Guohua Chen. Toward High Performance All‐Solid‐State Lithium Batteries with High‐Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. Advanced Energy Materials 2021, 11 (28) https://doi.org/10.1002/aenm.202003154
    35. Junrun Feng, Zhonghui Gao, Lin Sheng, Zhangxiang Hao, Feng R. Wang. Progress and perspective of interface design in garnet electrolyte‐based all‐solid‐state batteries. Carbon Energy 2021, 3 (3) , 385-409. https://doi.org/10.1002/cey2.100
    36. Sandra Lobe, Alexander Bauer, Sven Uhlenbruck, Dina Fattakhova‐Rohlfing. Physical Vapor Deposition in Solid‐State Battery Development: From Materials to Devices. Advanced Science 2021, 8 (11) https://doi.org/10.1002/advs.202002044
    37. Hongchun Wang, Jianping Zhu, Yu Su, Zhengliang Gong, Yong Yang. Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. Science China Chemistry 2021, 64 (6) , 879-898. https://doi.org/10.1007/s11426-021-9985-x
    38. Yuepeng Pang, Jinyu Pan, Junhe Yang, Shiyou Zheng, Chunsheng Wang. Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review. Electrochemical Energy Reviews 2021, 4 (2) , 169-193. https://doi.org/10.1007/s41918-020-00092-1
    39. Chunguang Chen, Ming Jiang, Tao Zhou, Luc Raijmakers, Egor Vezhlev, Baolin Wu, Tobias U. Schülli, Dmitri L. Danilov, Yujie Wei, Rüdiger‐A. Eichel, Peter H. L. Notten. Interface Aspects in All‐Solid‐State Li‐Based Batteries Reviewed. Advanced Energy Materials 2021, 11 (13) https://doi.org/10.1002/aenm.202003939
    40. Michael W. Swift, James W. Swift, Yue Qi. Modeling the electrical double layer at solid-state electrochemical interfaces. Nature Computational Science 2021, 1 (3) , 212-220. https://doi.org/10.1038/s43588-021-00041-y
    41. Xueying Sun, Satoshi Hori, Yuxiang Li, Yuto Yamada, Kota Suzuki, Masaaki Hirayama, Ryoji Kanno. Annealing-induced evolution at the LiCoO 2 /LiNbO 3 interface and its functions in all-solid-state batteries with a Li 10 GeP 2 S 12 electrolyte. Journal of Materials Chemistry A 2021, 9 (7) , 4117-4125. https://doi.org/10.1039/D0TA09313K
    42. Qiuying Xia, Qinghua Zhang, Shuo Sun, Fiaz Hussain, Chunchen Zhang, Xiaohui Zhu, Fanqi Meng, Kaiming Liu, Hao Geng, Jing Xu, Feng Zan, Peng Wang, Lin Gu, Hui Xia. Tunnel Intergrowth Li x MnO 2 Nanosheet Arrays as 3D Cathode for High‐Performance All‐Solid‐State Thin Film Lithium Microbatteries. Advanced Materials 2021, 33 (5) https://doi.org/10.1002/adma.202003524
    43. Xu-Dong Zhang, Feng-Shu Yue, Jia-Yan Liang, Ji-Lei Shi, Hong Li, Yu-Guo Guo. Structure Design of Cathode Electrodes for Solid‐State Batteries: Challenges and Progress. Small Structures 2020, 1 (3) https://doi.org/10.1002/sstr.202000042
    44. Longlong Wang, Ruicong Xie, Bingbing Chen, Xinrun Yu, Jun Ma, Chao Li, Zhiwei Hu, Xingwei Sun, Chengjun Xu, Shanmu Dong, Ting-Shan Chan, Jun Luo, Guanglei Cui, Liquan Chen. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19726-5
    45. Xianguang Miao, Huiyang Wang, Rui Sun, Chengxiang Wang, Zhiwei Zhang, Zhaoqiang Li, Longwei Yin. Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy & Environmental Science 2020, 13 (11) , 3780-3822. https://doi.org/10.1039/D0EE01435D
    46. Yong Chen, Kaihua Wen, Tianhua Chen, Xiaojing Zhang, Michel Armand, Shimou Chen. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Materials 2020, 31 , 401-433. https://doi.org/10.1016/j.ensm.2020.05.019
    47. Jia‐Yan Liang, Xu‐Dong Zhang, Xian‐Xiang Zeng, Min Yan, Ya‐Xia Yin, Sen Xin, Wen‐Peng Wang, Xiong‐Wei Wu, Ji‐Lei Shi, Li‐Jun Wan, Yu‐Guo Guo. Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium‐Metal Batteries. Angewandte Chemie 2020, 132 (16) , 6647-6651. https://doi.org/10.1002/ange.201916301
    48. Jia‐Yan Liang, Xu‐Dong Zhang, Xian‐Xiang Zeng, Min Yan, Ya‐Xia Yin, Sen Xin, Wen‐Peng Wang, Xiong‐Wei Wu, Ji‐Lei Shi, Li‐Jun Wan, Yu‐Guo Guo. Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium‐Metal Batteries. Angewandte Chemie International Edition 2020, 59 (16) , 6585-6589. https://doi.org/10.1002/anie.201916301
    49. Anil Arya, Mohd Sadiq, A. L. Sharma. Structural, electrical and ion transport properties of free-standing blended solid polymeric thin films. Polymer Bulletin 2019, 76 (10) , 5149-5172. https://doi.org/10.1007/s00289-018-2645-y
    50. Yoshitaka Tateyama, Bo Gao, Randy Jalem, Jun Haruyama. Theoretical picture of positive electrode–solid electrolyte interface in all-solid-state battery from electrochemistry and semiconductor physics viewpoints. Current Opinion in Electrochemistry 2019, 17 , 149-157. https://doi.org/10.1016/j.coelec.2019.06.003
    51. Yanming He, Chuanyang Lu, Shan Liu, Wenjian Zheng, Jiayan Luo. Interfacial Incompatibility and Internal Stresses in All‐Solid‐State Lithium Ion Batteries. Advanced Energy Materials 2019, 9 (36) https://doi.org/10.1002/aenm.201901810
    52. S.Z. Zhang, X.L. Wang, X.H. Xia, Z.J. Yao, Y.J. Xu, D.H. Wang, D. Xie, J.B. Wu, C.D. Gu, J.P. Tu. Smart construction of intimate interface between solid polymer electrolyte and 3D-array electrode for quasi-solid-state lithium ion batteries. Journal of Power Sources 2019, 434 , 226726. https://doi.org/10.1016/j.jpowsour.2019.226726
    53. Erwin Hüger, Jochen Stahn, Paul Heitjans, Harald Schmidt. Neutron reflectometry to measure in situ the rate determining step of lithium ion transport through thin silicon layers and interfaces. Physical Chemistry Chemical Physics 2019, 21 (30) , 16444-16450. https://doi.org/10.1039/C9CP01222B
    54. Mingjie Du, Kaiming Liao, Qian Lu, Zongping Shao. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy & Environmental Science 2019, 12 (6) , 1780-1804. https://doi.org/10.1039/C9EE00515C
    55. Xu-Dong Zhang, Ji-Lei Shi, Jia-Yan Liang, Li-Ping Wang, Ya-Xia Yin, Ke-Cheng Jiang, Yu-Guo Guo. An effective LiBO2 coating to ameliorate the cathode/electrolyte interfacial issues of LiNi0.6Co0.2Mn0.2O2 in solid-state Li batteries. Journal of Power Sources 2019, 426 , 242-249. https://doi.org/10.1016/j.jpowsour.2019.04.017
    56. Michael W. Swift, Yue Qi. First-Principles Prediction of Potentials and Space-Charge Layers in All-Solid-State Batteries. Physical Review Letters 2019, 122 (16) https://doi.org/10.1103/PhysRevLett.122.167701
    57. Veronica Augustyn, Matthew T. McDowell, Aleksandra Vojvodic. Toward an Atomistic Understanding of Solid-State Electrochemical Interfaces for Energy Storage. Joule 2018, 2 (11) , 2189-2193. https://doi.org/10.1016/j.joule.2018.10.014
    58. T.A. Wynn, J.Z. Lee, A. Banerjee, Y.S. Meng. In situ and operando probing of solid–solid interfaces in electrochemical devices. MRS Bulletin 2018, 43 (10) , 768-774. https://doi.org/10.1557/mrs.2018.235
    59. Jun Ma, Bingbing Chen, Longlong Wang, Guanglei Cui. Progress and prospect on failure mechanisms of solid-state lithium batteries. Journal of Power Sources 2018, 392 , 94-115. https://doi.org/10.1016/j.jpowsour.2018.04.055
    60. Stephan Schuld, René Hausbrand, Mathias Fingerle, Wolfram Jaegermann, Karl‐Michael Weitzel. Experimental Studies on Work Functions of Li + Ions and Electrons in the Battery Electrode Material LiCoO 2 : A Thermodynamic Cycle Combining Ionic and Electronic Structure. Advanced Energy Materials 2018, 8 (18) https://doi.org/10.1002/aenm.201703411
    61. Xiaohan Wu, Claire Villevieille, Petr Novák, Mario El Kazzi. Monitoring the chemical and electronic properties of electrolyte–electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics 2018, 20 (16) , 11123-11129. https://doi.org/10.1039/C8CP01213J

    Nano Letters

    Cite this: Nano Lett. 2017, 17, 11, 6974–6982
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.7b03498
    Published October 23, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    3788

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.