ACS Publications. Most Trusted. Most Cited. Most Read
Global Control of Stacking-Order Phase Transition by Doping and Electric Field in Few-Layer Graphene
My Activity
    Letter

    Global Control of Stacking-Order Phase Transition by Doping and Electric Field in Few-Layer Graphene
    Click to copy article linkArticle link copied!

    • Hongyuan Li
      Hongyuan Li
      Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
      Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, California 94720, United States
      Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
      More by Hongyuan Li
    • M. Iqbal Bakti Utama
      M. Iqbal Bakti Utama
      Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
      Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
      Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
    • Sheng Wang
      Sheng Wang
      Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
      Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
      More by Sheng Wang
    • Wenyu Zhao
      Wenyu Zhao
      Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
      More by Wenyu Zhao
    • Sihan Zhao
      Sihan Zhao
      Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
      More by Sihan Zhao
    • Xiao Xiao
      Xiao Xiao
      Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
      More by Xiao Xiao
    • Yue Jiang
      Yue Jiang
      Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
      More by Yue Jiang
    • Lili Jiang
      Lili Jiang
      Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
      More by Lili Jiang
    • Takashi Taniguchi
      Takashi Taniguchi
      National Institute for Materials Science, Tsukuba 305-0044, Japan
    • Kenji Watanabe
      Kenji Watanabe
      National Institute for Materials Science, Tsukuba 305-0044, Japan
    • Alexander Weber-Bargioni
      Alexander Weber-Bargioni
      Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    • Alex Zettl
      Alex Zettl
      Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
      Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
      Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
      More by Alex Zettl
    • Feng Wang*
      Feng Wang
      Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
      Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
      Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
      *Email: [email protected]
      More by Feng Wang
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 5, 3106–3112
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b05092
    Published April 14, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The layer stacking order has profound effects on the physical properties of two-dimensional van der Waals heterostructures. For example, graphene multilayers can have distinct electronic band structures and exhibit completely different behaviors depending on the stacking order. Fascinating physical phenomena, such as correlated insulators, superconductors, and ferromagnetism, can also emerge with a periodic variation of the layer stacking order, which is known as the moiré superlattice in van der Waals materials. In this work, we realize the global phase transition between different graphene layer stacking orders and elucidate its microscopic origin. We experimentally determine the energy difference between different stacking orders with the accuracy of μeV/atom. We reveal that both the carrier doping and the electric field can drive the layer-stacking phase transition through different mechanisms: carrier doping can change the energy difference because of a non-negligible work function difference between different stacking orders; the electric field, on the other hand, induces a band-gap opening in ABC-stacked graphene and hence changes the energy difference. Our findings provide a fundamental understanding of the electrically driven stacking-order phase transition in few-layer graphene and demonstrate a reversible and noninvasive method to globally control the stacking order.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.9b05092.

    • Supplementary notes 1–8 and Figures S1–S6 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 51 publications.

    1. Carter Fox, Yulu Mao, Xiang Zhang, Ying Wang, Jun Xiao. Stacking Order Engineering of Two-Dimensional Materials and Device Applications. Chemical Reviews 2024, 124 (4) , 1862-1898. https://doi.org/10.1021/acs.chemrev.3c00618
    2. Kaidi Zhang, Yun Yu, Stephen Carr, Mohammad Babar, Ziyan Zhu, Bryan Junsuh Kim, Catherine Groschner, Nikta Khaloo, Takashi Taniguchi, Kenji Watanabe, Venkatasubramanian Viswanathan, D. Kwabena Bediako. Anomalous Interfacial Electron-Transfer Kinetics in Twisted Trilayer Graphene Caused by Layer-Specific Localization. ACS Central Science 2023, 9 (6) , 1119-1128. https://doi.org/10.1021/acscentsci.3c00326
    3. Zhaofeng Wu, Peiguo Liu, Mingtuan Lin, Song Zha, Xiaocheng Ni. A Microwave Field-Induced Nonlinear Metamaterial with Wafer Integration Level. ACS Applied Materials & Interfaces 2023, 15 (12) , 16189-16197. https://doi.org/10.1021/acsami.2c21964
    4. Niels C. H. Hesp, Mark Kamper Svendsen, Kenji Watanabe, Takashi Taniguchi, Kristian S. Thygesen, Iacopo Torre, Frank H. L. Koppens. WSe2 as Transparent Top Gate for Infrared Near-Field Microscopy. Nano Letters 2022, 22 (15) , 6200-6206. https://doi.org/10.1021/acs.nanolett.2c01658
    5. Hongjian Wu, Xiaoxiang Yu, Mengjian Zhu, Zhihong Zhu, Jianyu Zhang, Sen Zhang, Shiqiao Qin, Guang Wang, Gang Peng, Jiayu Dai, Kostya S. Novoselov. Direct Visualization and Manipulation of Stacking Orders in Few-Layer Graphene by Dynamic Atomic Force Microscopy. The Journal of Physical Chemistry Letters 2021, 12 (30) , 7328-7334. https://doi.org/10.1021/acs.jpclett.1c01579
    6. Fei Pan, Kun Ni, Yue Ma, Hongjian Wu, Xiaoyu Tang, Juan Xiong, Yaping Yang, Chuanren Ye, Hong Yuan, Miao-Ling Lin, Jiayu Dai, Mengjian Zhu, Ping-Heng Tan, Yanwu Zhu, Kostya S. Novoselov. Phase-Changing in Graphite Assisted by Interface Charge Injection. Nano Letters 2021, 21 (13) , 5648-5654. https://doi.org/10.1021/acs.nanolett.1c01225
    7. Weiwei Luo, Alexey B. Kuzmenko, Jialin Qi, Ni Zhang, Wei Wu, Mengxin Ren, Xinzheng Zhang, Wei Cai, Jingjun Xu. Nanoinfrared Characterization of Bilayer Graphene Conductivity under Dual-Gate Tuning. Nano Letters 2021, 21 (12) , 5151-5157. https://doi.org/10.1021/acs.nanolett.1c01167
    8. Junxi Yu, Rajiv Giridharagopal, Yuhao Li, Kaichen Xie, Jiangyu Li, Ting Cao, Xiaodong Xu, David S. Ginger. Imaging Graphene Moiré Superlattices via Scanning Kelvin Probe Microscopy. Nano Letters 2021, 21 (7) , 3280-3286. https://doi.org/10.1021/acs.nanolett.1c00609
    9. Sai S. Sunku, Dorri Halbertal, Rebecca Engelke, Hyobin Yoo, Nathan R. Finney, Nicola Curreli, Guangxin Ni, Cheng Tan, Alexander S. McLeod, Chiu Fan Bowen Lo, Cory R. Dean, James C. Hone, Philip Kim, D. N. Basov. Dual-Gated Graphene Devices for Near-Field Nano-imaging. Nano Letters 2021, 21 (4) , 1688-1693. https://doi.org/10.1021/acs.nanolett.0c04494
    10. Jean Paul Nery, Matteo Calandra, Francesco Mauri. Long-Range Rhombohedral-Stacked Graphene through Shear. Nano Letters 2020, 20 (7) , 5017-5023. https://doi.org/10.1021/acs.nanolett.0c01146
    11. Zhao Guan, Lu-qi Wei, Wen-cheng Fan, Yi-chen Sun, Wei Cao, Ming Tian, Neng Wan, Wen-yi Tong, Bin-bin Chen, Ping-hua Xiang, Chun-gang Duan, Ni Zhong. Mechanical force-induced interlayer sliding in interfacial ferroelectrics. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-56073-9
    12. Soyeong Kwon, Peiwen J. Ma, Calista Lum, Amin Hajarian, Jiwoo Seo, SungWoo Nam. Nano-optical metrologies for characterizing the carrier dynamics in two-dimensional materials. Materials Research Bulletin 2025, 187 , 113382. https://doi.org/10.1016/j.materresbull.2025.113382
    13. Ya Xiao, Tongming Su, Tian Wang, Weiwei Xiang, Shaocong Tang, Jae Su Yu. Interfacial micro-electric field induced by phosphorus-doped g-C3N4 for highly reversible dendrite-free zinc metal anode. Chemical Engineering Journal 2025, 512 , 162391. https://doi.org/10.1016/j.cej.2025.162391
    14. Youngjoon Choi, Ysun Choi, Marco Valentini, Caitlin L. Patterson, Ludwig F. W. Holleis, Owen I. Sheekey, Hari Stoyanov, Xiang Cheng, Takashi Taniguchi, Kenji Watanabe, Andrea F. Young. Superconductivity and quantized anomalous Hall effect in rhombohedral graphene. Nature 2025, 639 (8054) , 342-347. https://doi.org/10.1038/s41586-025-08621-y
    15. Zuo Feng, Wenxuan Wang, Yilong You, Yifei Chen, Kenji Watanabe, Takashi Taniguchi, Chang Liu, Kaihui Liu, Xiaobo Lu. Rapid infrared imaging of rhombohedral graphene. Physical Review Applied 2025, 23 (3) https://doi.org/10.1103/PhysRevApplied.23.034012
    16. Youngki Yeo, Yoav Sharaby, Nirmal Roy, Noam Raab, Kenji Watanabe, Takashi Taniguchi, Moshe Ben Shalom. Polytype switching by super-lubricant van der Waals cavity arrays. Nature 2025, 638 (8050) , 389-393. https://doi.org/10.1038/s41586-024-08380-2
    17. Chunyan Wang, Yaxue Zhang, Dachuan Zhang, Yu Sun, Tao Zhang, Jing Li. 2D Van der Waals Sliding Ferroelectrics Toward Novel Electronic Devices. Small 2025, 21 (8) https://doi.org/10.1002/smll.202408375
    18. Maayan Vizner Stern, Simon Salleh Atri, Moshe Ben Shalom. Sliding van der Waals polytypes. Nature Reviews Physics 2025, 7 (1) , 50-61. https://doi.org/10.1038/s42254-024-00781-6
    19. Martin Rejhon, Nitika Parashar, Lorenzo Schellack, Mykhailo Shestopalov, Jan Kunc, Elisa Riedo. Spontaneous emergence of straintronics effects and striped stacking domains in untwisted three-layer epitaxial graphene. Proceedings of the National Academy of Sciences 2024, 121 (50) https://doi.org/10.1073/pnas.2408496121
    20. Xiaozhou Zan, Xiangdong Guo, Aolin Deng, Zhiheng Huang, Le Liu, Fanfan Wu, Yalong Yuan, Jiaojiao Zhao, Yalin Peng, Lu Li, Yangkun Zhang, Xiuzhen Li, Jundong Zhu, Jingwei Dong, Dongxia Shi, Wei Yang, Xiaoxia Yang, Zhiwen Shi, Luojun Du, Qing Dai, Guangyu Zhang. Electron/infrared-phonon coupling in ABC trilayer graphene. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46129-7
    21. Meiling Tang, Zewei Yuan, Jingting Sun, Yan He, Di Ran, Ying Wang, Yusen Feng, Xinbo Zhou. Effects of nanocutting environments on the electronic structure of armchair-type graphene nanoribbons: the first-principles study. Physica Scripta 2024, 99 (9) , 095404. https://doi.org/10.1088/1402-4896/ad669b
    22. Jialong Mo, Li Li, Xiaodie Li, Qingyi Feng, Xia Xiang, Hongxiang Deng, Jinlan Nie, Xiaotao Zu. First-principles study on the microstructure, band structure, mechanical and optical properties of AB-stacked bilayer graphene under constant neutron irradiation with different electric field magnitudes and directions. Materials Today Communications 2024, 40 , 109932. https://doi.org/10.1016/j.mtcomm.2024.109932
    23. Weiwei Luo, Jiang Fan, Alexey B. Kuzmenko, Wei Cai, Jingjun Xu. Topological valley plasmons in twisted monolayer-bilayer graphene moiré superlattices. Physical Review B 2024, 110 (3) https://doi.org/10.1103/PhysRevB.110.035408
    24. Meiling Tang, Zewei Yuan, Jingting Sun, Yan He, Ying Wang, Yusen Feng, Xinbo Zhou, Di Ran. Micromechanical effects of substrate hardness on graphene nano-cutting quality. Materials Today Communications 2024, 39 , 109137. https://doi.org/10.1016/j.mtcomm.2024.109137
    25. Simon Salleh Atri, Wei Cao, Bar Alon, Nirmal Roy, Maayan Vizner Stern, Vladimir Falko, Moshe Goldstein, Leeor Kronik, Michael Urbakh, Oded Hod, Moshe Ben Shalom. Spontaneous Electric Polarization in Graphene Polytypes. Advanced Physics Research 2024, 3 (5) https://doi.org/10.1002/apxr.202300095
    26. Jialong Mo, Li Li, Xiaodie Li, Qingyi Feng, Xia Xiang, Guixia Yang, Hongxiang Deng, Jinlan Nie, Xiaotao Zu. First-principles study on the effects of fast neutron irradiation and fast neutron irradiation under the external electric field on carbon-based material AB bilayer graphene. Diamond and Related Materials 2024, 144 , 110988. https://doi.org/10.1016/j.diamond.2024.110988
    27. Chengjie Pei, Jindong Zhang, Hai Li. Probing Polymorphic Stacking Domains in Mechanically Exfoliated Two-Dimensional Nanosheets Using Atomic Force Microscopy and Ultralow-Frequency Raman Spectroscopy. Nanomaterials 2024, 14 (4) , 339. https://doi.org/10.3390/nano14040339
    28. Meiling Tang, Zewei Yuan, Yan He, Jingting Sun, Ying Wang, Xinbo Zhou. Cooperative roles of mechanical behavior and chemical reactions in mechanical chemical nano cutting of graphene assisted by ·OH radicals: quantum mechanics and reaction molecular dynamics simulations. Physica Scripta 2024, 99 (1) , 015405. https://doi.org/10.1088/1402-4896/ad13e2
    29. Zhibin Zhang, Stiven Forti, Wanqing Meng, Sergio Pezzini, Zehua Hu, Camilla Coletti, Xinran Wang, Kaihui Liu. Growth and applications of two-dimensional single crystals. 2D Materials 2023, 10 (3) , 032001. https://doi.org/10.1088/2053-1583/acc95a
    30. Daniel Beitner, Shaked Amitay, Simon Sallah Atrt, Shachar Richter, Haim Suchowski, Moshe Ben Shalom. S-SNOM Imaging of Stacking Order in Few-Layer Graphene. 2023, 1-1. https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10231676
    31. Nathan M. Myers, Francisco J. Peña, Natalia Cortés, Patricio Vargas. Multilayer Graphene as an Endoreversible Otto Engine. Nanomaterials 2023, 13 (9) , 1548. https://doi.org/10.3390/nano13091548
    32. Xiangdong Guo, Wei Lyu, Tinghan Chen, Yang Luo, Chenchen Wu, Bei Yang, Zhipei Sun, F. Javier García de Abajo, Xiaoxia Yang, Qing Dai. Polaritons in Van der Waals Heterostructures. Advanced Materials 2023, 35 (17) https://doi.org/10.1002/adma.202201856
    33. Wanrong Huang, Famin Yu, Yu Zhu, Rui Wang, Jiarui Li, Sean Xiao‐An Zhang, Zhigang Wang. “Z”‐Type Tilted Quasi‐One‐Dimensional Assembly of Actinide‐Embedded Coinage Metal Near‐Plane Superatoms and Their Optical Properties. Advanced Science 2023, 10 (9) https://doi.org/10.1002/advs.202206899
    34. Emilio A. Cortés, Juan M. Florez, Eric Suárez Morell. Ferroelectric response to interlayer shifting and rotations in trilayer hexagonal Boron Nitride. Journal of Physics and Chemistry of Solids 2023, 173 , 111086. https://doi.org/10.1016/j.jpcs.2022.111086
    35. Seong‐Jun Yang, Min‐Yeong Choi, Cheol‐Joo Kim. Engineering Grain Boundaries in Two‐Dimensional Electronic Materials. Advanced Materials 2023, 35 (4) https://doi.org/10.1002/adma.202203425
    36. R. Guerrero-Avilés, M. Pelc, F. R. Geisenhof, R. T. Weitz, A. Ayuela. Rhombohedral trilayer graphene is more stable than its Bernal counterpart. Nanoscale 2022, 14 (43) , 16295-16302. https://doi.org/10.1039/D2NR01985J
    37. W. Jaskólski. Electronic structure of trilayer graphene with internal layer broken. Molecular Physics 2022, 120 (19-20) https://doi.org/10.1080/00268976.2021.2013554
    38. Yilong Luan, Jun Qian, Minsung Kim, Kai-Ming Ho, Yi Shi, Yun Li, Cai-Zhuang Wang, Michael C. Tringides, Zhe Fei. Imaging Stacking-Dependent Surface Plasmon Polaritons in Trilayer Graphene. Physical Review Applied 2022, 18 (2) https://doi.org/10.1103/PhysRevApplied.18.024052
    39. Shuai Zhang, Qiang Xu, Yuan Hou, Aisheng Song, Yuan Ma, Lei Gao, Mengzhen Zhu, Tianbao Ma, Luqi Liu, Xi-Qiao Feng, Qunyang Li. Domino-like stacking order switching in twisted monolayer–multilayer graphene. Nature Materials 2022, 21 (6) , 621-626. https://doi.org/10.1038/s41563-022-01232-2
    40. Tao Huang, Jiafen Ding, Zirui Liu, Rui Zhang, BoLei Zhang, Kai Xiong, Longzhou Zhang, Chong Wang, Shili Shen, Cuiyu Li, Peng Yang, Feng Qiu. Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor. eScience 2022, 2 (3) , 319-328. https://doi.org/10.1016/j.esci.2022.03.005
    41. Astrid Weston, Eli G. Castanon, Vladimir Enaldiev, Fábio Ferreira, Shubhadeep Bhattacharjee, Shuigang Xu, Héctor Corte-León, Zefei Wu, Nicholas Clark, Alex Summerfield, Teruo Hashimoto, Yunze Gao, Wendong Wang, Matthew Hamer, Harriet Read, Laura Fumagalli, Andrey V. Kretinin, Sarah J. Haigh, Olga Kazakova, A. K. Geim, Vladimir I. Fal’ko, Roman Gorbachev. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnology 2022, 17 (4) , 390-395. https://doi.org/10.1038/s41565-022-01072-w
    42. Sihan Zhao, Ryo Kitaura, Pilkyung Moon, Mikito Koshino, Feng Wang. Interlayer Interactions in 1D Van der Waals Moiré Superlattices. Advanced Science 2022, 9 (2) https://doi.org/10.1002/advs.202103460
    43. Dorri Halbertal, Nathan R. Finney, Sai S. Sunku, Alexander Kerelsky, Carmen Rubio-Verdú, Sara Shabani, Lede Xian, Stephen Carr, Shaowen Chen, Charles Zhang, Lei Wang, Derick Gonzalez-Acevedo, Alexander S. McLeod, Daniel Rhodes, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, Cory R. Dean, James C. Hone, Abhay N. Pasupathy, Dante M. Kennes, Angel Rubio, D. N. Basov. Moiré metrology of energy landscapes in van der Waals heterostructures. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20428-1
    44. Chao Ding, Han Gao, Lei Sun, Xikui Ma, Mingwen Zhao. Corrugation effect, Dirac cone splitting, and plasmon properties of biased twisted bilayer graphene. Physical Review B 2021, 104 (15) https://doi.org/10.1103/PhysRevB.104.155427
    45. Jean Paul Nery, Matteo Calandra, Francesco Mauri. Ab-initio energetics of graphite and multilayer graphene: stability of Bernal versus rhombohedral stacking. 2D Materials 2021, 8 (3) , 035006. https://doi.org/10.1088/2053-1583/abec23
    46. Chamseddine Bouhafs, Sergio Pezzini, Fabian R. Geisenhof, Neeraj Mishra, Vaidotas Mišeikis, Yuran Niu, Claudia Struzzi, R. Thomas Weitz, Alexei A. Zakharov, Stiven Forti, Camilla Coletti. Synthesis of large-area rhombohedral few-layer graphene by chemical vapor deposition on copper. Carbon 2021, 177 , 282-290. https://doi.org/10.1016/j.carbon.2021.02.082
    47. Sanghyun Kim, Donghyeon Lee, Binbin Wang, Shang-Jie Yu, Kenji Watanabe, Takashi Taniguchi, Jonathan A. Fan, Jiamin Xue, Kayoung Lee. Raman spectroscopic study of artificially twisted and non-twisted trilayer graphene. Applied Physics Letters 2021, 118 (13) https://doi.org/10.1063/5.0040716
    48. Servet Ozdemir. Review of Rhombohedral Graphite. 2021, 1-40. https://doi.org/10.1007/978-3-030-88307-2_1
    49. Kyunghoon Lee, M. Iqbal Bakti Utama, Salman Kahn, Appalakondaiah Samudrala, Nicolas Leconte, Birui Yang, Shuopei Wang, Kenji Watanabe, Takashi Taniguchi, M. Virginia P. Altoé, Guangyu Zhang, Alexander Weber-Bargioni, Michael Crommie, Paul D. Ashby, Jeil Jung, Feng Wang, Alex Zettl. Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures. Science Advances 2020, 6 (50) https://doi.org/10.1126/sciadv.abd1919
    50. Jianyu Zhang, Jinsen Han, Gang Peng, Xi Yang, Xiaoming Yuan, Yongjun Li, Jianing Chen, Wei Xu, Ken Liu, Zhihong Zhu, Weiqi Cao, Zheng Han, Jiayu Dai, Mengjian Zhu, Shiqiao Qin, Kostya S. Novoselov. Light-induced irreversible structural phase transition in trilayer graphene. Light: Science & Applications 2020, 9 (1) https://doi.org/10.1038/s41377-020-00412-6
    51. Yanbang Chu, Le Liu, Yalong Yuan, Cheng Shen, Rong Yang, Dongxia Shi, Wei Yang, Guangyu Zhang. A review of experimental advances in twisted graphene moiré superlattice*. Chinese Physics B 2020, 29 (12) , 128104. https://doi.org/10.1088/1674-1056/abb221

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 5, 3106–3112
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b05092
    Published April 14, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    4198

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.