ACS Publications. Most Trusted. Most Cited. Most Read
Refractive Index-Based Control of Hyperbolic Phonon-Polariton Propagation
My Activity
    Letter

    Refractive Index-Based Control of Hyperbolic Phonon-Polariton Propagation
    Click to copy article linkArticle link copied!

    • Alireza Fali
      Alireza Fali
      Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
      More by Alireza Fali
    • Samuel T. White
      Samuel T. White
      Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
    • Thomas G. Folland
      Thomas G. Folland
      Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
    • Mingze He
      Mingze He
      Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
      More by Mingze He
    • Neda A. Aghamiri
      Neda A. Aghamiri
      Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
    • Song Liu
      Song Liu
      Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 United States
      More by Song Liu
    • James H. Edgar
      James H. Edgar
      Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 United States
    • Joshua D. Caldwell
      Joshua D. Caldwell
      Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
      Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37212, United States
    • Richard F. Haglund
      Richard F. Haglund
      Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
      Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37212, United States
    • Yohannes Abate*
      Yohannes Abate
      Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2019, 19, 11, 7725–7734
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b02651
    Published October 25, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Hyperbolic phonon polaritons (HPhPs) are generated when infrared photons couple to polar optic phonons in anisotropic media, confining long-wavelength light to nanoscale volumes. However, to realize the full potential of HPhPs for infrared optics, it is crucial to understand propagation and loss mechanisms on substrates suitable for applications from waveguiding to infrared sensing. We employ scattering-type scanning near-field optical microscopy (s-SNOM) and nano-Fourier transform infrared (FTIR) spectroscopy, in concert with analytical and numerical calculations, to elucidate HPhP characteristics as a function of the complex substrate dielectric function. We consider propagation on suspended, dielectric and metallic substrates to demonstrate that the thickness-normalized wavevector can be reduced by a factor of 25 simply by changing the substrate from dielectric to metallic behavior. Moreover, by incorporating the imaginary contribution to the dielectric function in lossy materials, the wavevector can be dynamically controlled by small local variations in loss or carrier density. Counterintuitively, higher-order HPhP modes are shown to exhibit the same change in the polariton wavevector as the fundamental mode, despite the drastic differences in the evanescent ranges of these polaritons. However, because polariton refraction is dictated by the fractional change in the wavevector, this still results in significant differences in polariton refraction and reduced sensitivity to substrate-induced losses for the higher-order HPhPs. Such effects may therefore be used to spatially separate hyperbolic modes of different orders and for index-based sensing schemes. Our results advance our understanding of fundamental hyperbolic polariton excitations and their potential for on-chip photonics and planar metasurface optics.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.9b02651.

    • Substrate-dependent of polaritons in hBN flake draped over Si substrate and VO2 crystal, dispersion of HPhP of hBN on silver and silicon, error in calculations, FOM dependence on substrate, standard deviation of dielectric function, kd substrate and frequency dependence, and HPhP vs SPhP sensing analysis (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 84 publications.

    1. Enrique Terán-García, Christian Lanza, Kirill Voronin, Javier Martín-Sánchez, Alexey Y. Nikitin, Aitana Tarazaga Martín-Luengo, Pablo Alonso-González. Real-Space Visualization of Canalized Ray Polaritons in a Single Van der Waals Thin Slab. Nano Letters 2025, 25 (6) , 2203-2209. https://doi.org/10.1021/acs.nanolett.4c05277
    2. Bowen Du, Yule Zhang, Fuquan Xie, Zhi Chen, Songrui Wei, Yanqi Ge, Xilin Tian, Qiao Jiang, Qiuliang Wang, Xueji Zhang, Defa Li, Zhongjian Xie, Han Zhang. Single-Base Resolution Photonic-Integrated Chips via Hybrid Dielectric–Metal Nanocavities for Ultrasensitive Multichannel Biosensing. ACS Photonics 2024, 11 (11) , 4948-4957. https://doi.org/10.1021/acsphotonics.4c01437
    3. Jun Liang, Jiaqi Zhu, Yanyu Zhao, Siyu Wang, Youning Gong, Yupeng Zhang, Guo Ping Wang. Manipulation of In-Plane Hyperbolic Phonon Polaritons for Configurable Focusing. ACS Photonics 2024, 11 (11) , 5031-5038. https://doi.org/10.1021/acsphotonics.4c01707
    4. Lanqing Zhou, Konstantin Wirth, Minh N. Bui, Renu Rani, Detlev Grützmacher, Thomas Taubner, Beata E. Kardynał. Resonant Raman Scattering of Surface Phonon Polaritons Mediated by Excitons in WSe2 Films. ACS Photonics 2024, 11 (8) , 3079-3086. https://doi.org/10.1021/acsphotonics.4c00349
    5. Yingjie Wu, Jingying Liu, Wenzhi Yu, Tan Zhang, Haoran Mu, Guangyuan Si, Zhenyang Cui, Shenghuang Lin, Bin Zheng, Cheng-Wei Qiu, Hongsheng Chen, Qingdong Ou. Monolithically Structured van der Waals Materials for Volume-Polariton Refraction and Focusing. ACS Nano 2024, 18 (26) , 17065-17074. https://doi.org/10.1021/acsnano.4c03630
    6. Wassie M. Takele, Terefe G. Habteyes. Nanoimaging of Water Bending and Carboxylate Stretching Modes in Colloidal Nanocrystal Films. The Journal of Physical Chemistry C 2024, 128 (5) , 2052-2061. https://doi.org/10.1021/acs.jpcc.3c07693
    7. Zhenyang Cui, Sihao Xia, Lian Shen, Bin Zheng, Hongsheng Chen, Yingjie Wu. Polariton Microfluidics for Nonreciprocal Dragging and Reconfigurable Shaping of Polaritons. Nano Letters 2024, 24 (4) , 1360-1366. https://doi.org/10.1021/acs.nanolett.3c04362
    8. Lukas Wehmeier, Mengkun Liu, Suji Park, Houk Jang, D. N. Basov, Christopher C. Homes, G. Lawrence Carr. Ultrabroadband Terahertz Near-Field Nanospectroscopy with a HgCdTe Detector. ACS Photonics 2023, 10 (12) , 4329-4339. https://doi.org/10.1021/acsphotonics.3c01148
    9. Hanan Herzig Sheinfux, Minwoo Jung, Lorenzo Orsini, Matteo Ceccanti, Aditya Mahalanabish, Daniel Martinez-Cercós, Iacopo Torre, David Barcons Ruiz, Eli Janzen, James H. Edgar, Valerio Pruneri, Gennady Shvets, Frank H. L. Koppens. Transverse Hypercrystals Formed by Periodically Modulated Phonon Polaritons. ACS Nano 2023, 17 (8) , 7377-7383. https://doi.org/10.1021/acsnano.2c11497
    10. Yongqian Zhao, Jiancui Chen, Mengfei Xue, Runkun Chen, Shangtong Jia, Jianjun Chen, Lihong Bao, Hong-Jun Gao, Jianing Chen. Ultralow-Loss Phonon Polaritons in the Isotope-Enriched α-MoO3. Nano Letters 2022, 22 (24) , 10208-10215. https://doi.org/10.1021/acs.nanolett.2c03742
    11. Tobias Nörenberg, Gonzalo Álvarez-Pérez, Maximilian Obst, Lukas Wehmeier, Franz Hempel, J. Michael Klopf, Alexey Y. Nikitin, Susanne C. Kehr, Lukas M. Eng, Pablo Alonso-González, Thales V. A. G. de Oliveira. Germanium Monosulfide as a Natural Platform for Highly Anisotropic THz Polaritons. ACS Nano 2022, 16 (12) , 20174-20185. https://doi.org/10.1021/acsnano.2c05376
    12. Emiliano Cortés, Fedja J. Wendisch, Luca Sortino, Andrea Mancini, Simone Ezendam, Seryio Saris, Leonardo de S. Menezes, Andreas Tittl, Haoran Ren, Stefan A. Maier. Optical Metasurfaces for Energy Conversion. Chemical Reviews 2022, 122 (19) , 15082-15176. https://doi.org/10.1021/acs.chemrev.2c00078
    13. Chunqi Zheng, Robert E. Simpson, Kechao Tang, Yujie Ke, Arash Nemati, Qing Zhang, Guangwei Hu, Chengkuo Lee, Jinghua Teng, Joel K.W. Yang, Junqiao Wu, Cheng-Wei Qiu. Enabling Active Nanotechnologies by Phase Transition: From Electronics, Photonics to Thermotics. Chemical Reviews 2022, 122 (19) , 15450-15500. https://doi.org/10.1021/acs.chemrev.2c00171
    14. Mingze He, Thomas G. Folland, Jiahua Duan, Pablo Alonso-González, Simone De Liberato, Alexander Paarmann, Joshua D. Caldwell. Anisotropy and Modal Hybridization in Infrared Nanophotonics Using Low-Symmetry Materials. ACS Photonics 2022, 9 (4) , 1078-1095. https://doi.org/10.1021/acsphotonics.1c01486
    15. Jiong Yang, Jianbo Tang, Mohammad B. Ghasemian, Mohannad Mayyas, Qiuhui V. Yu, Lu Hua Li, Kourosh Kalantar-Zadeh. High-Q Phonon-polaritons in Spatially Confined Freestanding α-MoO3. ACS Photonics 2022, 9 (3) , 905-913. https://doi.org/10.1021/acsphotonics.1c01726
    16. Bowen Du, Yu Li, Meiling Jiang, Hongbo Zhang, Lishu Wu, Wen Wen, Zheng Liu, Zheyu Fang, Ting Yu. Polarization-Dependent Purcell Enhancement on a Two-Dimensional h-BN/WS2 Light Emitter with a Dielectric Plasmonic Nanocavity. Nano Letters 2022, 22 (4) , 1649-1655. https://doi.org/10.1021/acs.nanolett.1c04640
    17. Mingze He, Ganjigunte R. S. Iyer, Shaurya Aarav, Sai S. Sunku, Alexander J. Giles, Thomas G. Folland, Nicholas Sharac, Xiaohang Sun, Joseph Matson, Song Liu, James H. Edgar, Jason W. Fleischer, D. N. Basov, Joshua D. Caldwell. Ultrahigh-Resolution, Label-Free Hyperlens Imaging in the Mid-IR. Nano Letters 2021, 21 (19) , 7921-7928. https://doi.org/10.1021/acs.nanolett.1c01808
    18. Guangxin Ni, Alexander S. McLeod, Zhiyuan Sun, Joseph R. Matson, Chiu Fan Bowen Lo, Daniel A. Rhodes, Francesco L. Ruta, Samuel L. Moore, Rocco A. Vitalone, Ramon Cusco, Luis Artús, Lin Xiong, Cory R. Dean, James C. Hone, Andrew J. Millis, Michael M. Fogler, James H. Edgar, Joshua D. Caldwell, D. N. Basov. Long-Lived Phonon Polaritons in Hyperbolic Materials. Nano Letters 2021, 21 (13) , 5767-5773. https://doi.org/10.1021/acs.nanolett.1c01562
    19. Jiong Yang, Zeb E. Krix, Sejeong Kim, Jianbo Tang, Mohannad Mayyas, Yifang Wang, Kenji Watanabe, Takashi Taniguchi, Lu Hua Li, Alex R. Hamilton, Igor Aharonovich, Oleg P. Sushkov, Kourosh Kalantar-Zadeh. Near-Field Excited Archimedean-like Tiling Patterns in Phonon-Polaritonic Crystals. ACS Nano 2021, 15 (5) , 9134-9142. https://doi.org/10.1021/acsnano.1c02507
    20. Qing Zhang, Qingdong Ou, Guangwei Hu, Jingying Liu, Zhigao Dai, Michael S. Fuhrer, Qiaoliang Bao, Cheng-Wei Qiu. Hybridized Hyperbolic Surface Phonon Polaritons at α-MoO3 and Polar Dielectric Interfaces. Nano Letters 2021, 21 (7) , 3112-3119. https://doi.org/10.1021/acs.nanolett.1c00281
    21. Divya Virmani, Andrei Bylinkin, Irene Dolado, Eli Janzen, James H. Edgar, Rainer Hillenbrand. Amplitude- and Phase-Resolved Infrared Nanoimaging and Nanospectroscopy of Polaritons in a Liquid Environment. Nano Letters 2021, 21 (3) , 1360-1367. https://doi.org/10.1021/acs.nanolett.0c04108
    22. Alireza Fali, Sampath Gamage, Marquez Howard, Thomas. G. Folland, Nadeemullah A. Mahadik, Tom Tiwald, Kirill Bolotin, Joshua D. Caldwell, Yohannes Abate. Nanoscale Spectroscopy of Dielectric Properties of Mica. ACS Photonics 2021, 8 (1) , 175-181. https://doi.org/10.1021/acsphotonics.0c00951
    23. Chih-Feng Wang, Bijesh Kafle, Tefera E. Tesema, Hamed Kookhaee, Terefe G. Habteyes. Molecular Sensitivity of Near-Field Vibrational Infrared Imaging. The Journal of Physical Chemistry C 2020, 124 (38) , 21018-21026. https://doi.org/10.1021/acs.jpcc.0c07979
    24. Jiong Yang, Mohannad Mayyas, Jianbo Tang, Mohammad B. Ghasemian, Honghua Yang, Kenji Watanabe, Takashi Taniguchi, Qingdong Ou, Lu Hua Li, Qiaoliang Bao, Kourosh Kalantar-Zadeh. Boundary-Induced Auxiliary Features in Scattering-Type Near-Field Fourier Transform Infrared Spectroscopy. ACS Nano 2020, 14 (1) , 1123-1132. https://doi.org/10.1021/acsnano.9b08895
    25. Peiyuan Huang, Jiayao Huang, Qinmiao Chen, Yuhui Cai, Aowei Yang, Yang Luo, Bingfeng Fan, Yongyao Li, Dongxu Zhao. Tunable hybrid polaritons in the LiV2O5-graphene heterostructures. Physics Letters A 2025, 551 , 130609. https://doi.org/10.1016/j.physleta.2025.130609
    26. MICHEL MBERE TAOGA, Fabien Betene Ebanda, Antonio Pizzi, Benoit Ndiwe, Pierre Marcel Anicet Noah, Jonas Peequeur Essome Mbang, Kevin Kibong Kimbi, Etinge Tabi Akwo, César Segovia. Influence of the Sampling Area on the Chemical, Physical, and Mechanical Properties of Grewia bicolor (GB) Fiber for Potential Use in the Reinforcement of Tannin Matrix Composites. Journal of Natural Fibers 2024, 21 (1) https://doi.org/10.1080/15440478.2024.2346121
    27. Hongwei Wang, Anshuman Kumar, Siyuan Dai, Xiao Lin, Zubin Jacob, Sang-Hyun Oh, Vinod Menon, Evgenii Narimanov, Young Duck Kim, Jian-Ping Wang, Phaedon Avouris, Luis Martin Moreno, Joshua Caldwell, Tony Low. Planar hyperbolic polaritons in 2D van der Waals materials. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-023-43992-8
    28. J. Álvarez-Cuervo, M. Obst, S. Dixit, G. Carini, A. I. F. Tresguerres-Mata, C. Lanza, E. Terán-García, G. Álvarez-Pérez, L. F. Álvarez-Tomillo, K. Diaz-Granados, R. Kowalski, A. S. Senerath, N. S. Mueller, L. Herrer, J. M. De Teresa, S. Wasserroth, J. M. Klopf, T. Beechem, M. Wolf, L. M. Eng, T. G. Folland, A. Tarazaga Martín-Luengo, J. Martín-Sánchez, S. C. Kehr, A. Y. Nikitin, J. D. Caldwell, P. Alonso-González, A. Paarmann. Unidirectional ray polaritons in twisted asymmetric stacks. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-52750-3
    29. Yunxiu Ma, Gang Zhong, Zhigao Dai, Qingdong Ou. In-plane hyperbolic phonon polaritons: materials, properties, and nanophotonic devices. npj Nanophotonics 2024, 1 (1) https://doi.org/10.1038/s44310-024-00019-4
    30. Yali Zeng, Shuwen Xue, Yuancheng Fan, Shan Zhu, Huanyang Chen, Fuli Zhang. Asymmetric steering of phonon polaritons based on bilayer metagratings. Optics Letters 2024, 49 (23) , 6785. https://doi.org/10.1364/OL.538947
    31. Jonathan M. Larson, Hans A. Bechtel, Robert Kostecki. Detection and Signal Processing for Near‐Field Nanoscale Fourier Transform Infrared Spectroscopy. Advanced Functional Materials 2024, 34 (46) https://doi.org/10.1002/adfm.202406643
    32. Jonathan M. Larson, Andrew Dopilka, Robert Kostecki. Infrared nanoimaging and nanospectroscopy of electrochemical energy storage materials and interfaces. Current Opinion in Electrochemistry 2024, 47 , 101548. https://doi.org/10.1016/j.coelec.2024.101548
    33. Lukas Wehmeier, Suheng Xu, Rafael A. Mayer, Brian Vermilyea, Makoto Tsuneto, Michael Dapolito, Rui Pu, Zengyi Du, Xinzhong Chen, Wenjun Zheng, Ran Jing, Zijian Zhou, Kenji Watanabe, Takashi Taniguchi, Adrian Gozar, Qiang Li, Alexey B. Kuzmenko, G. Lawrence Carr, Xu Du, Michael M. Fogler, D. N. Basov, Mengkun Liu. Landau-phonon polaritons in Dirac heterostructures. Science Advances 2024, 10 (37) https://doi.org/10.1126/sciadv.adp3487
    34. Lukas Wehmeier, Shang‐Jie Yu, Xinzhong Chen, Rafael A. Mayer, Langlang Xiong, Helen Yao, Yue Jiang, Jenny Hu, Eli Janzen, James H. Edgar, Xiaolin Zheng, Tony F. Heinz, D. N. Basov, Christopher C. Homes, Guangwei Hu, G. Lawrence Carr, Mengkun Liu, Jonathan A. Fan. Tunable Phonon Polariton Hybridization in a Van der Waals Hetero‐Bicrystal. Advanced Materials 2024, 36 (33) https://doi.org/10.1002/adma.202401349
    35. Cong Su, Eli Janzen, Mingze He, Chi Li, Alex Zettl, Joshua D. Caldwell, James H. Edgar, Igor Aharonovich. Fundamentals and emerging optical applications of hexagonal boron nitride: a tutorial. Advances in Optics and Photonics 2024, 16 (2) , 229. https://doi.org/10.1364/AOP.502922
    36. Youning Gong, Jiaqi Zhu, Yanyu Zhao, Junrong Zhang, Tao Hou, Shan Zhu, Zhichao Zhou, Jun Liang, Delong Li, Kedi Wu, Huanyang Chen, Kai Zhang, Qiaoliang Bao, Yupeng Zhang, Guo Ping Wang. Dispersion Engineering of In‐Plane Anisotropic Phonon Polaritons in hBN/Te van der Waals Heterostructures. Advanced Optical Materials 2024, 12 (14) https://doi.org/10.1002/adom.202302804
    37. Jeremy F. Schultz, Sergiy Krylyuk, Jeffrey J. Schwartz, Albert V. Davydov, Andrea Centrone. Isotopic effects on in-plane hyperbolic phonon polaritons in MoO 3. Nanophotonics 2024, 13 (9) , 1581-1592. https://doi.org/10.1515/nanoph-2023-0717
    38. Gonzalo Álvarez Pérez. Infrared Permittivity of $$\alpha $$-MoO$${ }_{3}$$ from Near- and Far-Field Correlative Studies. 2024, 117-140. https://doi.org/10.1007/978-3-031-75767-9_4
    39. Shuo Chen, Xiaohu Wu, Ceji Fu, , . Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport. Opto-Electronic Science 2024, 3 (6) , 240002-240002. https://doi.org/10.29026/oes.2024.240002
    40. Yi-Xi Zhou, Zhi-Peng Li, Jia-Ning Chen, , , , , . Research advances in polaritonics based on near-field optical imaging technique. Acta Physica Sinica 2024, 73 (8) , 080701. https://doi.org/10.7498/aps.73.20232001
    41. Runkun Chen, Peining Li. Guided spiraling phonon polaritons in rolled one-dimensional MoO 3 nanotubes. Optics Express 2023, 31 (26) , 42995. https://doi.org/10.1364/OE.502399
    42. Alaric Bergeron, Clément Gradziel, Richard Leonelli, Sébastien Francoeur. Probing hyperbolic and surface phonon-polaritons in 2D materials using Raman spectroscopy. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-39809-3
    43. M. Chen, Y. Zhong, E. Harris, J. Li, Z. Zheng, H. Chen, J.-S. Wu, P. Jarillo-Herrero, Q. Ma, J. H. Edgar, X. Lin, S. Dai. Van der Waals isotope heterostructures for engineering phonon polariton dispersions. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40449-w
    44. Mingze He, Joseph R. Matson, Mingyu Yu, Angela Cleri, Sai S. Sunku, Eli Janzen, Stefan Mastel, Thomas G. Folland, James H. Edgar, D. N. Basov, Jon-Paul Maria, Stephanie Law, Joshua D. Caldwell. Polariton design and modulation via van der Waals/doped semiconductor heterostructures. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43414-9
    45. Xinzhong Chen, Suheng Xu, Sara Shabani, Yueqi Zhao, Matthew Fu, Andrew J. Millis, Michael M. Fogler, Abhay N. Pasupathy, Mengkun Liu, D. N. Basov. Machine Learning for Optical Scanning Probe Nanoscopy. Advanced Materials 2023, 35 (34) https://doi.org/10.1002/adma.202109171
    46. Delong Li, Na Han, Hao Chen, Jiaqi Zhu, Youning Gong, Qiaoliang Bao, Weiliang Wang, Yupeng Zhang, Guo Ping Wang. Manipulating the Self‐Trapped Excitons in the Lead Iodide/Hexagonal Boron Nitride van der Waals Heterostructures. Laser & Photonics Reviews 2023, 17 (8) https://doi.org/10.1002/lpor.202300309
    47. Yongqian Zhao, Ge Li, Yuyu Yao, Jiancui Chen, Mengfei Xue, Lihong Bao, Kuijuan Jin, Chen Ge, Jianing Chen. Tunable heterostructural prism for planar polaritonic switch. Science Bulletin 2023, 68 (16) , 1757-1763. https://doi.org/10.1016/j.scib.2023.07.024
    48. Haoran Lv, Yihua Bai, Qing Zhang, Yuanjie Yang. Flatband polaritonic router in twisted bilayer van der Waals materials. Optics Letters 2023, 48 (15) , 4073. https://doi.org/10.1364/OL.496630
    49. Kun Wang, Hua Long, Nan Deng, Meng Yuan, Bing Wang, Kai Wang, Peixiang Lu. Enhanced efficiency of launching hyperbolic phonon polaritons in stacked α-MoO 3 flakes. Optics Express 2023, 31 (13) , 20750. https://doi.org/10.1364/OE.493972
    50. Nikolai Christian Passler, Xiang Ni, Giulia Carini, Dmitry N. Chigrin, Andrea Alù, Alexander Paarmann. Layer-resolved resonance intensity of evanescent polariton modes in anisotropic multilayers. Physical Review B 2023, 107 (23) https://doi.org/10.1103/PhysRevB.107.235426
    51. Xiangdong Guo, Wei Lyu, Tinghan Chen, Yang Luo, Chenchen Wu, Bei Yang, Zhipei Sun, F. Javier García de Abajo, Xiaoxia Yang, Qing Dai. Polaritons in Van der Waals Heterostructures. Advanced Materials 2023, 35 (17) https://doi.org/10.1002/adma.202201856
    52. Angela J. Cleri, J. Ryan Nolen, Konstantin G. Wirth, Mingze He, Evan L. Runnerstrom, Kyle P. Kelley, Joshua Nordlander, Thomas Taubner, Thomas G. Folland, Jon‐Paul Maria, Joshua D. Caldwell. Tunable, Homoepitaxial Hyperbolic Metamaterials Enabled by High Mobility CdO. Advanced Optical Materials 2023, 11 (1) https://doi.org/10.1002/adom.202202137
    53. Ryan A. Kowalski, Joshua Ryan Nolen, Georgios Varnavides, Sebastian Mika Silva, Jack E. Allen, Christopher J. Ciccarino, Dominik M. Juraschek, Stephanie Law, Prineha Narang, Joshua D. Caldwell. Mid‐ to Far‐Infrared Anisotropic Dielectric Function of HfS 2 and HfSe 2. Advanced Optical Materials 2022, 10 (23) https://doi.org/10.1002/adom.202200933
    54. J. Ryan Nolen, Angela Cleri, Kyle Kelley, Evan L. Runnerstrom, Josh Nordlander, Thomas G. Folland, Jon-Paul Maria, Joshua D. Caldwell. Engineering the Dispersion of Surface Plasmon Polariton/Epsilon‐Near‐Zero Modes through Modal Separation and Optical Confinement. Advanced Photonics Research 2022, 3 (12) https://doi.org/10.1002/adpr.202200146
    55. Neda Alsadat Aghamiri, Guangwei Hu, Alireza Fali, Zhen Zhang, Jiahan Li, Sivacarendran Balendhran, Sumeet Walia, Sharath Sriram, James H. Edgar, Shriram Ramanathan, Andrea Alù, Yohannes Abate. Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32287-z
    56. Sandip Mondal, Zhen Zhang, A. N. M. Nafiul Islam, Robert Andrawis, Sampath Gamage, Neda Alsadat Aghamiri, Qi Wang, Hua Zhou, Fanny Rodolakis, Richard Tran, Jasleen Kaur, Chi Chen, Shyue Ping Ong, Abhronil Sengupta, Yohannes Abate, Kaushik Roy, Shriram Ramanathan. All‐Electric Nonassociative Learning in Nickel Oxide. Advanced Intelligent Systems 2022, 4 (10) https://doi.org/10.1002/aisy.202200069
    57. A. Babar Shabbir, B. Weiliang Ma, C. Qiaoliang Bao. Anisotropic Polaritons in Layered Two-dimensional (2D) Materials. 2022, 53-75. https://doi.org/10.1039/9781839162909-00053
    58. Yingjie Wu, Jiahua Duan, Weiliang Ma, Qingdong Ou, Peining Li, Pablo Alonso-González, Joshua D. Caldwell, Qiaoliang Bao. Manipulating polaritons at the extreme scale in van der Waals materials. Nature Reviews Physics 2022, 4 (9) , 578-594. https://doi.org/10.1038/s42254-022-00472-0
    59. Sergey G. Menabde, Sergejs Boroviks, Jongtae Ahn, Jacob T. Heiden, Kenji Watanabe, Takashi Taniguchi, Tony Low, Do Kyung Hwang, N. Asger Mortensen, Min Seok Jang. Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals. Science Advances 2022, 8 (28) https://doi.org/10.1126/sciadv.abn0627
    60. G. Conrad, C. B. Casper, E. T. Ritchie, J. M. Atkin. Quantitative modeling of near-field interactions incorporating polaritonic and electrostatic effects. Optics Express 2022, 30 (7) , 11619. https://doi.org/10.1364/OE.442305
    61. Jialiang Shen, Zhiren Zheng, Thao Dinh, Chuanyu Wang, Mingyuan Chen, Pengyu Chen, Qiong Ma, Pablo Jarillo-Herrero, Lixing Kang, Siyuan Dai. Hyperbolic phonon polaritons with positive and negative phase velocities in suspended α -MoO3. Applied Physics Letters 2022, 120 (11) https://doi.org/10.1063/5.0085224
    62. Jiahua Duan, Francisco Javier Alfaro‐Mozaz, Javier Taboada‐Gutiérrez, Irene Dolado, Gonzalo Álvarez‐Pérez, Elena Titova, Andrei Bylinkin, Ana Isabel F. Tresguerres‐Mata, Javier Martín‐Sánchez, Song Liu, James H. Edgar, Denis A. Bandurin, Pablo Jarillo‐Herrero, Rainer Hillenbrand, Alexey Y. Nikitin, Pablo Alonso‐González. Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas. Advanced Materials 2022, 34 (10) https://doi.org/10.1002/adma.202104954
    63. Zebo Zheng, Fengsheng Sun, Ningsheng Xu, Wuchao Huang, Xuexian Chen, Yanlin Ke, Runze Zhan, Huanjun Chen, Shaozhi Deng. Tunable Hyperbolic Phonon Polaritons in a Suspended van der Waals α‐MoO 3 with Gradient Gaps. Advanced Optical Materials 2022, 10 (5) https://doi.org/10.1002/adom.202102057
    64. Xiaowen Li, Hao Xu, Zhengji Wen, Xi Shi, Chenfang Fan, Xiaoyong He, Jiaming Hao, Feng Liu. A Robust Equivalent Circuit Model for Magnetic Polaritons in SiC Grooves. Plasmonics 2021, 16 (6) , 2147-2153. https://doi.org/10.1007/s11468-021-01475-w
    65. Andreas Heßler, Sophia Wahl, Till Leuteritz, Antonios Antonopoulos, Christina Stergianou, Carl-Friedrich Schön, Lukas Naumann, Niklas Eicker, Martin Lewin, Tobias W. W. Maß, Matthias Wuttig, Stefan Linden, Thomas Taubner. In3SbTe2 as a programmable nanophotonics material platform for the infrared. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21175-7
    66. J. D. T. Heneghan, W. M. Dennis. An investigation of the coupling of phonon-polaritons with plasmon-polaritons in hBN/nanopatterned Au layered devices. Journal of Applied Physics 2021, 130 (19) https://doi.org/10.1063/5.0064030
    67. Soumyabrata Roy, Xiang Zhang, Anand B. Puthirath, Ashokkumar Meiyazhagan, Sohini Bhattacharyya, Muhammad M. Rahman, Ganguli Babu, Sandhya Susarla, Sreehari K. Saju, Mai Kim Tran, Lucas M. Sassi, M. A. S. R. Saadi, Jiawei Lai, Onur Sahin, Seyed Mohammad Sajadi, Bhuvaneswari Dharmarajan, Devashish Salpekar, Nithya Chakingal, Abhijit Baburaj, Xinting Shuai, Aparna Adumbumkulath, Kristen A. Miller, Jessica M. Gayle, Alec Ajnsztajn, Thibeorchews Prasankumar, Vijay Vedhan Jayanthi Harikrishnan, Ved Ojha, Harikishan Kannan, Ali Zein Khater, Zhenwei Zhu, Sathvik Ajay Iyengar, Pedro Alves da Silva Autreto, Eliezer Fernando Oliveira, Guanhui Gao, A. Glen Birdwell, Mahesh R. Neupane, Tony G. Ivanov, Jaime Taha‐Tijerina, Ram Manohar Yadav, Sivaram Arepalli, Robert Vajtai, Pulickel M. Ajayan. Structure, Properties and Applications of Two‐Dimensional Hexagonal Boron Nitride. Advanced Materials 2021, 33 (44) https://doi.org/10.1002/adma.202101589
    68. Yi-Cheng Lu, Liang-Cheng Pan, Yao-Wei Lei, Kun-Yi Andrew Lin, Hongta Yang. Clairvoyant Melon Maturity Detection Enabled by Doctor-Blade-Coated Photonic Crystals. Sensors 2021, 21 (21) , 7046. https://doi.org/10.3390/s21217046
    69. Anjali Yadav, Rashmi Kumari, Shailendra K Varshney, Basudev Lahiri. Tunable phonon-plasmon hybridization in α-MoO 3 –graphene based van der Waals heterostructures. Optics Express 2021, 29 (21) , 33171. https://doi.org/10.1364/OE.434993
    70. Andrea Konečná, Jiahan Li, James H. Edgar, F. Javier García de Abajo, Jordan A. Hachtel. Revealing Nanoscale Confinement Effects on Hyperbolic Phonon Polaritons with an Electron Beam. Small 2021, 17 (39) https://doi.org/10.1002/smll.202103404
    71. Jeffrey J. Schwartz, Son T. Le, Sergiy Krylyuk, Curt A. Richter, Albert V. Davydov, Andrea Centrone. Substrate-mediated hyperbolic phonon polaritons in MoO 3. Nanophotonics 2021, 10 (5) , 1517-1527. https://doi.org/10.1515/nanoph-2020-0640
    72. Mingze He, Sami I. Halimi, Thomas G. Folland, Sai S. Sunku, Song Liu, James H. Edgar, D. N. Basov, Sharon M. Weiss, Joshua D. Caldwell. Guided Mid‐IR and Near‐IR Light within a Hybrid Hyperbolic‐Material/Silicon Waveguide Heterostructure. Advanced Materials 2021, 33 (11) https://doi.org/10.1002/adma.202004305
    73. Andrei Bylinkin, Martin Schnell, Marta Autore, Francesco Calavalle, Peining Li, Javier Taboada-Gutièrrez, Song Liu, James H. Edgar, Fèlix Casanova, Luis E. Hueso, Pablo Alonso-Gonzalez, Alexey Y. Nikitin, Rainer Hillenbrand. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nature Photonics 2021, 15 (3) , 197-202. https://doi.org/10.1038/s41566-020-00725-3
    74. Thales V. A. G. de Oliveira, Tobias Nörenberg, Gonzalo Álvarez‐Pérez, Lukas Wehmeier, Javier Taboada‐Gutiérrez, Maximilian Obst, Franz Hempel, Eduardo J. H. Lee, J. Michael Klopf, Ion Errea, Alexey Y. Nikitin, Susanne C. Kehr, Pablo Alonso‐González, Lukas M. Eng. Nanoscale‐Confined Terahertz Polaritons in a van der Waals Crystal. Advanced Materials 2021, 33 (2) https://doi.org/10.1002/adma.202005777
    75. Patricia Aguilar-Merino, Gonzalo Álvarez-Pérez, Javier Taboada-Gutiérrez, Jiahua Duan, Iván Prieto, Luis Manuel Álvarez-Prado, Alexey Y. Nikitin, Javier Martín-Sánchez, Pablo Alonso-González. Extracting the Infrared Permittivity of SiO2 Substrates Locally by Near-Field Imaging of Phonon Polaritons in a van der Waals Crystal. Nanomaterials 2021, 11 (1) , 120. https://doi.org/10.3390/nano11010120
    76. Yingjie Wu, Qingdong Ou, Yuefeng Yin, Yun Li, Weiliang Ma, Wenzhi Yu, Guanyu Liu, Xiaoqiang Cui, Xiaozhi Bao, Jiahua Duan, Gonzalo Álvarez-Pérez, Zhigao Dai, Babar Shabbir, Nikhil Medhekar, Xiangping Li, Chang-Ming Li, Pablo Alonso-González, Qiaoliang Bao. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16459-3
    77. Mingyuan Chen, Xiao Lin, Thao H. Dinh, Zhiren Zheng, Jialiang Shen, Qiong Ma, Hongsheng Chen, Pablo Jarillo-Herrero, Siyuan Dai. Configurable phonon polaritons in twisted α-MoO3. Nature Materials 2020, 19 (12) , 1307-1311. https://doi.org/10.1038/s41563-020-0732-6
    78. Weiliang Ma, Babar Shabbir, Qingdong Ou, Yemin Dong, Huanyang Chen, Peining Li, Xinliang Zhang, Yuerui Lu, Qiaoliang Bao. Anisotropic polaritons in van der Waals materials. InfoMat 2020, 2 (5) , 777-790. https://doi.org/10.1002/inf2.12119
    79. Vyacheslav Semenenko, Mengkun Liu, Vasili Perebeinos. Scattering of Quasistatic Plasmons From One-Dimensional Junctions of Graphene: Transfer Matrices, Fresnel Relations, and Nonlocality. Physical Review Applied 2020, 14 (2) https://doi.org/10.1103/PhysRevApplied.14.024049
    80. Vasilios Karanikolas. Quantum emitter interacting with a h -BN layer in the strong-coupling regime. Physical Review B 2020, 102 (7) https://doi.org/10.1103/PhysRevB.102.075446
    81. Gonzalo Álvarez‐Pérez, Thomas G. Folland, Ion Errea, Javier Taboada‐Gutiérrez, Jiahua Duan, Javier Martín‐Sánchez, Ana I. F. Tresguerres‐Mata, Joseph R. Matson, Andrei Bylinkin, Mingze He, Weiliang Ma, Qiaoliang Bao, José Ignacio Martín, Joshua D. Caldwell, Alexey Y. Nikitin, Pablo Alonso‐González. Infrared Permittivity of the Biaxial van der Waals Semiconductor α‐MoO 3 from Near‐ and Far‐Field Correlative Studies. Advanced Materials 2020, 32 (29) https://doi.org/10.1002/adma.201908176
    82. Patrick Rufangura, Thomas G Folland, Arti Agrawal, Joshua D Caldwell, Francesca Iacopi. Towards low- loss on-chip nanophotonics with coupled graphene and silicon carbide: a review. Journal of Physics: Materials 2020, 3 (3) , 032005. https://doi.org/10.1088/2515-7639/ab9d10
    83. Georg Ramer, Mohit Tuteja, Joseph R. Matson, Marcelo Davanco, Thomas G. Folland, Andrey Kretinin, Takashi Taniguchi, Kenji Watanabe, Kostya S. Novoselov, Joshua D. Caldwell, Andrea Centrone. High- Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures. Nanophotonics 2020, 9 (6) , 1457-1467. https://doi.org/10.1515/nanoph-2020-0048
    84. Benedikt Hauer, Claire E. Marvinney, Martin Lewin, Nadeemullah A. Mahadik, Jennifer K. Hite, Nabil Bassim, Alexander J. Giles, Robert E. Stahlbush, Joshua D. Caldwell, Thomas Taubner. Exploiting Phonon‐Resonant Near‐Field Interaction for the Nanoscale Investigation of Extended Defects. Advanced Functional Materials 2020, 30 (10) https://doi.org/10.1002/adfm.201907357

    Nano Letters

    Cite this: Nano Lett. 2019, 19, 11, 7725–7734
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b02651
    Published October 25, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    3990

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.