Additively Manufactured Gradient Porous Ti–6Al–4V Hip Replacement Implants Embedded with Cell-Laden Gelatin Methacryloyl Hydrogels
- Elham DavoodiElham DavoodiMechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, CanadaDepartment of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United StatesCalifornia NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United StatesTerasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United StatesMore by Elham Davoodi
- ,
- Hossein MontazerianHossein MontazerianDepartment of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United StatesCalifornia NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United StatesTerasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United StatesMore by Hossein Montazerian
- ,
- Reza EsmaeilizadehReza EsmaeilizadehMechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, CanadaMore by Reza Esmaeilizadeh
- ,
- Ali Ch. DarabiAli Ch. DarabiInstitute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, GermanyMore by Ali Ch. Darabi
- ,
- Armin RashidiArmin RashidiSchool of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, CanadaMore by Armin Rashidi
- ,
- Javad KadkhodapourJavad KadkhodapourInstitute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, GermanyMore by Javad Kadkhodapour
- ,
- Hamid JahedHamid JahedMechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, CanadaMore by Hamid Jahed
- ,
- Mina HoorfarMina HoorfarSchool of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, CanadaMore by Mina Hoorfar
- ,
- Abbas S. MilaniAbbas S. MilaniSchool of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, CanadaMore by Abbas S. Milani
- ,
- Paul S. WeissPaul S. WeissCalifornia NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United StatesDepartment of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United StatesDepartment of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United StatesDepartment of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United StatesMore by Paul S. Weiss
- ,
- Ali KhademhosseiniAli KhademhosseiniDepartment of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United StatesCalifornia NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United StatesTerasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United StatesMore by Ali Khademhosseini
- , and
- Ehsan Toyserkani*Ehsan Toyserkani*Email: [email protected]Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, CanadaMore by Ehsan Toyserkani
Abstract

Laser additive manufacturing has led to a paradigm shift in the design of next-generation customized porous implants aiming to integrate better with the surrounding bone. However, conflicting design criteria have limited the development of fully functional porous implants; increasing porosity improves body fluid/cell-laden prepolymer permeability at the expense of compromising mechanical stability. Here, functionally gradient porosity implants and scaffolds designed based on interconnected triply periodic minimal surfaces (TPMS) are demonstrated. High local porosity is defined at the implant/tissue interface aiming to improve the biological response. Gradually decreasing porosity from the surface to the center of the porous constructs provides mechanical strength in selective laser melted Ti–6Al–4V implants. The effect of unit cell size is studied to discover the printability limit where the specific surface area is maximized. Furthermore, mechanical studies on the unit cell topology effects suggest that the bending-dominated architectures can provide significantly enhanced strength and deformability, compared to stretching-dominated architectures. A finite element (FE) model developed also showed great predictability (within ∼13%) of the mechanical responses of implants to physical activities. Finally, in vitro biocompatibility studies were conducted for two-dimensional (2D) and three-dimensional (3D) cases. The results of the 2D in conjunction with surface roughness show favored physical cell attachment on the implant surface. Also, the results of the 3D biocompatibility study for the scaffolds incorporated with a cell-laden gelatin methacryloyl (GelMA) hydrogel show excellent viability. The design procedure proposed here provides new insights into the development of porous hip implants with simultaneous high mechanical and biological responses.
Cited By
This article is cited by 44 publications.
- Narsimha Mamidi, Fatemeh Ijadi, Mohammad Hadi Norahan. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2023, Article ASAP.
- Maria L. Alfieri, Giacomo Riccucci, Sara Ferraris, Andrea Cochis, Alessandro C. Scalia, Lia Rimondini, Lucia Panzella, Silvia Spriano, Alessandra Napolitano. Deposition of Antioxidant and Cytocompatible Caffeic Acid-Based Thin Films onto Ti6Al4V Alloys through Hexamethylenediamine-Mediated Crosslinking. ACS Applied Materials & Interfaces 2023, 15
(24)
, 29618-29635. https://doi.org/10.1021/acsami.3c05564
- Xiaocong Pu, Lei Tong, Xinyue Wang, Quanying Liu, Manyu Chen, Xing Li, Gonggong Lu, Wanling Lan, Qi Li, Jie Liang, Yong Sun, Yujiang Fan, Xingdong Zhang. Bioinspired Hydrogel Anchoring 3DP GelMA/HAp Scaffolds Accelerates Bone Reconstruction. ACS Applied Materials & Interfaces 2022, 14
(18)
, 20591-20602. https://doi.org/10.1021/acsami.1c25015
- Xiaoxiao Tian, Zhi Zhao, Haibin Wang, Xuemei Liu, Xiaoyan Song. Progresses on the additive manufacturing of functionally graded metallic materials. Journal of Alloys and Compounds 2023, 960 , 170687. https://doi.org/10.1016/j.jallcom.2023.170687
- Fabian Günther, Stefan Pilz, Franz Hirsch, Markus Wagner, Markus Kästner, Annett Gebert, Martina Zimmermann. Experimental and numerical characterization of imperfect additively manufactured lattices based on triply periodic minimal surfaces. Materials & Design 2023, 233 , 112197. https://doi.org/10.1016/j.matdes.2023.112197
- Lincong Luo, Jiaying Li, Zhiwei Lin, Xiulin Cheng, Jiejie Wang, Yilin Wang, Yang Yang, Shiyu Li, Qinjie Ling, Jianhui Dai, Qinghong Wu, Wenhua Huang. Anisotropic biomimetic trabecular porous three-dimensional-printed Ti-6Al-4V cage for lumbar interbody fusion. Materials & Design 2023, 233 , 112254. https://doi.org/10.1016/j.matdes.2023.112254
- Mansoureh Rezapourian, Iwona Jasiuk, Mart Saarna, Irina Hussainova. Selective laser melted Ti6Al4V split-P TPMS lattices for bone tissue engineering. International Journal of Mechanical Sciences 2023, 251 , 108353. https://doi.org/10.1016/j.ijmecsci.2023.108353
- Fabian Günther, Stefan Pilz, Franz Hirsch, Markus Wagner, Markus Kästner, Annett Gebert, Martina Zimmermann. Shape optimization of additively manufactured lattices based on triply periodic minimal surfaces. Additive Manufacturing 2023, 73 , 103659. https://doi.org/10.1016/j.addma.2023.103659
- Lei Zhang, Bingjin Wang, Bo Song, Yonggang Yao, Seung-Kyum Choi, Cao Yang, Yusheng Shi. 3D Printed Biomimetic Metamaterials with Graded Porosity and Tapering Topology for Improved Cell Seeding and Bone Regeneration. Bioactive Materials 2023, 25 , 677-688. https://doi.org/10.1016/j.bioactmat.2022.07.009
- Maziar Ramezani, Zaidi Mohd Ripin. An Overview of Enhancing the Performance of Medical Implants with Nanocomposites. Journal of Composites Science 2023, 7
(5)
, 199. https://doi.org/10.3390/jcs7050199
- Yangzhi Zhu, Reihaneh Haghniaz, Martin C. Hartel, Shenghan Guan, Jamal Bahari, Zijie Li, Avijit Baidya, Ke Cao, Xiaoxiang Gao, Jinghang Li, Zhuohong Wu, Xuanbing Cheng, Bingbing Li, Sam Emaminejad, Paul S. Weiss, Ali Khademhosseini. A Breathable, Passive‐Cooling, Non‐Inflammatory, and Biodegradable Aerogel Electronic Skin for Wearable Physical‐Electrophysiological‐Chemical Analysis. Advanced Materials 2023, 35
(10)
https://doi.org/10.1002/adma.202209300
- Swapnil Vyavahare, Vinyas Mahesh, Vishwas Mahesh, Dineshkumar Harursampath. Additively manufactured meta-biomaterials: A state-of-the-art review. Composite Structures 2023, 305 , 116491. https://doi.org/10.1016/j.compstruct.2022.116491
- Javad Kadkhodapour, Anooshe Sadat Mirhakimi, Hossein Montazerian. Structural defects and mechanical properties of additively manufactured parts. 2023, 119-172. https://doi.org/10.1016/B978-0-323-88664-2.00006-3
- Bo Song, Lei Zhang, Yusheng Shi. Biological metamaterials. 2023, 139-221. https://doi.org/10.1016/B978-0-443-18900-5.00005-8
- Ya-Yun Tsai, Shu-Wei Chang. Pullout Strength of Triply Periodic Minimal Surface-Structured Bone Implants. International Journal of Mechanical Sciences 2023, 237 , 107795. https://doi.org/10.1016/j.ijmecsci.2022.107795
- Nan Yang, Zheng Qian, Huaxian Wei, Miao Zhao. Anisotropy and deformation of triply periodic minimal surface based lattices with skew transformation. Materials & Design 2023, 225 , 111595. https://doi.org/10.1016/j.matdes.2023.111595
- Nicola Bianco, Marcello Iasiello, G. Scarpati, M. Bartlett, G. M. Mauro, Assunta Andreozzi, Wilson K. S. Chiu. CORRELATIONS AMONG CHARACTERISTICS OF GYROID-TYPE CELLULAR FOAM STRUCTURES. 2023, 1005-1013. https://doi.org/10.1615/TFEC2023.exp.046031
- Wei Wang, Yinze Xiong, Renliang Zhao, Xiang Li, Weitao Jia. A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation. Journal of Nanobiotechnology 2022, 20
(1)
https://doi.org/10.1186/s12951-022-01277-0
- Zhichao Hu, Jiaqi Lu, Annan Hu, Yongjiang Dou, Sheng Wang, Dihan Su, Wang Ding, Ruixian Lian, Shunyi Lu, Lan Xiao, Yu-Lin Li, Jian Dong, Jian Zhou, Xuyong Yang, Libo Jiang. Engineering BPQDs/PLGA nanospheres-integrated wood hydrogel bionic scaffold for combinatory bone repair and osteolytic tumor therapy. Chemical Engineering Journal 2022, 446 , 137269. https://doi.org/10.1016/j.cej.2022.137269
- Fabian Günther, Franz Hirsch, Stefan Pilz, Markus Wagner, Annett Gebert, Markus Kästner, Martina Zimmermann. Structure-property relationships of imperfect additively manufactured lattices based on triply periodic minimal surfaces. Materials & Design 2022, 222 , 111036. https://doi.org/10.1016/j.matdes.2022.111036
- Elham Davoodi, Hossein Montazerian, Anooshe Sadat Mirhakimi, Masoud Zhianmanesh, Osezua Ibhadode, Shahriar Imani Shahabad, Reza Esmaeilizadeh, Einollah Sarikhani, Sahar Toorandaz, Shima A. Sarabi, Rohollah Nasiri, Yangzhi Zhu, Javad Kadkhodapour, Bingbing Li, Ali Khademhosseini, Ehsan Toyserkani. Additively manufactured metallic biomaterials. Bioactive Materials 2022, 15 , 214-249. https://doi.org/10.1016/j.bioactmat.2021.12.027
- Simone Murchio, Matteo Benedetti, Anastasia Berto, Francesca Agostinacchio, Gianluca Zappini, Devid Maniglio. Hybrid Ti6Al4V/Silk Fibroin Composite for Load-Bearing Implants: A Hierarchical Multifunctional Cellular Scaffold. Materials 2022, 15
(17)
, 6156. https://doi.org/10.3390/ma15176156
- Qiang Zhang, Limin Ma, Xiongfa Ji, Yue He, Yue Cui, Xuemin Liu, Chengkai Xuan, Zhenxing Wang, Wei Yang, Muyuan Chai, Xuetao Shi. High‐Strength Hydroxyapatite Scaffolds with Minimal Surface Macrostructures for Load‐Bearing Bone Regeneration. Advanced Functional Materials 2022, 32
(33)
https://doi.org/10.1002/adfm.202204182
- Yuan Jin, Sijia Zou, Bingchu Pan, Guangyong Li, Lei Shao, Jianke Du. Biomechanical properties of cylindrical and twisted triply periodic minimal surface scaffolds fabricated by laser powder bed fusion. Additive Manufacturing 2022, 56 , 102899. https://doi.org/10.1016/j.addma.2022.102899
- Sijia Zou, Yanru Mu, Bingchu Pan, Guangyong Li, Lei Shao, Jianke Du, Yuan Jin. Mechanical and biological properties of enhanced porous scaffolds based on triply periodic minimal surfaces. Materials & Design 2022, 219 , 110803. https://doi.org/10.1016/j.matdes.2022.110803
- Junfang Zhang, Xiaohong Chen, Yuanxi Sun, Jianxing Yang, Rui Chen, Yan Xiong, Wensheng Hou, Long Bai. Design of a biomimetic graded TPMS scaffold with quantitatively adjustable pore size. Materials & Design 2022, 218 , 110665. https://doi.org/10.1016/j.matdes.2022.110665
- Noura Sayed Al Hashimi, Soja Saghar Soman, Mano Govindharaj, Sanjairaj Vijayavenkataraman. 3D printing of complex architected metamaterial structures by simple material extrusion for bone tissue engineering. Materials Today Communications 2022, 31 , 103382. https://doi.org/10.1016/j.mtcomm.2022.103382
- Roya Fattahi, Fariba Mohebichamkhorami, Niloofar Taghipour, Saeed Heidari Keshel. The effect of extracellular matrix remodeling on material-based strategies for bone regeneration: Review article. Tissue and Cell 2022, 76 , 101748. https://doi.org/10.1016/j.tice.2022.101748
- Jiawei Feng, Jianzhong Fu, Xinhua Yao, Yong He. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing 2022, 4
(2)
, 022001. https://doi.org/10.1088/2631-7990/ac5be6
- Junfang Zhang, Yifan Shen, Yuanxi Sun, Jianxing Yang, Yu Gong, Ke Wang, Zhiqing Zhang, Xiaohong Chen, Long Bai. Design and mechanical testing of porous lattice structure with independent adjustment of pore size and porosity for bone implant. Journal of Materials Research and Technology 2022, 18 , 3240-3255. https://doi.org/10.1016/j.jmrt.2022.04.002
- Elham Davoodi, Hossein Montazerian, Masoud Zhianmanesh, Reza Abbasgholizadeh, Reihaneh Haghniaz, Avijit Baidya, Homeyra Pourmohammadali, Nasim Annabi, Paul S. Weiss, Ehsan Toyserkani, Ali Khademhosseini. Template‐Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels. Advanced Healthcare Materials 2022, 11
(7)
https://doi.org/10.1002/adhm.202102123
- Naresh Koju, Suyash Niraula, Behzad Fotovvati. Additively Manufactured Porous Ti6Al4V for Bone Implants: A Review. Metals 2022, 12
(4)
, 687. https://doi.org/10.3390/met12040687
- Hui Wang, Dingwen Tan, Zhipeng Liu, Hanfeng Yin, Guilin Wen. On crashworthiness of novel porous structure based on composite TPMS structures. Engineering Structures 2022, 252 , 113640. https://doi.org/10.1016/j.engstruct.2021.113640
- Cong Zhang, Hao Zheng, Lei Yang, Yang Li, Jiulu Jin, Wencao Cao, Chunze Yan, Yusheng Shi. Mechanical responses of sheet-based gyroid-type triply periodic minimal surface lattice structures fabricated using selective laser melting. Materials & Design 2022, 214 , 110407. https://doi.org/10.1016/j.matdes.2022.110407
- Anna Diez-Escudero, Brittmarie Andersson, Elin Carlsson, Benjamin Recker, Helmut Link, Josef D. Järhult, Nils P. Hailer. 3D-printed porous Ti6Al4V alloys with silver coating combine osteocompatibility and antimicrobial properties. Biomaterials Advances 2022, 133 , 112629. https://doi.org/10.1016/j.msec.2021.112629
- Yang Nan, Huaxian Wei, Miao Zhao. Anisotropy and Deformation of Triply Periodic Minimal Surface Based Lattices with Skew Transformation. SSRN Electronic Journal 2022, 13 https://doi.org/10.2139/ssrn.4202187
- Teerapong Poltue, Chatchai Karuna, Suppakrit Khrueaduangkham, Saran Seehanam, Patcharapit Promoppatum. Design exploration of 3D-printed triply periodic minimal surface scaffolds for bone implants. International Journal of Mechanical Sciences 2021, 211 , 106762. https://doi.org/10.1016/j.ijmecsci.2021.106762
- Reduan Asbai-Ghoudan, Sergio Ruiz de Galarreta, Naiara Rodriguez-Florez. Analytical model for the prediction of permeability of triply periodic minimal surfaces. Journal of the Mechanical Behavior of Biomedical Materials 2021, 124 , 104804. https://doi.org/10.1016/j.jmbbm.2021.104804
- Qingping Ma, Lei Zhang, Junhao Ding, Shuo Qu, Jin Fu, Mingdong Zhou, Ming Wang Fu, Xu Song, Michael Yu Wang. Elastically-isotropic open-cell minimal surface shell lattices with superior stiffness via variable thickness design. Additive Manufacturing 2021, 47 , 102293. https://doi.org/10.1016/j.addma.2021.102293
- Jiawei Feng, Bo Liu, Zhiwei Lin, Jianzhong Fu. Isotropic porous structure design methods based on triply periodic minimal surfaces. Materials & Design 2021, 210 , 110050. https://doi.org/10.1016/j.matdes.2021.110050
- Cheng Zhang, Zhaoliang Jiang, Li Zhao, Weiwei Guo, Zongxiang Jiang, Xinde Li, Guopeng Chen. Mechanical characteristics and deformation mechanism of functionally graded triply periodic minimal surface structures fabricated using stereolithography. International Journal of Mechanical Sciences 2021, 208 , 106679. https://doi.org/10.1016/j.ijmecsci.2021.106679
- Yinze Xiong, Zhengzhe Han, Jiawei Qin, Lanlan Dong, Hang Zhang, Yanan Wang, Huajiang Chen, Xiang Li. Effects of porosity gradient pattern on mechanical performance of additive manufactured Ti-6Al-4V functionally graded porous structure. Materials & Design 2021, 208 , 109911. https://doi.org/10.1016/j.matdes.2021.109911
- Yi-Ting Lin, Tuan-Ti Hsu, Yu-Wei Liu, Chia-Tze Kao, Tsui-Hsien Huang. Bidirectional Differentiation of Human-Derived Stem Cells Induced by Biomimetic Calcium Silicate-Reinforced Gelatin Methacrylate Bioink for Odontogenic Regeneration. Biomedicines 2021, 9
(8)
, 929. https://doi.org/10.3390/biomedicines9080929
- Zhifei Dong, Xin Zhao. Application of TPMS structure in bone regeneration. Engineered Regeneration 2021, 2 , 154-162. https://doi.org/10.1016/j.engreg.2021.09.004