ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis and Structure of Corona[6](het)arenes Containing Mixed Bridge Units
My Activity
    Letter

    Synthesis and Structure of Corona[6](het)arenes Containing Mixed Bridge Units
    Click to copy article linkArticle link copied!

    View Author Information
    Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084. China
    Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    Other Access OptionsSupporting Information (19)

    Organic Letters

    Cite this: Org. Lett. 2016, 18, 11, 2668–2671
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.6b01112
    Published May 16, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A one-pot nucleophilic aromatic substitution reaction of 3,6-dichlorotetrazine with various diphenols and dibenzenethiols produced corona[4]arene[2]tetrazines that contain mixed oxygen, sulfide, methylene, and sulfone linkages. Macrocyclic ring transformations employing an inverse-electron-demand Diels–Alder reaction of tetrazine moieties with enamines and the subsequent sulfide oxidation reaction afforded diverse corona[4]arene[2]pyridazines. The acquired corona[6]arenes adopted three types of conformational structures in the crystalline state.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b01112.

    • X-ray crystallographic files of 35, and 79 (CIF)

    • Detailed experimental procedures, characterization of all products, and 1H and 13C NMR spectra of products (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 27 publications.

    1. Nicolai Nikishkin, Jan Cějka, Václav Eigner, Ludmila Šimková, Jiří Ludvík, Petra Cuřínová, Hana Dvořáková, Pavel Lhoták. Synthesis of Thiapillar[6]arenes Bearing Redox-Active (Hydro)quinone Groups. Electrochemical and XRD Study. The Journal of Organic Chemistry 2023, 88 (17) , 12357-12366. https://doi.org/10.1021/acs.joc.3c01093
    2. Meng-Di Gu, Yao Lu, Mei-Xiang Wang. Synthesis of Butadiynyl-Strapped Corona[6]arenes and Their Selective Anion Binding Properties. The Journal of Organic Chemistry 2020, 85 (4) , 2312-2320. https://doi.org/10.1021/acs.joc.9b03017
    3. Meng-Yao Zhao, De-Xian Wang, and Mei-Xiang Wang . Synthesis, Structure, and Properties of Corona[6]arenes and Their Assembly with Anions in the Crystalline State. The Journal of Organic Chemistry 2018, 83 (3) , 1502-1509. https://doi.org/10.1021/acs.joc.7b03136
    4. Yang Liu, Chao Long, Liang Zhao, and Mei-Xiang Wang . Functionalization of Azacalixaromatics by Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between the Arene C–H Bond and Boronic Acids. Organic Letters 2016, 18 (19) , 5078-5081. https://doi.org/10.1021/acs.orglett.6b02530
    5. Fangyuan Wang, Ting Wu, Bin Lu, Jianchao Yu, Renwei Xiao, Boxuan Yi, Xumu Zhang, Gen-Qiang Chen. Facile and practical access to chiral benzofused oxa-heterocycles via an asymmetric hydrogenation and intramolecular S N Ar cascade. Organic Chemistry Frontiers 2024, 11 (4) , 1118-1123. https://doi.org/10.1039/D3QO01665J
    6. Abhijeet V. Kamble, Aswani Raj K, Rajeswara Rao Malakalapalli. Synthesis of tetrazine-tetracyanobutadienes and their transformation into pyridazines via inverse-electron demand Diels–Alder cycloaddition (IEDDA). Organic & Biomolecular Chemistry 2023, 21 (28) , 5790-5798. https://doi.org/10.1039/D3OB00595J
    7. Gary Chinigo, Yiqing Feng, Susan Hoy, Ricardo Lira, Matthew Perry. Pyridazines and Their Benzo Derivatives. 2022, 1-85. https://doi.org/10.1016/B978-0-12-818655-8.00082-2
    8. Manthena Chaitanya, Pazhamalai Anbarasan. 1,2,4,5-Tetrazines. 2022, 586-639. https://doi.org/10.1016/B978-0-12-818655-8.00096-2
    9. Tanausú Santos, David S. Rivero, Yaiza Pérez‐Pérez, Endika Martín‐Encinas, Jorge Pasán, Antonio Hernández Daranas, Romen Carrillo. Dynamic Nucleophilic Aromatic Substitution of Tetrazines. Angewandte Chemie 2021, 133 (34) , 18931-18939. https://doi.org/10.1002/ange.202106230
    10. Tanausú Santos, David S. Rivero, Yaiza Pérez‐Pérez, Endika Martín‐Encinas, Jorge Pasán, Antonio Hernández Daranas, Romen Carrillo. Dynamic Nucleophilic Aromatic Substitution of Tetrazines. Angewandte Chemie International Edition 2021, 60 (34) , 18783-18791. https://doi.org/10.1002/anie.202106230
    11. Alakananda Patra, K. Swamynathan, Sandeep Kumar. Synthesis of novel regioisomeric phenanthro[ a ]phenazine derivatives through the S N Ar strategy and their self-assembly into columnar phases. New Journal of Chemistry 2021, 45 (9) , 4185-4194. https://doi.org/10.1039/D0NJ05042C
    12. Shen‐Yi Guo, Qing‐Hui Guo, Shuo Tong, Mei‐Xiang Wang. Synthesis of Electron‐Deficient Corona[5]arenes and Their Selective Complexation with Dihydrogen Phosphate: Cooperative Effects of Anion–π Interactions. Angewandte Chemie 2020, 132 (21) , 8155-8160. https://doi.org/10.1002/ange.201915839
    13. Shen‐Yi Guo, Qing‐Hui Guo, Shuo Tong, Mei‐Xiang Wang. Synthesis of Electron‐Deficient Corona[5]arenes and Their Selective Complexation with Dihydrogen Phosphate: Cooperative Effects of Anion–π Interactions. Angewandte Chemie International Edition 2020, 59 (21) , 8078-8083. https://doi.org/10.1002/anie.201915839
    14. Masahide Tominaga, Tadashi Hyodo, Yumi Maekawa, Masatoshi Kawahata, Kentaro Yamaguchi. One‐Step Synthesis of Cyclophanes as Crystalline Sponge and Their [2]Catenanes through S N Ar Reactions. Chemistry – A European Journal 2020, 26 (23) , 5157-5161. https://doi.org/10.1002/chem.201905854
    15. Meng-Di Gu, Yao Lu, Mei-Xiang Wang. Synthesis and anion binding properties of phthalimide-containing corona[6]arenes. Beilstein Journal of Organic Chemistry 2019, 15 , 1976-1983. https://doi.org/10.3762/bjoc.15.193
    16. Wen Jie Ong, Timothy M. Swager. Dynamic self-correcting nucleophilic aromatic substitution. Nature Chemistry 2018, 10 (10) , 1023-1030. https://doi.org/10.1038/s41557-018-0122-8
    17. Mei-Xiang Wang. Coronarenes: recent advances and perspectives on macrocyclic and supramolecular chemistry. Science China Chemistry 2018, 61 (8) , 993-1003. https://doi.org/10.1007/s11426-018-9328-8
    18. Yao Lu, Dong‐Dong Liang, Zhan‐Da Fu, Qing‐Hui Guo, Mei‐Xiang Wang. Synthesis of O 6 ‐Corona[3]arene[3]pyridazines and Their Molecular Recognition Property in Organic and Aqueous Media. Chinese Journal of Chemistry 2018, 36 (7) , 630-634. https://doi.org/10.1002/cjoc.201800131
    19. Han‐Bin Liu, Qian Zhang, Mei‐Xiang Wang. Synthesis, Structure, and Anion Binding Properties of Electron‐Deficient Tetrahomocorona[4]arenes: Shape Selectivity in Anion–π Interactions. Angewandte Chemie 2018, 130 (22) , 6646-6650. https://doi.org/10.1002/ange.201802650
    20. Han‐Bin Liu, Qian Zhang, Mei‐Xiang Wang. Synthesis, Structure, and Anion Binding Properties of Electron‐Deficient Tetrahomocorona[4]arenes: Shape Selectivity in Anion–π Interactions. Angewandte Chemie International Edition 2018, 57 (22) , 6536-6540. https://doi.org/10.1002/anie.201802650
    21. Meng-Yao Zhao, Qing-Hui Guo, Mei-Xiang Wang. Understanding the driving force for the molecular recognition of S6-corona[3]arene[3]pyridazine toward organic ammonium cations. Organic Chemistry Frontiers 2018, 5 (5) , 760-764. https://doi.org/10.1039/C7QO00900C
    22. Wout De Leger, Koen Adriaensen, Koen Robeyns, Luc Van Meervelt, Joice Thomas, Björn Meijers, Mario Smet, Wim Dehaen. Synthesis and post-functionalization of alternate-linked- meta-para- [2 n .1 n ]thiacyclophanes. Beilstein Journal of Organic Chemistry 2018, 14 , 2190-2197. https://doi.org/10.3762/bjoc.14.192
    23. Zhi‐Chen Wu, Qing‐Hui Guo, Mei‐Xiang Wang. Corona[5]arenes Accessed by a Macrocycle‐to‐Macrocycle Transformation Route and a One‐Pot Three‐Component Reaction. Angewandte Chemie 2017, 129 (25) , 7257-7261. https://doi.org/10.1002/ange.201703008
    24. Zhi‐Chen Wu, Qing‐Hui Guo, Mei‐Xiang Wang. Corona[5]arenes Accessed by a Macrocycle‐to‐Macrocycle Transformation Route and a One‐Pot Three‐Component Reaction. Angewandte Chemie International Edition 2017, 56 (25) , 7151-7155. https://doi.org/10.1002/anie.201703008
    25. George R. Newkome, Sourav Chakraborty. Eight-Membered and Larger Rings. 2017, 635-655. https://doi.org/10.1016/B978-0-08-102310-5.00017-5
    26. Liu-Pan Yang, Fei Jia, Fangfang Pan, Zhi-Sheng Pan, Kari Rissanen, Wei Jiang. Effects of side chains of oxatub[4]arene on its conformational interconversion, molecular recognition and macroscopic self-assembly. Chemical Communications 2017, 53 (93) , 12572-12575. https://doi.org/10.1039/C7CC07630D
    27. Liu-Pan Yang, Wei-Er Liu, Wei Jiang. Naphthol-based macrocyclic receptors. Tetrahedron Letters 2016, 57 (36) , 3978-3985. https://doi.org/10.1016/j.tetlet.2016.07.077

    Organic Letters

    Cite this: Org. Lett. 2016, 18, 11, 2668–2671
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.6b01112
    Published May 16, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1797

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.