ACS Publications. Most Trusted. Most Cited. Most Read
How Fast Can a Li-Ion Battery Be Charged? Determination of Limiting Fast Charging Conditions
My Activity

Figure 1Loading Img
    Letter

    How Fast Can a Li-Ion Battery Be Charged? Determination of Limiting Fast Charging Conditions
    Click to copy article linkArticle link copied!

    • Marco T. F. Rodrigues
      Marco T. F. Rodrigues
      Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    • Seoung-Bum Son
      Seoung-Bum Son
      Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    • Andrew M. Colclasure
      Andrew M. Colclasure
      Center for Integrated Mobility Sciences, National Renewable Energy Laboratory, Golden, Colorado 80401, United States of America
    • Ilya A. Shkrob
      Ilya A. Shkrob
      Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    • Stephen E. Trask
      Stephen E. Trask
      Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    • Ira D. Bloom
      Ira D. Bloom
      Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
      More by Ira D. Bloom
    • Daniel P. Abraham*
      Daniel P. Abraham
      Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
      *Email: [email protected]. Phone: (630) 252-4332.
    Other Access OptionsSupporting Information (1)

    ACS Applied Energy Materials

    Cite this: ACS Appl. Energy Mater. 2021, 4, 2, 1063–1068
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsaem.0c03114
    Published January 26, 2021
    Copyright 2021 © UChicago Argonne, LLC, Operator of Argonne National Laboratory

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Fast-charge protocols that prevent lithium plating are needed to extend the life span of lithium-ion batteries. Here, we describe a simple experimental method to estimate the minimum charging time below which it is simply impossible to avoid plating at a given temperature. We demonstrate that, by gauging and correcting the ohmic drop that is intrinsic to reference electrodes, the local potential at the anode surface can be reasonably approximated. This finer anode control enables the determination of the maximum average rate at which lithium deposition can be mitigated, establishing realistic boundaries that can inform the development of advanced charging protocols.

    Copyright 2021 © UChicago Argonne, LLC, Operator of Argonne National Laboratory

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.0c03114.

    • Additional figures and experimental details (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 48 publications.

    1. Zhiguo Zhang, Yiding Li, Xueqing Min, Dongsheng Ren, Youzhi Song, Li Wang, Hong Zhao, Xiangming He. Enhancing Precision and Durability of Built-In Cu-Li Reference Electrodes in Lithium-Ion Batteries: A Critical Review. ACS Energy Letters 2024, 9 (11) , 5647-5669. https://doi.org/10.1021/acsenergylett.4c02431
    2. Xin Geng, Chenyang Wang, Jing Chen, Hailong Wang, Wei Liu, Linyu Hu, Jingxin Lei, Zhimeng Liu, Xin He. Phase Change Nanocapsules Enabling Dual-Mode Thermal Management for Fast-Charging Lithium-Ion Batteries. ACS Nano 2024, 18 (17) , 11300-11310. https://doi.org/10.1021/acsnano.4c00533
    3. Guangxu Zhang, Xuezhe Wei, Siqi Chen, Jiangong Zhu, Guangshuai Han, Xueyuan Wang, Haifeng Dai. Revealing the Impact of Fast Charge Cycling on the Thermal Safety of Lithium-Ion Batteries. ACS Applied Energy Materials 2022, 5 (6) , 7056-7068. https://doi.org/10.1021/acsaem.2c00688
    4. Yang-Yang Wang, Xiang Song, Sheng Liu, Guo-Ran Li, Shi-Hai Ye, Xue-Ping Gao. Elucidating the Effect of the Dopant Ionic Radius on the Structure and Electrochemical Performance of Ni-Rich Layered Oxides for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2021, 13 (47) , 56233-56241. https://doi.org/10.1021/acsami.1c17991
    5. Tingting Wu, Yanxin Hu, Xianqing Liu, Changhong Wang. Effect Analysis on Thermal Management of Power Batteries Utilizing a Form-Stable Silicone Grease/Composite Phase Change Material. ACS Applied Energy Materials 2021, 4 (6) , 6233-6244. https://doi.org/10.1021/acsaem.1c00999
    6. Lukas Fuchs, Orkun Furat, Donal P. Finegan, Jeffery Allen, Francois L. E. Usseglio-Viretta, Bertan Ozdogru, Peter J. Weddle, Kandler Smith, Volker Schmidt. Generating multi-scale Li-ion battery cathode particles with radial grain architectures using stereological generative adversarial networks. Communications Materials 2025, 6 (1) https://doi.org/10.1038/s43246-024-00728-5
    7. Arun Thapa, Hongwei Gao. Fast Charging of Silicon Anode-Based Lithium-Ion Batteries at the Pouch Cell Level. Journal of The Electrochemical Society 2025, 172 (1) , 010528. https://doi.org/10.1149/1945-7111/adacb2
    8. Abigail Paul, Kody Wolfe, Mark W. Verbrugge, Brian J. Koch, Jeffrey S. Lowe, Jason Trembly, John A. Staser, Taylor R. Garrick. Quantifying the Temperature Dependence of the Multi-Species, Multi-Reaction Model. Part 1: Parameterization for a Meso-Carbon Micro-Bead Graphite. ECS Advances 2024, 3 (4) , 042501. https://doi.org/10.1149/2754-2734/ad7d1c
    9. KaiXuan Li, JingShu Zhang, XiaoLe Yao, ZiZe Huang, WenLong Li, Xing Ju, Chao Xu. Energy-efficient intermittent liquid heating of lithium-ion batteries in extreme cold using phase change materials. Science China Technological Sciences 2024, 67 (11) , 3450-3464. https://doi.org/10.1007/s11431-024-2683-2
    10. Alireza Goshtasbi, Sangwoo Han, Ruxiu Zhao, Jeremy Neubauer. Optimal Charging with Active Thermal Management for eVTOL Aircraft Battery Packs. 2024, 1-6. https://doi.org/10.23919/ACC60939.2024.10644242
    11. Hanwei Zhou, Anuththara S. Alujjage, Maria Terese, Conner Fear, Tapesh Joshi, Vallabha Rao Rikka, Judith A. Jeevarajan, Partha P. Mukherjee. Effect of fast charging on degradation and safety characteristics of lithium-ion batteries with LiNi Co Mn Al1---O2 cathodes. Chemical Engineering Journal 2024, 492 , 152181. https://doi.org/10.1016/j.cej.2024.152181
    12. F.F. Oehler, X. Deuschl, K. Nürnberger, A. Graule, S. Kücher, T. Roth, A. Adam, J. Li, R. Mörtel, A. Jossen. Online adaptive anode potential-controlled fast charging of lithium-ion cells using a validated electrochemical model-based virtual reference electrode. Journal of Power Sources 2024, 608 , 234620. https://doi.org/10.1016/j.jpowsour.2024.234620
    13. Dung The Nguyen, Jimin Kim, Youngil Lee. Control of Li-ion transport through a combination of conductive coating and charging protocol for a stable and extremely fast charging cathode. Journal of Alloys and Compounds 2024, 988 , 174263. https://doi.org/10.1016/j.jallcom.2024.174263
    14. Hao Zhong, Shujuan Meng, Xinan Zhang, Zhongbao Wei, Caizhi Zhang, Liang Du. Multiphysics-Constrained Fast Charging of Lithium-Ion Battery With Active Set Predictive Control. IEEE Transactions on Intelligent Transportation Systems 2024, 25 (6) , 4822-4832. https://doi.org/10.1109/TITS.2023.3342207
    15. Kaixuan Li, Chen Sun, Mingjie Zhang, Shuping Wang, Bin Wei, Yifeng Cheng, Xing Ju, Chao Xu. A Study of the Thermal Management and Discharge Strategies of Lithium-Ion Batteries in a Wide Temperature Range. Energies 2024, 17 (10) , 2319. https://doi.org/10.3390/en17102319
    16. Suyeon Oh, A-Re Jeon, Gukhyun Lim, Min Kyung Cho, Keun Hwa Chae, Seok Su Sohn, Minah Lee, Sung-Kyun Jung, Jihyun Hong. Fast discharging mitigates cathode-electrolyte interface degradation of LiNi0.6Mn0.2Co0.2O2 in rechargeable lithium batteries. Energy Storage Materials 2024, 65 , 103169. https://doi.org/10.1016/j.ensm.2023.103169
    17. A. Graule, F.F. Oehler, J. Schmitt, J. Li, A. Jossen. Development and Evaluation of a Physicochemical Equivalent Circuit Model for Lithium-Ion Batteries. Journal of The Electrochemical Society 2024, 171 (2) , 020503. https://doi.org/10.1149/1945-7111/ad1ec7
    18. Arun Thapa, Noah Hedding, Hongwei Gao. Fast charging of commercial lithium-ion battery without lithium plating. Journal of Energy Storage 2023, 74 , 109524. https://doi.org/10.1016/j.est.2023.109524
    19. Sobana P. Rangarajan, Conner Fear, Tanay Adhikary, Yevgen Barsukov, Gayatri Dadheech, Partha P. Mukherjee. Dynamics of lithium stripping on graphite electrodes after fast charging. Cell Reports Physical Science 2023, 4 (12) , 101740. https://doi.org/10.1016/j.xcrp.2023.101740
    20. F. F. Oehler, A. Graule, S. Kücher, T. Roth, A. Adam, J. Li, E. Ronge, R. Mörtel, A. Jossen. Multi-Reference Electrode Lithium-Ion Pouch Cell Design for Spatially Resolved Half-Cell Potential and Impedance Measurements. Journal of The Electrochemical Society 2023, 170 (11) , 110522. https://doi.org/10.1149/1945-7111/ad048d
    21. Tanvir R. Tanim, Sangwook Kim, Andrew M. Colclasure, Zhenzhen Yang, Kevin Gering, Peter J. Weddle, Michael Evans, Eric J. Dufek, Yulin Lin, Jianguo Wen, Francois Usseglio-Viretta, Alison R. Dunlop, Stephen E. Trask, Kandler Smith, Brian J. Ingram, Andrew N. Jansen. Rational designs to enable 10-min fast charging and long cycle life in lithium-ion batteries. Journal of Power Sources 2023, 582 , 233519. https://doi.org/10.1016/j.jpowsour.2023.233519
    22. Daniel Rutz, Felix Brauchle, Philipp Stehle, Ingolf Bauer, Timo Jacob. An Experimental Method to Determine the Measurement Error of Reference Electrodes within Lithium‐Ion Batteries. ChemElectroChem 2023, 10 (17) https://doi.org/10.1002/celc.202300216
    23. P. Pavan Kumar, Asutosh Agrawal, Debasis Nayak, Koushik Biswas, Sudipto Ghosh, Tarun Kumar Kundu. A comprehensive diffusion-induced stress coupled multiscale modeling and analysis in hard-carbon electrodes of Li-ion batteries. Physical Chemistry Chemical Physics 2023, 25 (30) , 20462-20472. https://doi.org/10.1039/D3CP01967E
    24. Abigale P. Monasterial, Peter J. Weddle, Kristen Atkinson, David S. Wragg, Andrew M. Colclasure, Francois L. E. Usseglio-Viretta, Natalie Seitzman, Jun-Sang Park, Jonathan Almer, Kandler Smith, Donal P. Finegan. Dynamic In‐Plane Heterogeneous and Inverted Response of Graphite to Fast Charging and Discharging Conditions in Lithium‐Ion Pouch Cells. Small Science 2023, 3 (7) https://doi.org/10.1002/smsc.202200067
    25. Yongzhi Zhang, Dou Han, Rui Xiong. Feature-Driven Closed-Loop Optimization for Battery Fast Charging Design with Machine Learning. Journal of The Electrochemical Society 2023, 170 (6) , 060508. https://doi.org/10.1149/1945-7111/acd8f8
    26. Inho Cho, Aravindha Raja Selvaraj, Jinsoo Bak, Heeje Kim, Kandasamy Prabakar. Mechanochemical Pretreated Mn+1AXn (MAX) Phase to Synthesize 2D-Ti3C2Tx MXene Sheets for High-Performance Supercapacitors. Nanomaterials 2023, 13 (11) , 1741. https://doi.org/10.3390/nano13111741
    27. Haijun Ruan, Bingxiang Sun, Jiuchun Jiang, Xiaojia Su, Xitian He, Shichang Ma, Wenzhong Gao. Optimal switching temperature for multi-objective heated-charging of lithium-ion batteries at subzero temperatures. Journal of Power Sources 2023, 562 , 232775. https://doi.org/10.1016/j.jpowsour.2023.232775
    28. Haijun Ruan, Jorge Varela Barreras, Timothy Engstrom, Yu Merla, Robert Millar, Billy Wu. Lithium-ion battery lifetime extension: A review of derating methods. Journal of Power Sources 2023, 563 , 232805. https://doi.org/10.1016/j.jpowsour.2023.232805
    29. Anupam Parlikar, Maximilian Schott, Ketaki Godse, Daniel Kucevic, Andreas Jossen, Holger Hesse. High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation. Applied Energy 2023, 333 , 120541. https://doi.org/10.1016/j.apenergy.2022.120541
    30. Vedran Bobanac, Hrvoje Pandžić. A Method for Quantifying Battery’s Fast Charging Ability and Application to Different Lithium-Ion Chemistries. 2023, 1-5. https://doi.org/10.1109/ISGTMiddleEast56437.2023.10078498
    31. Tanvir R. Tanim, Peter J. Weddle, Zhenzhen Yang, Andrew M. Colclasure, Harry Charalambous, Donal P. Finegan, Yanying Lu, Molleigh Preefer, Sangwook Kim, Jeffery M. Allen, Francois L. E. Usseglio‐Viretta, Parameswara R. Chinnam, Ira Bloom, Eric J. Dufek, Kandler Smith, Guoying Chen, Kamila M. Wiaderek, Johanna Nelson Weker, Yang Ren. Enabling Extreme Fast‐Charging: Challenges at the Cathode and Mitigation Strategies. Advanced Energy Materials 2022, 12 (46) https://doi.org/10.1002/aenm.202202795
    32. Yue Zhao, Ke Xu, Hao Zhong, Qin Xie, Changwei Zhao, Zhongbao Wei. Fast Charging Strategy Based on the Control-oriented Stress Model. 2022, 79-84. https://doi.org/10.1109/ICEI57064.2022.00019
    33. Ilya A. Shkrob, Mei Luo, Marco-Tulio F. Rodrigues, Stephen E. Trask, Daniel P. Abraham. Fast charging of Li-ion cells: Effect of separator membranes and mapping of “safe lines” to avoid Li plating. Journal of Power Sources 2022, 549 , 232086. https://doi.org/10.1016/j.jpowsour.2022.232086
    34. Iffat Ashraf, Saba Ahmad, Muhammad Arslan Raza, Ghulam Ali, Syed Rizwan, Mudassir Iqbal. 2D Ti3C2@MoO3 composite as an efficient anode material for high-performance supercapacitors. Materials Research Bulletin 2022, 153 , 111902. https://doi.org/10.1016/j.materresbull.2022.111902
    35. Matteo Dotoli, Emanuele Milo, Mattia Giuliano, Arianna Tiozzo, Marcello Baricco, Carlo Nervi, Massimiliano Ercole, Mauro Francesco Sgroi. Development of an Innovative Procedure for Lithium Plating Limitation and Characterization of 18650 Cycle Aged Cells for DCFC Automotive Applications. Batteries 2022, 8 (8) , 88. https://doi.org/10.3390/batteries8080088
    36. Amirhossein Hajizadeh, Taieb Shahalizade, Reza Riahifar, Maziar Sahba Yaghmaee, Babak Raissi, Saleh Gholam, Alireza Aghaei, Sepideh Rahimisheikh, Aliasghar Sadeghi Ghazvini. Electrophoretic deposition as a fabrication method for Li-ion battery electrodes and separators – A review. Journal of Power Sources 2022, 535 , 231448. https://doi.org/10.1016/j.jpowsour.2022.231448
    37. Patrick Münster, Martin Winter, Philip Niehoff. A Method to Determine Fast Charging Procedures by Operando Overvoltage Analysis. Journal of The Electrochemical Society 2022, 169 (7) , 070525. https://doi.org/10.1149/1945-7111/ac81f7
    38. Tanvir R. Tanim, Zhenzhen Yang, Donal P. Finegan, Parameswara R. Chinnam, Yulin Lin, Peter J. Weddle, Ira Bloom, Andrew M. Colclasure, Eric J. Dufek, Jianguo Wen, Yifen Tsai, Michael C. Evans, Kandler Smith, Jeffery M. Allen, Charles C. Dickerson, Alexander H. Quinn, Alison R. Dunlop, Stephen E. Trask, Andrew N. Jansen. A Comprehensive Understanding of the Aging Effects of Extreme Fast Charging on High Ni NMC Cathode. Advanced Energy Materials 2022, 12 (22) https://doi.org/10.1002/aenm.202103712
    39. Yalun Li, Xinlei Gao, Xuning Feng, Xuebing Han, Jiuyu Du, Languang Lu, Minggao Ouyang. Parameter-independent error correction for potential measurements by reference electrode in lithium-ion batteries. Journal of Energy Chemistry 2022, 67 , 34-45. https://doi.org/10.1016/j.jechem.2021.09.006
    40. Eric J. Dufek, Daniel P. Abraham, Ira Bloom, Bor-Rong Chen, Parameswara R. Chinnam, Andrew M. Colclasure, Kevin L. Gering, Matthew Keyser, Sangwook Kim, Weijie Mai, David C. Robertson, Marco-Tulio F. Rodrigues, Kandler Smith, Tanvir R. Tanim, Francois L.E. Usseglio-Viretta, Peter J. Weddle. Developing extreme fast charge battery protocols – A review spanning materials to systems. Journal of Power Sources 2022, 526 , 231129. https://doi.org/10.1016/j.jpowsour.2022.231129
    41. Ye Xiao, Rui Xu, Chong Yan, Jia‐Qi Huang, Qiang Zhang, Minggao Ouyang. A Toolbox of Reference Electrodes for Lithium Batteries. Advanced Functional Materials 2022, 32 (13) https://doi.org/10.1002/adfm.202108449
    42. João P. D. Faria, Ricardo L. Velho, Maria R. A. Calado, José A. N. Pombo, João B. L. Fermeiro, Sílvio J. P. S. Mariano. A New Charging Algorithm for Li-Ion Battery Packs Based on Artificial Neural Networks. Batteries 2022, 8 (2) , 18. https://doi.org/10.3390/batteries8020018
    43. Ningshengjie Gao, Sangwook Kim, Parameswara Chinnam, Eric J. Dufek, Andrew M. Colclasure, Andrew Jansen, Seoung-Bum Son, Ira Bloom, Alison Dunlop, Stephen Trask, Kevin L. Gering. Methodologies for Design, Characterization and Testing of Electrolytes that Enable Extreme Fast Charging of Lithium-ion Cells. Energy Storage Materials 2022, 44 , 296-312. https://doi.org/10.1016/j.ensm.2021.10.011
    44. Tongxin Li, Donglin Li, Qingbo Zhang, Jianhang Gao, Long Zhang, Xiaojiu Liu. Improving Fast Charging-Discharging Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Electronic Conductor LaNiO3 Crystallites. Materials 2022, 15 (1) , 396. https://doi.org/10.3390/ma15010396
    45. Juhyun Song, Zhe Liu, Kevin W. Knehr, Joseph J. Kubal, Hong-Keun Kim, Dennis W. Dees, Paul A. Nelson, Shabbir Ahmed. Pathways towards managing cost and degradation risk of fast charging cells with electrical and thermal controls. Energy & Environmental Science 2021, 14 (12) , 6564-6573. https://doi.org/10.1039/D1EE02286E
    46. Saran Pidaparthy, Marco-Tulio F. Rodrigues, Jian-Min Zuo, Daniel P. Abraham. Increased Disorder at Graphite Particle Edges Revealed by Multi-length Scale Characterization of Anodes from Fast-Charged Lithium-Ion Cells. Journal of The Electrochemical Society 2021, 168 (10) , 100509. https://doi.org/10.1149/1945-7111/ac2a7f
    47. Minkyu Kim, David C. Robertson, Dennis W. Dees, Koffi Pierre Yao, Wenquan Lu, Stephen E. Trask, Joel T. Kirner, Ira Bloom. Estimating the Diffusion Coefficient of Lithium in Graphite: Extremely Fast Charging and a Comparison of Data Analysis Techniques. Journal of The Electrochemical Society 2021, 168 (7) , 070506. https://doi.org/10.1149/1945-7111/ac0d4f
    48. A. Adam, E. Knobbe, J. Wandt, A. Kwade. Application of the differential charging voltage analysis to determine the onset of lithium-plating during fast charging of lithium-ion cells. Journal of Power Sources 2021, 495 , 229794. https://doi.org/10.1016/j.jpowsour.2021.229794

    ACS Applied Energy Materials

    Cite this: ACS Appl. Energy Mater. 2021, 4, 2, 1063–1068
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsaem.0c03114
    Published January 26, 2021
    Copyright 2021 © UChicago Argonne, LLC, Operator of Argonne National Laboratory

    Article Views

    3061

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.