ACS Publications. Most Trusted. Most Cited. Most Read
Ferroelectric Domain Walls in PbTiO3 Are Effective Regulators of Heat Flow at Room Temperature
My Activity
    Letter

    Ferroelectric Domain Walls in PbTiO3 Are Effective Regulators of Heat Flow at Room Temperature
    Click to copy article linkArticle link copied!

    • Eric Langenberg*
      Eric Langenberg
      Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
      Centro Singular de Investigación en Quı́mica Biolıoxica e Materiais Moleculares (CiQUS), Departmento de Quı́mica-Fı́sica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
      *E-mail: [email protected]
    • Dipanjan Saha
      Dipanjan Saha
      Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    • Megan E. Holtz
      Megan E. Holtz
      Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
      School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
    • Jian-Jun Wang
      Jian-Jun Wang
      Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
    • David Bugallo
      David Bugallo
      Centro Singular de Investigación en Quı́mica Biolıoxica e Materiais Moleculares (CiQUS), Departmento de Quı́mica-Fı́sica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
    • Elias Ferreiro-Vila
      Elias Ferreiro-Vila
      Centro Singular de Investigación en Quı́mica Biolıoxica e Materiais Moleculares (CiQUS), Departmento de Quı́mica-Fı́sica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
    • Hanjong Paik
      Hanjong Paik
      Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
      More by Hanjong Paik
    • Isabelle Hanke
      Isabelle Hanke
      Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany
    • Steffen Ganschow
      Steffen Ganschow
      Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany
    • David A. Muller
      David A. Muller
      School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
    • Long-Qing Chen
      Long-Qing Chen
      Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
    • Gustau Catalan
      Gustau Catalan
      CSIC, Barcelona Institute of Science and Technology, Campus Universitat Autònoma de Barcelona, Catalan Institute of Nanoscience and Nanotechnology (ICN2), 08193 Bellaterra, Spain
    • Neus Domingo
      Neus Domingo
      CSIC, Barcelona Institute of Science and Technology, Campus Universitat Autònoma de Barcelona, Catalan Institute of Nanoscience and Nanotechnology (ICN2), 08193 Bellaterra, Spain
      More by Neus Domingo
    • Jonathan Malen
      Jonathan Malen
      Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    • Darrell G. Schlom*
      Darrell G. Schlom
      Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
      Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
      *E-mail: [email protected]
    • Francisco Rivadulla*
      Francisco Rivadulla
      Centro Singular de Investigación en Quı́mica Biolıoxica e Materiais Moleculares (CiQUS), Departmento de Quı́mica-Fı́sica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2019, 19, 11, 7901–7907
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b02991
    Published October 9, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Achieving efficient spatial modulation of phonon transmission is an essential step on the path to phononic circuits using “phonon currents”. With their intrinsic and reconfigurable interfaces, domain walls (DWs), ferroelectrics are alluring candidates to be harnessed as dynamic heat modulators. This paper reports the thermal conductivity of single-crystal PbTiO3 thin films over a wide variety of epitaxial-strain-engineered ferroelectric domain configurations. The phonon transport is proved to be strongly affected by the density and type of DWs, achieving a 61% reduction of the room-temperature thermal conductivity compared to the single-domain scenario. The thermal resistance across the ferroelectric DWs is obtained, revealing a very high value (≈5.0 × 10–9 K m2 W–1), comparable to grain boundaries in oxides, explaining the strong modulation of the thermal conductivity in PbTiO3. This low thermal conductance of the DWs is ascribed to the structural mismatch and polarization gradient found between the different types of domains in the PbTiO3 films, resulting in a structural inhomogeneity that extends several unit cells around the DWs. These findings demonstrate the potential of ferroelectric DWs as efficient regulators of heat flow in one single material, overcoming the complexity of multilayers systems and the uncontrolled distribution of grain boundaries, paving the way for applications in phononics.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.9b02991.

    • Details of the experimental and theoretical methods employed in this work. Additional information related to the epitaxial growth of PbTiO3 thin films and their structural characterization, the piezoresponse force microscopy experiments, the FDTR experimental set up, measurements, and analysis, and the details of the phase-field simulations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 59 publications.

    1. Duncan T. L. Alexander, Hugo Meley, Michael Marcus Schmitt, Bernat Mundet, Jean-Marc Triscone, Philippe Ghosez, Stefano Gariglio. Engineering Symmetry Breaking Interfaces by Nanoscale Structural-Energetics in Orthorhombic Perovskite Thin Films. ACS Nano 2025, 19 (10) , 10126-10137. https://doi.org/10.1021/acsnano.4c17020
    2. Denis Alikin, Maria J. Pereira, Alexander Abramov, Elena Pashnina, Maria Chuvakova, Nickolay V. Lavrik, Wenjie Xie, Anke Weidenkaff, Andrei L. Kholkin, Andrei Kovalevsky, Alexander Tselev. Nanoscale Imaging and Measurements of Grain Boundary Thermal Resistance in Ceramics with Scanning Thermal Wave Microscopy. ACS Applied Materials & Interfaces 2024, 16 (32) , 42917-42930. https://doi.org/10.1021/acsami.4c08085
    3. Víctor Álvarez-Martínez, Rafael Ramos, Víctor Leborán, Alexandros Sarantopoulos, Regina Dittmann, Francisco Rivadulla. Interfacial Thermal Resistive Switching in (Pt,Cr)/SrTiO3 Devices. ACS Applied Materials & Interfaces 2024, 16 (12) , 15043-15049. https://doi.org/10.1021/acsami.3c19285
    4. Yatian Zhang, Thomas Frauenheim, Traian Dumitrică, Zhen Tong. Theoretical Insights into Thermal Conductivity Variations in Various Phases of the Cu2Te Multiphase Transition Material. ACS Applied Energy Materials 2023, 6 (18) , 9657-9662. https://doi.org/10.1021/acsaem.3c01804
    5. Chenhan Liu, Zuhuang Chen, Chao Wu, Jing Qi, Menglong Hao, Ping Lu, Yunfei Chen. Large Thermal Conductivity Switching in Ferroelectrics by Electric Field-Triggered Crystal Symmetry Engineering. ACS Applied Materials & Interfaces 2022, 14 (41) , 46716-46725. https://doi.org/10.1021/acsami.2c11530
    6. D. Bugallo, E. Langenberg, E. Carbó-Argibay, Noa Varela Dominguez, A. O. Fumega, V. Pardo, Irene Lucas, Luis Morellón, F. Rivadulla. Tuning Coherent-Phonon Heat Transport in LaCoO3/SrTiO3 Superlattices. The Journal of Physical Chemistry Letters 2021, 12 (49) , 11878-11885. https://doi.org/10.1021/acs.jpclett.1c03418
    7. David Bugallo, Eric Langenberg, Elias Ferreiro-Vila, Eva H. Smith, Christina Stefani, Xavier Batlle, Gustau Catalan, Neus Domingo, Darrell G. Schlom, Francisco Rivadulla. Deconvolution of Phonon Scattering by Ferroelectric Domain Walls and Point Defects in a PbTiO3 Thin Film Deposited in a Composition-Spread Geometry. ACS Applied Materials & Interfaces 2021, 13 (38) , 45679-45685. https://doi.org/10.1021/acsami.1c08758
    8. Chenhan Liu, Ping Lu, ZhongZhu Gu, Juekuan Yang, Yunfei Chen. Bidirectional Tuning of Thermal Conductivity in Ferroelectric Materials Using E-Controlled Hysteresis Characteristic Property. The Journal of Physical Chemistry C 2020, 124 (48) , 26144-26152. https://doi.org/10.1021/acs.jpcc.0c08471
    9. Eric Langenberg, Hanjong Paik, Eva H. Smith, Hari P. Nair, Isabelle Hanke, Steffen Ganschow, Gustau Catalan, Neus Domingo, Darrell G. Schlom. Strain-Engineered Ferroelastic Structures in PbTiO3 Films and Their Control by Electric Fields. ACS Applied Materials & Interfaces 2020, 12 (18) , 20691-20703. https://doi.org/10.1021/acsami.0c04381
    10. S. S. Luo, S. W. Hu, D. L. Shan, Y. Y. Liu, C. H. Lei, K. Pan. Modulation of flux-closure polar state for enhanced storage unit and thermal conductivity via dual-probe excitation. Journal of Applied Physics 2025, 137 (1) https://doi.org/10.1063/5.0252929
    11. Noa Varela‐Domínguez, Marcel S. Claro, Carlos Vázquez‐Vázquez, Manuel Arturo López‐Quintela, Francisco Rivadulla. Electric‐Field Control of the Local Thermal Conductivity in Charge Transfer Oxides. Advanced Materials 2025, 37 (3) https://doi.org/10.1002/adma.202413045
    12. In Hyeok Choi, Seung Gyo Jeong, Do‐Gyeom Jeong, Ambrose Seo, Woo Seok Choi, Jong Seok Lee. Engineering the Coherent Phonon Transport in Polar Ferromagnetic Oxide Superlattices. Advanced Science 2025, 12 (2) https://doi.org/10.1002/advs.202407382
    13. Umar Bashir, Michael Rüsing, Detlef Klimm, Roberts Blukis, Boris Koppitz, Lukas M. Eng, Matthias Bickermann, Steffen Ganschow. Thermal conductivity in solid solutions of lithium niobate tantalate single crystals from 300 K up to 1300 K. Journal of Alloys and Compounds 2024, 1008 , 176549. https://doi.org/10.1016/j.jallcom.2024.176549
    14. Martí Raya-Moreno, Claudio Cazorla, Enric Canadell, Riccardo Rurali. Phonon transport manipulation in TiSe2 via reversible charge density wave melting. npj 2D Materials and Applications 2024, 8 (1) https://doi.org/10.1038/s41699-024-00501-9
    15. Minjun Ai, Yuzhu Song, Feixiang Long, Yuanpeng Zhang, Ke An, Dunji Yu, Yan Chen, Yuki Sakai, Masahito Ikeda, Kazuki Takahashi, Masaki Azuma, Naike Shi, Chang Zhou, Jun Chen. Significantly Promoting the Thermal Conductivity and Machinability of Negative Thermal Expansion Alloy via In Situ Precipitation of Copper Networks. Advanced Science 2024, 11 (40) https://doi.org/10.1002/advs.202404838
    16. Jian Guo, Haoran Yu, Mingqian Yuan, Xue-Jun Yan, Shan-Tao Zhang. Near room-temperature large negative electrocaloric effect accompanied by giant thermal switching ratio in Zr-rich lead zirconate titanate. Applied Physics Letters 2024, 125 (10) https://doi.org/10.1063/5.0228865
    17. Lucile Féger, Carlos Escorihuela-Sayalero, Jean-Michel Rampnoux, Kyriaki Kontou, Micka Bah, Jorge Íñiguez-González, Claudio Cazorla, Isabelle Monot-Laffez, Sarah Douri, Stéphane Grauby, Riccardo Rurali, Stefan Dilhaire, Séverine Gomès, Guillaume F. Nataf. Lead-free room-temperature ferroelectric thermal conductivity switch using anisotropies in thermal conductivities. Physical Review Materials 2024, 8 (9) https://doi.org/10.1103/PhysRevMaterials.8.094403
    18. Hao-Bo Li, Zhiping Bian, Mitsuki Yoshimura, Kohei Shimoyama, Chengchao Zhong, Keiji Shimoda, Azusa N. Hattori, Kunihiko Yamauchi, Ikutaro Hamada, Hiromichi Ohta, Hidekazu Tanaka. Wide-range thermal conductivity modulation based on protonated nickelate perovskite oxides. Applied Physics Letters 2024, 124 (19) https://doi.org/10.1063/5.0201268
    19. Chenhan Liu, Chao Wu, Yunshan Zhao, Zuhuang Chen, Tian-Ling Ren, Yunfei Chen, Gang Zhang. Actively and reversibly controlling thermal conductivity in solid materials. Physics Reports 2024, 1058 , 1-32. https://doi.org/10.1016/j.physrep.2024.01.001
    20. Roshan Sameer Annam, Swapneel Danayat, Avinash Nayal, Fatema Tarannum, Matthew Chrysler, Joseph Ngai, Jiechao Jiang, Aaron J. Schmidt, Jivtesh Garg. Thickness dependent thermal conductivity of strontium titanate thin films on silicon substrate. Journal of Vacuum Science & Technology A 2024, 42 (2) https://doi.org/10.1116/6.0003320
    21. Jingtong Zhang, Chengwen Bin, Yunhong Zhao, Huazhang Zhang, Sheng Sun, Peng Han, Chang Liu, Tao Xu, Gang Tang, Tong-Yi Zhang, Jie Wang. Quantification of switchable thermal conductivity of ferroelectric materials through second-principles calculation. Materials Today Physics 2024, 41 , 101347. https://doi.org/10.1016/j.mtphys.2024.101347
    22. Ayberk Özden, Felix Drechsler, Jens Kortus, Marin Alexe, Cameliu Himcinschi. Probing the local thermal conductivity of single- and multidomain ferroelastic variants of BiFeO 3 by Raman thermometry. Physical Review Materials 2024, 8 (1) https://doi.org/10.1103/PhysRevMaterials.8.014407
    23. Chenhan Liu, Yangyang Si, Hua Zhang, Chao Wu, Shiqing Deng, Yongqi Dong, Yijie Li, Meng Zhuo, Ningbo Fan, Bin Xu, Ping Lu, Lifa Zhang, Xi Lin, Xingjun Liu, Juekuan Yang, Zhenlin Luo, Sujit Das, Laurent Bellaiche, Yunfei Chen, Zuhuang Chen. Low voltage–driven high-performance thermal switching in antiferroelectric PbZrO 3 thin films. Science 2023, 382 (6676) , 1265-1269. https://doi.org/10.1126/science.adj9669
    24. Yingying Zhang, William M. Postiglione, Rui Xie, Chi Zhang, Hao Zhou, Vipul Chaturvedi, Kei Heltemes, Hua Zhou, Tianli Feng, Chris Leighton, Xiaojia Wang. Wide-range continuous tuning of the thermal conductivity of La0.5Sr0.5CoO3-δ films via room-temperature ion-gel gating. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38312-z
    25. P. Limelette, M. El Kamily, H. Aramberri, F. Giovannelli, M. Royo, R. Rurali, I. Monot-Laffez, J. Íñiguez, G. F. Nataf. Influence of ferroelastic domain walls on thermal conductivity. Physical Review B 2023, 108 (14) https://doi.org/10.1103/PhysRevB.108.144104
    26. Shuan Wang, Chunhua Zeng, Guimei Zhu, Hua Wang, Baowen Li. Controlling heat ratchet and flow reversal with simple networks. Physical Review Research 2023, 5 (4) https://doi.org/10.1103/PhysRevResearch.5.043009
    27. Megan E Holtz, Elliot Padgett, Aaron C Johnston-Peck, Igor Levin, David A Muller, Andrew A Herzing. Mapping Polar Distortions using Nanobeam Electron Diffraction and a Cepstral Approach. Microscopy and Microanalysis 2023, 29 (4) , 1422-1435. https://doi.org/10.1093/micmic/ozad070
    28. Xiaomei He, Xiangdong Ding, Jun Sun, Guillaume F. Nataf, Ekhard K. H. Salje. Elastic softening and hardening at intersections between twin walls and surfaces in ferroelastic materials. APL Materials 2023, 11 (7) https://doi.org/10.1063/5.0159836
    29. Alexei Boulbitch, Alexander L. Korzhenevskii. Self-oscillatory instability of the driven phase front propagation induced by liberation of latent heat. Physical Review E 2023, 108 (1) https://doi.org/10.1103/PhysRevE.108.014114
    30. Ankit Negi, Hwang Pill Kim, Zilong Hua, Anastasia Timofeeva, Xuanyi Zhang, Yong Zhu, Kara Peters, Divine Kumah, Xiaoning Jiang, Jun Liu. Ferroelectric Domain Wall Engineering Enables Thermal Modulation in PMN–PT Single Crystals. Advanced Materials 2023, 35 (22) https://doi.org/10.1002/adma.202211286
    31. Noa Varela-Domínguez, Carlos López-Bueno, Alejandro López-Moreno, Marcel S. Claro, Gustavo Rama, Víctor Leborán, María del Carmen Giménez-López, Francisco Rivadulla. Light-induced bi-directional switching of thermal conductivity in azobenzene-doped liquid crystal mesophases. Journal of Materials Chemistry C 2023, 11 (14) , 4588-4594. https://doi.org/10.1039/D3TC00099K
    32. Yu Pang, Yongheng Li, Ziyan Gao, Xin Qian, Xueyun Wang, Jiawang Hong, Puqing Jiang. Thermal transport manipulated by vortex domain walls in bulk h-ErMnO3. Materials Today Physics 2023, 31 , 100972. https://doi.org/10.1016/j.mtphys.2023.100972
    33. Shaodong Zhang, Shuangru Li, Lei Wei, Huadi Zhang, Xuping Wang, Bing Liu, Yuanyuan Zhang, Rui Zhang, Chengcheng Qiu. Wide-Temperature Tunable Phonon Thermal Switch Based on Ferroelectric Domain Walls of Tetragonal KTN Single Crystal. Nanomaterials 2023, 13 (3) , 376. https://doi.org/10.3390/nano13030376
    34. Chao Wu, Yunshan Zhao, Gang Zhang, Chenhan Liu. Giant thermal switching in ferromagnetic VSe 2 with programmable switching temperature. Nanoscale Horizons 2023, 8 (2) , 202-210. https://doi.org/10.1039/D2NH00429A
    35. Hongyi Ouyang, Yuanqing Gu, Zhibin Gao, Lei Hu, Zhen Zhang, Jie Ren, Baowen Li, Jun Sun, Yan Chen, Xiangdong Ding. Kirigami-Inspired Thermal Regulator. Physical Review Applied 2023, 19 (1) https://doi.org/10.1103/PhysRevApplied.19.L011001
    36. Kiumars Aryana, John A. Tomko, Ran Gao, Eric R. Hoglund, Takanori Mimura, Sara Makarem, Alejandro Salanova, Md Shafkat Bin Hoque, Thomas W. Pfeifer, David H. Olson, Jeffrey L. Braun, Joyeeta Nag, John C. Read, James M. Howe, Elizabeth J. Opila, Lane W. Martin, Jon F. Ihlefeld, Patrick E. Hopkins. Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO3). Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29023-y
    37. Ya-Fei Ding, Gui-Mei Zhu, Xiang-Ying Shen, Xue Bai, Bao-Wen Li. Advances of phononics in 2012–2022. Chinese Physics B 2022, 31 (12) , 126301. https://doi.org/10.1088/1674-1056/ac935d
    38. Mojca Otonicar, Mirela Dragomir, Tadej Rojac. Dynamics of domain walls in ferroelectrics and relaxors. Journal of the American Ceramic Society 2022, 105 (11) , 6479-6507. https://doi.org/10.1111/jace.18623
    39. David Pesquera, Abel Fernández, Ekaterina Khestanova, Lane W Martin. Freestanding complex-oxide membranes. Journal of Physics: Condensed Matter 2022, 34 (38) , 383001. https://doi.org/10.1088/1361-648X/ac7dd5
    40. Ping Tang, Ryo Iguchi, Ken-ichi Uchida, Gerrit E. W. Bauer. Excitations of the ferroelectric order. Physical Review B 2022, 106 (8) https://doi.org/10.1103/PhysRevB.106.L081105
    41. Ruifeng Wu, Mingsheng Ma, Su Zhang, Pengjun Zhao, Kai Li, Qing Zhao, Aimin Chang, Bo Zhang. Enhanced linearity of CaCu3Ti4O12 by changing energy band structure induced by Fe3+ doping for high temperature thermistor application. Applied Physics Letters 2022, 121 (3) https://doi.org/10.1063/5.0096124
    42. Jan Schultheiß, Tadej Rojac, Dennis Meier. Unveiling Alternating Current Electronic Properties at Ferroelectric Domain Walls. Advanced Electronic Materials 2022, 8 (6) https://doi.org/10.1002/aelm.202100996
    43. H. Zhang, Y.P. Feng, Y.J. Wang, Y.L. Tang, Y.L. Zhu, X.L. Ma. Strain phase diagram and physical properties of (110)-oriented PbTiO3 thin films by phase-field simulations. Acta Materialia 2022, 228 , 117761. https://doi.org/10.1016/j.actamat.2022.117761
    44. Hugh T. Philipp, Mark W. Tate, Katherine S. Shanks, Luigi Mele, Maurice Peemen, Pleun Dona, Reinout Hartong, Gerard van Veen, Yu-Tsun Shao, Zhen Chen, Julia Thom-Levy, David A. Muller, Sol M. Gruner. Very-High Dynamic Range, 10,000 Frames/Second Pixel Array Detector for Electron Microscopy. Microscopy and Microanalysis 2022, 28 (2) , 425-440. https://doi.org/10.1017/S1431927622000174
    45. Thomas Linker, Ken-ichi Nomura, Anikeya Aditya, Shogo Fukshima, Rajiv K. Kalia, Aravind Krishnamoorthy, Aiichiro Nakano, Pankaj Rajak, Kohei Shimmura, Fuyuki Shimojo, Priya Vashishta. Exploring far-from-equilibrium ultrafast polarization control in ferroelectric oxides with excited-state neural network quantum molecular dynamics. Science Advances 2022, 8 (12) https://doi.org/10.1126/sciadv.abk2625
    46. Pankaj Sharma, Theodore S. Moise, Luigi Colombo, Jan Seidel. Roadmap for Ferroelectric Domain Wall Nanoelectronics. Advanced Functional Materials 2022, 32 (10) https://doi.org/10.1002/adfm.202110263
    47. Dennis Meier, Sverre M. Selbach. Ferroelectric domain walls for nanotechnology. Nature Reviews Materials 2022, 7 (3) , 157-173. https://doi.org/10.1038/s41578-021-00375-z
    48. Claudio Cazorla, Riccardo Rurali. Dynamical tuning of the thermal conductivity via magnetophononic effects. Physical Review B 2022, 105 (10) https://doi.org/10.1103/PhysRevB.105.104401
    49. Yipeng Zang, Chen Di, Zhiming Geng, Xuejun Yan, Dianxiang Ji, Ningchong Zheng, Xingyu Jiang, Hanyu Fu, Jianjun Wang, Wei Guo, Haoying Sun, Lu Han, Yunlei Zhou, Zhengbin Gu, Desheng Kong, Hugo Aramberri, Claudio Cazorla, Jorge Íñiguez, Riccardo Rurali, Longqing Chen, Jian Zhou, Di Wu, Minghui Lu, Yuefeng Nie, Yanfeng Chen, Xiaoqing Pan. Giant Thermal Transport Tuning at a Metal/Ferroelectric Interface. Advanced Materials 2022, 34 (3) https://doi.org/10.1002/adma.202105778
    50. Christina Stefani, Eric Langenberg, Kumara Cordero-Edwards, Darrell G. Schlom, Gustau Catalan, Neus Domingo. Mechanical reading of ferroelectric polarization. Journal of Applied Physics 2021, 130 (7) https://doi.org/10.1063/5.0059930
    51. P.M. Visakh, B. Raneesh. Nanostructured Multiferroics: Current Trends and Future Prospects. 2021, 1-22. https://doi.org/10.1002/9783527809967.ch1
    52. Piotr Graczyk, Emerson Coy. Single‐Phase Multiferroics. 2021, 23-50. https://doi.org/10.1002/9783527809967.ch2
    53. Jian‐Jun Wang, Tian‐Nan Yang, Bo Wang, Mark S. Rzchowski, Chang‐Beom Eom, Long‐Qing Chen. Strain‐Induced Interlayer Parallel‐to‐Antiparallel Magnetic Transitions of Twisted Bilayers. Advanced Theory and Simulations 2021, 4 (3) https://doi.org/10.1002/adts.202000215
    54. Shanquan Chen, Shuai Yuan, Zhipeng Hou, Yunlong Tang, Jinping Zhang, Tao Wang, Kang Li, Weiwei Zhao, Xingjun Liu, Lang Chen, Lane W. Martin, Zuhuang Chen. Recent Progress on Topological Structures in Ferroic Thin Films and Heterostructures. Advanced Materials 2021, 33 (6) https://doi.org/10.1002/adma.202000857
    55. Christina Stefani, Louis Ponet, Konstantin Shapovalov, Peng Chen, Eric Langenberg, Darrell G. Schlom, Sergey Artyukhin, Massimiliano Stengel, Neus Domingo, Gustau Catalan. Mechanical Softness of Ferroelectric 180 ° Domain Walls. Physical Review X 2020, 10 (4) https://doi.org/10.1103/PhysRevX.10.041001
    56. X.W. Guo, Y.J. Wang, H. Zhang, Y.L. Tang, Y.L. Zhu, X.L. Ma. Misfit strain-temperature phase diagram of multi-domain structures in (111)-oriented ferroelectric PbTiO3 films. Acta Materialia 2020, 196 , 539-548. https://doi.org/10.1016/j.actamat.2020.06.053
    57. Elliot Padgett, Megan E. Holtz, Paul Cueva, Yu-Tsun Shao, Eric Langenberg, Darrell G. Schlom, David A. Muller. The exit-wave power-cepstrum transform for scanning nanobeam electron diffraction: robust strain mapping at subnanometer resolution and subpicometer precision. Ultramicroscopy 2020, 214 , 112994. https://doi.org/10.1016/j.ultramic.2020.112994
    58. Jian-Jun Wang, Yuan-Jie Su, Bo Wang, Jun Ouyang, Yu-Hang Ren, Long-Qing Chen. Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors. Nano Energy 2020, 72 , 104665. https://doi.org/10.1016/j.nanoen.2020.104665
    59. Alexandros Sarantopoulos, Dipanjan Saha, Wee-Liat Ong, César Magén, Jonathan A. Malen, Francisco Rivadulla. Reduction of thermal conductivity in ferroelectric SrTiO 3 thin films. Physical Review Materials 2020, 4 (5) https://doi.org/10.1103/PhysRevMaterials.4.054002

    Nano Letters

    Cite this: Nano Lett. 2019, 19, 11, 7901–7907
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b02991
    Published October 9, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    2905

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.