ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Experimental Investigation of Pulsed Laser Deposition of Ferroelectric Gd:HfO2 in a CMOS BEOL Compatible Process

  • Matteo Cavalieri*
    Matteo Cavalieri
    Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
    *Email: [email protected]
  • Éamon O’Connor
    Éamon O’Connor
    Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
  • Carlotta Gastaldi
    Carlotta Gastaldi
    Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
  • Igor Stolichnov
    Igor Stolichnov
    Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
  • , and 
  • Adrian M. Ionescu
    Adrian M. Ionescu
    Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
Cite this: ACS Appl. Electron. Mater. 2020, 2, 6, 1752–1758
Publication Date (Web):May 29, 2020
https://doi.org/10.1021/acsaelm.0c00319
Copyright © 2020 American Chemical Society

    Article Views

    1068

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    In this work, we report an experimental investigation of pulsed laser deposition (PLD) of thin Gd:HfO2 layers at 330 °C, which show ferroelectric behavior after annealing at 450 °C, compatible with complementary metal-oxide-semiconductor back-end-of-line processing. The material’s ferroelectricity is confirmed by microstructural and electrical analysis, corroborated by hysteretic electromechanical response measured via piezoresponse force microscopy. The effect of postdeposition annealing ambient is also studied, where N2 annealing results in higher remanent polarization, while O2 annealing yields greater endurance properties. Furthermore, ferroelectricity is demonstrated for PLD thin films formed on a conventional TiN/Si structure, demonstrating the strong potential of this PLD material for cointegration in relevant memory and logic applications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaelm.0c00319.

    • GIXRD wide spectra (2θ = 20–70°) of thin films annealed at 450 °C for 80 s in O2 and in N2, GIXRD plots of as-deposited samples for different deposition temperatures, PE loops comparing 450 and 500 °C annealing, and leakage current densities measured at 1 MV/cm (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 16 publications.

    1. Niclas Schmidt, Konstantin Z. Rushchanskii, Urška Trstenjak, Regina Dittmann, Silvia Karthäuser. In-Gap States of HfO2 Nanoislands Driven by Crystal Nucleation: Implications for Resistive Random-Access Memory Devices. ACS Applied Nano Materials 2023, 6 (1) , 148-159. https://doi.org/10.1021/acsanm.2c04165
    2. Xiaozhang Chen, Heng Li, Zhaobo Tian, Yuan Zhu, Longxing Su. Study of resistive switching behavior in HfO 2 nanocrystals synthesized via a low temperature hydrothermal method. Nanotechnology 2024, 35 (12) , 125203. https://doi.org/10.1088/1361-6528/ad143e
    3. Yida Wu, Junbo Xu, Mei Bai, Ruirui Kang, Wenjing Qiao, Yangfei Gao, Yanhua Hu, Danyang Wang, Jiantuo Zhao, Jiping Wang, Xiaojie Lou. Ferroelectricity in Ce0.2-HfO2 films around 500 nm in thickness. Ceramics International 2024, 125 https://doi.org/10.1016/j.ceramint.2024.03.203
    4. Sixue Chen, Pu Qin, Jianxing Yang, Mingming Chen, Qianqian Du, Youchao Kong, Yuan Liu, Dawei Cao. Ferroelectricity in the Al doped HfO2. Journal of Alloys and Compounds 2023, 965 , 171456. https://doi.org/10.1016/j.jallcom.2023.171456
    5. José P. B. Silva, Ruben Alcala, Uygar E. Avci, Nick Barrett, Laura Bégon-Lours, Mattias Borg, Seungyong Byun, Sou-Chi Chang, Sang-Wook Cheong, Duk-Hyun Choe, Jean Coignus, Veeresh Deshpande, Athanasios Dimoulas, Catherine Dubourdieu, Ignasi Fina, Hiroshi Funakubo, Laurent Grenouillet, Alexei Gruverman, Jinseong Heo, Michael Hoffmann, H. Alex Hsain, Fei-Ting Huang, Cheol Seong Hwang, Jorge Íñiguez, Jacob L. Jones, Ilya V. Karpov, Alfred Kersch, Taegyu Kwon, Suzanne Lancaster, Maximilian Lederer, Younghwan Lee, Patrick D. Lomenzo, Lane W. Martin, Simon Martin, Shinji Migita, Thomas Mikolajick, Beatriz Noheda, Min Hyuk Park, Karin M. Rabe, Sayeef Salahuddin, Florencio Sánchez, Konrad Seidel, Takao Shimizu, Takahisa Shiraishi, Stefan Slesazeck, Akira Toriumi, Hiroshi Uchida, Bertrand Vilquin, Xianghan Xu, Kun Hee Ye, Uwe Schroeder. Roadmap on ferroelectric hafnia- and zirconia-based materials and devices. APL Materials 2023, 11 (8) https://doi.org/10.1063/5.0148068
    6. Xiao Liu, Xiangshun Geng, Houfang Liu, Minghao Shao, Ruiting Zhao, Yi Yang, Tian-Ling Ren. Recent Progress and Applications of HfO 2 -Based Ferroelectric Memory. Tsinghua Science and Technology 2023, 28 (2) , 221-229. https://doi.org/10.26599/TST.2021.9010096
    7. Yuan Wang, Yang Yang, Pengfei Jiang, Shuxian Lv, Boping Wang, Yuting Chen, Yaxin Ding, Tiancheng Gong, Qing Luo. Precrystallization Engineering of Hf 0.5 Zr 0.5 O 2 Film in Back-End-of-Line Compatible Ferroelectric Device for Enhanced Remnant Polarization and Endurance. IEEE Electron Device Letters 2023, 44 (3) , 396-399. https://doi.org/10.1109/LED.2023.3238120
    8. Bo Chen, Shuhao Wu, Xiaolin Yu, Mingfeng Tang, Guoqing Zhao, Lu Tai, Xuepeng Zhan, Jiezhi Chen. Ferroelectricity induced double-direction conductance modulation in Hf x Zr 1−x O 2 capacitors. Nanotechnology 2022, 33 (49) , 495201. https://doi.org/10.1088/1361-6528/ac8e0b
    9. Kazuto Mizutani, Takuya Hoshii, Hitoshi Wakabayashi, Kazuo Tsutsui, Edward Y. Chang, Kuniyuki Kakushima. Robust formation of ferroelectric HfO 2 films by Y 2 O 3 sub-monolayer lamination. Applied Physics Express 2022, 15 (12) , 121002. https://doi.org/10.35848/1882-0786/ac9d20
    10. Maximilian Lederer, David Lehninger, Tarek Ali, Thomas Kämpfe. Review on the Microstructure of Ferroelectric Hafnium Oxides. physica status solidi (RRL) – Rapid Research Letters 2022, 16 (10) https://doi.org/10.1002/pssr.202200168
    11. Sina Najmaei, Andreu L. Glasmann, Marshall A. Schroeder, Wendy L. Sarney, Matthew L. Chin, Daniel M. Potrepka. Advancements in materials, devices, and integration schemes for a new generation of neuromorphic computers. Materials Today 2022, 59 , 80-106. https://doi.org/10.1016/j.mattod.2022.08.017
    12. Boncheol Ku, Yooncheol Shin, Youngjun Lee, Taeheun Kim, Changhwan Choi. Improved ferroelectric characteristics of ALD lanthanum-doped hafnium oxide thin film by controlling post-cooling time. Applied Surface Science 2022, 599 , 153905. https://doi.org/10.1016/j.apsusc.2022.153905
    13. Carlotta Gastaldi, Matteo Cavalieri, Ali Saeidi, Eamon O'Connor, Francesco Bellando, Igor Stolichnov, Adrian M. Ionescu. Negative Capacitance in HfO 2 Gate Stack Structures With and Without Metal Interlayer. IEEE Transactions on Electron Devices 2022, 69 (5) , 2680-2685. https://doi.org/10.1109/TED.2022.3157579
    14. E. V. Skopin, N. Guillaume, L. Alrifai, P. Gonon, A. Bsiesy. Sub-10-nm ferroelectric Gd-doped HfO2 layers. Applied Physics Letters 2022, 120 (17) https://doi.org/10.1063/5.0088505
    15. Wei Wei, Guoqing Zhao, XuePeng Zhan, Weiqiang Zhang, Pengpeng Sang, Qianwen Wang, Lu Tai, Qing Luo, Yuan Li, Can Li, Jiezhi Chen. Switching pathway-dependent strain-effects on the ferroelectric properties and structural deformations in orthorhombic HfO2. Journal of Applied Physics 2022, 131 (15) https://doi.org/10.1063/5.0084660
    16. S. Belahcen, T. Francois, L. Grenouillet, A. Bsiesy, J. Coignus, M. Bonvalot. TiN/Gd:HfO2/TiN capacitors grown by PEALD showing high endurance ferroelectric switching. Applied Physics Letters 2020, 117 (25) https://doi.org/10.1063/5.0035706

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect