Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices
My Activity

Figure 1Loading Img
    Research Article

    Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices
    Click to copy article linkArticle link copied!

    View Author Information
    The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 Japan
    Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
    Other Access Options

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2015, 7, 39, 22012–22017
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.5b06915
    Published September 24, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Optically transparent cellulose nanopaper is one of the best candidate substrates for flexible electronics. Some types of cellulose nanopaper are made of mechanically or chemically modified cellulose nanofibers. Among these, nanopapers produced from chemically modified cellulose nanofibers are the most promising substrate because of their lower power consumption during fabrication and higher optical transparency (lower haze). However, because their thermal durability is as low as plastics, paper devices using chemically modified nanopaper often do not have sufficiently high performance. In this study, by decreasing the carboxylate content in the cellulose nanofibers, the thermal durability of chemically modified nanopaper was drastically improved while maintaining high optical transparency, low coefficient of thermal expansion, and low power consumption during fabrication. As a result, light-emitting diode lights illuminated on the chemically modified nanopaper via highly conductive lines, which were obtained by printing silver nanoparticle inks and high-temperature heating.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 82 publications.

    1. Sishun Zhao, Zhiqiang Fang, Yu Liu, Guanhui Li, Xiaoqi Lin, Kaihuang Chen, Xueqing Qiu. Enhancing Aging Resistance of Transparent Paper: Structural Modification of Wood Fibers via Carboxymethylation. ACS Sustainable Chemistry & Engineering 2024, 12 (30) , 11244-11252. https://doi.org/10.1021/acssuschemeng.4c02619
    2. Qing-Fang Guan, Kun-Peng Yang, Zi-Meng Han, Huai-Bin Yang, Zhang-Chi Ling, Chong-Han Yin, Shu-Hong Yu. Sustainable Multiscale High-Haze Transparent Cellulose Fiber Film via a Biomimetic Approach. ACS Materials Letters 2022, 4 (1) , 87-92. https://doi.org/10.1021/acsmaterialslett.1c00630
    3. Hiroyuki Kono, Taiki Uno, Haruto Tsujisaki, Tokuo Matsushima, Kenji Tajima. Nanofibrillated Bacterial Cellulose Modified with (3-Aminopropyl)trimethoxysilane under Aqueous Conditions: Applications to Poly(methyl methacrylate) Fiber-Reinforced Nanocomposites. ACS Omega 2020, 5 (45) , 29561-29569. https://doi.org/10.1021/acsomega.0c04533
    4. Hiroyuki Kono, Taiki Uno, Haruto Tsujisaki, Hikaru Anai, Ryota Kishimoto, Tokuo Matsushima, Kenji Tajima. Nanofibrillated Bacterial Cellulose Surface Modified with Methyltrimethoxysilane for Fiber-Reinforced Composites. ACS Applied Nano Materials 2020, 3 (8) , 8232-8241. https://doi.org/10.1021/acsanm.0c01670
    5. Gaoyuan Hou, Yu Liu, Dejian Zhang, Guanhui Li, Hong Xie, Zhiqiang Fang. Approaching Theoretical Haze of Highly Transparent All-Cellulose Composite Films. ACS Applied Materials & Interfaces 2020, 12 (28) , 31998-32005. https://doi.org/10.1021/acsami.0c08586
    6. Kousuke Tsuchiya, Neval Yilmaz, Takaaki Miyamoto, Hiroyasu Masunaga, Keiji Numata. Zwitterionic Polypeptides: Chemoenzymatic Synthesis and Loosening Function for Cellulose Crystals. Biomacromolecules 2020, 21 (5) , 1785-1794. https://doi.org/10.1021/acs.biomac.9b01700
    7. Ruiping Wang, Huang Yu, Mahmut Dirican, Linlin Chen, Dongjun Fang, Yan Tian, Chaoyi Yan, Jingyi Xie, Dongmei Jia, Hao Liu, Jiasheng Wang, Fangcheng Tang, Abdullah M. Asiri, Xiangwu Zhang, Jinsong Tao. Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells. ACS Applied Energy Materials 2020, 3 (1) , 785-793. https://doi.org/10.1021/acsaem.9b01943
    8. Dabum Kim, Youngsang Ko, Goomin Kwon, Ung-Jin Kim, Jong Hun Lee, Jungmok You. 2,2,6,6-Tetramethylpiperidine-1-oxy-Oxidized Cellulose Nanofiber-Based Nanocomposite Papers for Facile In Situ Surface-Enhanced Raman Scattering Detection. ACS Sustainable Chemistry & Engineering 2019, 7 (18) , 15640-15647. https://doi.org/10.1021/acssuschemeng.9b03680
    9. Lei Gao, Chengxian Zhu, Lin Li, Chengwu Zhang, Jinhua Liu, Hai-Dong Yu, Wei Huang. All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. ACS Applied Materials & Interfaces 2019, 11 (28) , 25034-25042. https://doi.org/10.1021/acsami.9b07465
    10. Dabum Kim, Youngsang Ko, Goomin Kwon, Ung-Jin Kim, Jungmok You. Micropatterning Silver Nanowire Networks on Cellulose Nanopaper for Transparent Paper Electronics. ACS Applied Materials & Interfaces 2018, 10 (44) , 38517-38525. https://doi.org/10.1021/acsami.8b15230
    11. Mingwei Zhu, Chao Jia, Yilin Wang, Zhiqiang Fang, Jiaqi Dai, Lisha Xu, Dafang Huang, Jiayang Wu, Yongfeng Li, Jianwei Song, Yonggang Yao, Emily Hitz, Yanbin Wang, Liangbing Hu. Isotropic Paper Directly from Anisotropic Wood: Top-Down Green Transparent Substrate Toward Biodegradable Electronics. ACS Applied Materials & Interfaces 2018, 10 (34) , 28566-28571. https://doi.org/10.1021/acsami.8b08055
    12. Deepu A. Gopakumar, Avinash R. Pai, Yasir Beeran Pottathara, Daniel Pasquini, Luís Carlos de Morais, Mereena Luke, Nandakumar Kalarikkal, Yves Grohens, Sabu Thomas. Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band. ACS Applied Materials & Interfaces 2018, 10 (23) , 20032-20043. https://doi.org/10.1021/acsami.8b04549
    13. Youngjun Song, Sejung Kim, and Michael J. Heller . An Implantable Transparent Conductive Film with Water Resistance and Ultrabendability for Electronic Devices. ACS Applied Materials & Interfaces 2017, 9 (48) , 42302-42312. https://doi.org/10.1021/acsami.7b11801
    14. Chao Jia, Huiyang Bian, Tingting Gao, Feng Jiang, Iain Michael Kierzewski, Yilin Wang, Yonggang Yao, Liheng Chen, Ziqiang Shao, J. Y. Zhu, and Liangbing Hu . Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. ACS Applied Materials & Interfaces 2017, 9 (34) , 28922-28929. https://doi.org/10.1021/acsami.7b08760
    15. Siyi Ming, Gang Chen, Jiahao He, Yudi Kuang, Yu Liu, Ruiqiang Tao, Honglong Ning, Penghui Zhu, Yingyao Liu, and Zhiqiang Fang . Highly Transparent and Self-Extinguishing Nanofibrillated Cellulose-Monolayer Clay Nanoplatelet Hybrid Films. Langmuir 2017, 33 (34) , 8455-8462. https://doi.org/10.1021/acs.langmuir.7b01665
    16. Honglong Ning, Yong Zeng, Yudi Kuang, Zeke Zheng, Panpan Zhou, Rihui Yao, Hongke Zhang, Wenzhong Bao, Gang Chen, Zhiqiang Fang, and Junbiao Peng . Room-Temperature Fabrication of High-Performance Amorphous In–Ga–Zn–O/Al2O3 Thin-Film Transistors on Ultrasmooth and Clear Nanopaper. ACS Applied Materials & Interfaces 2017, 9 (33) , 27792-27800. https://doi.org/10.1021/acsami.7b07525
    17. Oleksandr Nechyporchuk, Junchun Yu, Vincent A. Nierstrasz, and Romain Bordes . Cellulose Nanofibril-Based Coatings of Woven Cotton Fabrics for Improved Inkjet Printing with a Potential in E-Textile Manufacturing. ACS Sustainable Chemistry & Engineering 2017, 5 (6) , 4793-4801. https://doi.org/10.1021/acssuschemeng.7b00200
    18. Huajing Fang, Jiangwei Li, Jie Ding, Yue Sun, Qiang Li, Jia-Lin Sun, Liduo Wang, and Qingfeng Yan . An Origami Perovskite Photodetector with Spatial Recognition Ability. ACS Applied Materials & Interfaces 2017, 9 (12) , 10921-10928. https://doi.org/10.1021/acsami.7b02213
    19. Thanakorn Yeamsuksawat, Hyo Jeong Kim, Youngho Eom. Shape-tunable and sustainable carbon materials derived from nanocellulose and nanochitin: carbonization, structures, and applications. Materials Today Energy 2024, 43 , 101604. https://doi.org/10.1016/j.mtener.2024.101604
    20. Xingyu Huang, Zhongyuan Sun, Yidan Zhong, Xiaoliang Ding, Lu Chen, Hua Chen, Zhijun Hu, Xiaofan Zhou, Hailong Lu. Constructing a “micro-nano collaboration” network via disk-milling: Value-enhanced utilization of flexible temperature-resistant cellulose insulation films. International Journal of Biological Macromolecules 2024, 264 , 130345. https://doi.org/10.1016/j.ijbiomac.2024.130345
    21. Zuwu Tang, Xinxing Lin, Meiqiong Yu, Ajoy Kanti Mondal, Hui Wu. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. International Journal of Biological Macromolecules 2024, 259 , 129081. https://doi.org/10.1016/j.ijbiomac.2023.129081
    22. Nisha Nandakumar, Vidya Francis, P. S. Shasiya, Ajalesh B. Nair. Potential Applications of Nanocellulose. 2024, 1-26. https://doi.org/10.1007/978-981-19-6772-6_36-1
    23. Nisha Nandakumar, Vidya Francis, P. S. Shasiya, Ajalesh B. Nair. Potential Applications of Nanocellulose. 2024, 959-983. https://doi.org/10.1007/978-981-99-6727-8_36
    24. Xingyu Huang, Yidan Zhong, Lu Chen, Xiaoliang Ding, Hua Chen, Zhijun Hu, Xiaofan Zhou, Minliang Wang, Xianzhong Dai. A novel salt-barrier method of preparation flexible temperature resistant full-component nanocellulose membranes. International Journal of Biological Macromolecules 2023, 253 , 127387. https://doi.org/10.1016/j.ijbiomac.2023.127387
    25. Yintong Huang, Takaaki Kasuga, Masaya Nogi, Hirotaka Koga. Clearly transparent and air-permeable nanopaper with porous structures consisting of TEMPO-oxidized cellulose nanofibers. RSC Advances 2023, 13 (31) , 21494-21501. https://doi.org/10.1039/D3RA03840H
    26. Bruno Las-Casas, Valdeir Arantes. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging. International Journal of Biological Macromolecules 2023, 242 , 125057. https://doi.org/10.1016/j.ijbiomac.2023.125057
    27. Jianzhong Wang, Kaiqing Wang, Fei Xiao. A simple and efficient transfer method for fabricating stretchable AgNW patterns on PDMS using carboxylated cellulose nanofibers as a sacrificial layer. Nanoscale 2023, 15 (20) , 9031-9039. https://doi.org/10.1039/D3NR01029E
    28. Yeon Ho Kim, Hyun-Ji Kim, Ki Sun Yoon, Jong-Whan Rhim. Cellulose nanofiber/deacetylated quaternary chitosan composite packaging film for growth inhibition of Listeria monocytogenes in raw salmon. Food Packaging and Shelf Life 2023, 35 , 101040. https://doi.org/10.1016/j.fpsl.2023.101040
    29. Xuan-Ran Ong, Adrielle Xianwen Chen, Ning Li, Yi Yan Yang, He-Kuan Luo. Nanocellulose: Recent Advances Toward Biomedical Applications. Small Science 2023, 3 (2) https://doi.org/10.1002/smsc.202200076
    30. Mary T. Motloung, Sifiso I. Magagula, Andiswa Kaleni, Tlholohelo S. Sikhosana, Kgomotso Lebelo, Mokgaotsa J. Mochane. Recent Advances on Chemically Functionalized Cellulose-Based Materials for Arsenic Removal in Wastewater: A Review. Water 2023, 15 (4) , 793. https://doi.org/10.3390/w15040793
    31. . Collective Motions of Electrons Around Various Charged Insulators. 2022, 185-194. https://doi.org/10.1002/9783527829712.ch10
    32. Tengku Arisyah Tengku Yasim-Anuar, Hidayah Ariffin, Farah Nadia Mohammad Padzil, Nur Sharmila Sharip, Lawrence Ng Yee-Foong, Siti Shazra Shazleen, Liana Noor Megashah, Nur Farisha Abd-Rahim, Mohd Ali Hassan. Nanocellulose applications in packaging materials. 2022, 289-310. https://doi.org/10.1016/B978-0-323-89909-3.00003-1
    33. Anindita De, Mridula Guin, N.B. Singh. Synthesis and properties of cellulose-based nanobiosorbents. 2022, 275-316. https://doi.org/10.1016/B978-0-323-90912-9.00013-7
    34. Yoko Okahisa, Yuno Yasunaga, Karin Iwai, Shin-ichi Yagi, Kentaro Abe, Ibuki Nishizawa, Shinsuke Ifuku. Optically transparent silk fibroin nanofiber paper maintaining native β-sheet secondary structure obtained by cyclic mechanical nanofibrillation process. Materials Today Communications 2021, 29 , 102895. https://doi.org/10.1016/j.mtcomm.2021.102895
    35. Hyun-Ji Kim, Swarup Roy, Jong-Whan Rhim. Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. Journal of Environmental Chemical Engineering 2021, 9 (5) , 106043. https://doi.org/10.1016/j.jece.2021.106043
    36. Son Van Nguyen, Bong-Kee Lee. Microfibrillated cellulose film with enhanced mechanical and water-resistant properties by glycerol and hot-pressing treatment. Cellulose 2021, 28 (9) , 5693-5705. https://doi.org/10.1007/s10570-021-03894-8
    37. Naoto Koyama, Itsuo Hanasaki. Spatio-temporally controlled suppression of the coffee-ring phenomenon by cellulose nanofibers. Soft Matter 2021, 17 (18) , 4826-4833. https://doi.org/10.1039/D1SM00315A
    38. Mengying Wang, Xiangxiang Jia, Wanshuang Liu, Xiaobo Lin. Water insoluble and flexible transparent film based on carboxymethyl cellulose. Carbohydrate Polymers 2021, 255 , 117353. https://doi.org/10.1016/j.carbpol.2020.117353
    39. Viktoriya Pakharenko, Javad Sameni, Samir Konar, Muhammad Pervaiz, Weimin Yang, Jimi Tjong, Kristiina Oksman, Mohini Sain. Cellulose nanofiber thin-films as transparent and durable flexible substrates for electronic devices. Materials & Design 2021, 197 , 109274. https://doi.org/10.1016/j.matdes.2020.109274
    40. Chenyang Li, Takaaki Kasuga, Kojiro Uetani, Hirotaka Koga, Masaya Nogi. High-Speed Fabrication of Clear Transparent Cellulose Nanopaper by Applying Humidity-Controlled Multi-Stage Drying Method. Nanomaterials 2020, 10 (11) , 2194. https://doi.org/10.3390/nano10112194
    41. Daisuke Shindo, Zentaro Akase. Direct observation of electric and magnetic fields of functional materials. Materials Science and Engineering: R: Reports 2020, 142 , 100564. https://doi.org/10.1016/j.mser.2020.100564
    42. Liana Noor Megashah, Hidayah Ariffin, Mohd Rafein Zakaria, Mohd Ali Hassan, Yoshito Andou, Farah Nadia Mohammad Padzil. Modification of cellulose degree of polymerization by superheated steam treatment for versatile properties of cellulose nanofibril film. Cellulose 2020, 27 (13) , 7417-7429. https://doi.org/10.1007/s10570-020-03296-2
    43. Jyotish Patidar, Susumu Horita. Deposition Condition at Low Temperature for Crystallization Enhancement of YSZ Films on Glass Substrates by Reactive Sputtering. 2020, 89-92. https://doi.org/10.23919/AM-FPD49417.2020.9224496
    44. Xinping Li, Xin Zhang, Shuangquan Yao, Hui Chang, Yaoyu Wang, Zhao Zhang. UV-blocking, transparent and hazy cellulose nanopaper with superior strength based on varied components of poplar mechanical pulp. Cellulose 2020, 27 (11) , 6563-6576. https://doi.org/10.1007/s10570-020-03236-0
    45. Hairul Abral, Jeri Ariksa, Melbi Mahardika, Dian Handayani, Ibtisamatul Aminah, Neny Sandrawati, Eni Sugiarti, Ahmad Novi Muslimin, Santi Dewi Rosanti. Effect of heat treatment on thermal resistance, transparency and antimicrobial activity of sonicated ginger cellulose film. Carbohydrate Polymers 2020, 240 , 116287. https://doi.org/10.1016/j.carbpol.2020.116287
    46. Tatsuya Sato, Shunichi Mori, Melati Septiyanti, Hiroyuki Nakamura, Chizuru Hongo, Takuya Matsumoto, Takashi Nishino. Preparation and characterization of cellulose nanofiber cryogels as oil absorbents and enzymatic lipolysis scaffolds. Carbohydrate Research 2020, 493 , 108020. https://doi.org/10.1016/j.carres.2020.108020
    47. Hui He, Ruoyang Chen, Liyuan Zhang, Timothy Williams, Xiya Fang, Wei Shen. Fabrication of single-crystalline gold nanowires on cellulose nanofibers. Journal of Colloid and Interface Science 2020, 562 , 333-341. https://doi.org/10.1016/j.jcis.2019.11.093
    48. Guodong Li, Dehai Yu, Zhaoping Song, Huili Wang, Wenxia Liu. Reducing formation time while improving transparency and strength of cellulose nanostructured paper with polyvinylpyrrolidone and Laponite. Carbohydrate Polymers 2020, 230 , 115580. https://doi.org/10.1016/j.carbpol.2019.115580
    49. Hairul Abral, Jeri Ariksa, Melbi Mahardika, Dian Handayani, Ibtisamatul Aminah, Neny Sandrawati, Angga Bahri Pratama, Nural Fajri, S.M. Sapuan, R.A. Ilyas. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocolloids 2020, 98 , 105266. https://doi.org/10.1016/j.foodhyd.2019.105266
    50. Weisheng Yang, Ying Gao, Chu Zuo, Yulin Deng, Hongqi Dai. Thermally-induced cellulose nanofibril films with near-complete ultraviolet-blocking and improved water resistance. Carbohydrate Polymers 2019, 223 , 115050. https://doi.org/10.1016/j.carbpol.2019.115050
    51. Pegah Tayeb, Ali H. Tayeb. Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review. Carbohydrate Polymers 2019, 224 , 115149. https://doi.org/10.1016/j.carbpol.2019.115149
    52. Zhiqiang Fang, Gaoyuan Hou, Chaoji Chen, Liangbing Hu. Nanocellulose-based films and their emerging applications. Current Opinion in Solid State and Materials Science 2019, 23 (4) , 100764. https://doi.org/10.1016/j.cossms.2019.07.003
    53. Zhenzhen Li, Wenxia Liu, Feixiang Guan, Guodong Li, Zhaoping Song, Dehai Yu, Huili Wang, Hong Liu. Using cellulose fibers to fabricate transparent paper by microfibrillation. Carbohydrate Polymers 2019, 214 , 26-33. https://doi.org/10.1016/j.carbpol.2019.03.019
    54. Helen H. Hsu, Wen Zhong. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review. Membranes 2019, 9 (6) , 74. https://doi.org/10.3390/membranes9060074
    55. Jingze Liu, Jiamei Lai, Xingyuan Huang, Hesheng Liu. Nanocellulose-Based Hybrid Hydrogels as Flexible Cathodes of Aqueous Zn-Ion Batteries. Nano 2019, 14 (04) , 1950047. https://doi.org/10.1142/S1793292019500474
    56. Jing Ru, Congcong Tong, Ning Chen, Pengjia Shan, Xingke Zhao, Xuying Liu, Jinzhou Chen, Qian Li, Xiaohuan Liu, Hongzhi Liu, Ying Zhao. Morphological and property characteristics of surface-quaternized nanofibrillated cellulose derived from bamboo pulp. Cellulose 2019, 26 (3) , 1683-1701. https://doi.org/10.1007/s10570-018-2146-z
    57. Reiji Motohashi, Itsuo Hanasaki. Characterization of aqueous cellulose nanofiber dispersions from microscopy movie data of Brownian particles by trajectory analysis. Nanoscale Advances 2019, 1 (1) , 421-429. https://doi.org/10.1039/C8NA00214B
    58. Robson R. Silva, Sidney J.L. Ribeiro, Hernane S. Barud, Helida O. Barud, Osvaldo N. Oliveira, J.R. Mejía-Salazar. Biopolymer-Metal Composites. 2019, 261-301. https://doi.org/10.1016/B978-0-08-102378-5.00011-8
    59. Antonio Norio Nakagaito, Yukiko Ishikura, Hitoshi Takagi. Transparent Green Composites. 2018, 187-210. https://doi.org/10.1002/9781119323327.ch8
    60. Yiliang Zhou, Yinyong Li, Feyza Dundar, Kenneth R. Carter, James J. Watkins. Fabrication of patterned cellulose film via solvent-assisted soft nanoimprint lithography at a submicron scale. Cellulose 2018, 25 (9) , 5185-5194. https://doi.org/10.1007/s10570-018-1920-2
    61. Jianyu Xia, Zhe Zhang, Wei Liu, Vincent C. F. Li, Yunfeng Cao, Wei Zhang, Yulin Deng. Highly transparent 100% cellulose nanofibril films with extremely high oxygen barriers in high relative humidity. Cellulose 2018, 25 (7) , 4057-4066. https://doi.org/10.1007/s10570-018-1843-y
    62. Eero Kontturi, Päivi Laaksonen, Markus B. Linder, Nonappa, André H. Gröschel, Orlando J. Rojas, Olli Ikkala. Advanced Materials through Assembly of Nanocelluloses. Advanced Materials 2018, 30 (24) https://doi.org/10.1002/adma.201703779
    63. Takaaki Kasuga, Noriyuki Isobe, Hitomi Yagyu, Hirotaka Koga, Masaya Nogi. Clearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication. Nanomaterials 2018, 8 (2) , 104. https://doi.org/10.3390/nano8020104
    64. Wenyi Huang. Cellulose Nanopapers. 2018, 121-173. https://doi.org/10.1016/B978-0-323-48019-2.00005-0
    65. Erhan Zor, Sabri Alpaydin, Aylin Arici, Muhammed Esad Saglam, Haluk Bingol. Photoluminescent nanopaper-based microcuvette for iodide detection in seawater. Sensors and Actuators B: Chemical 2018, 254 , 1216-1224. https://doi.org/10.1016/j.snb.2017.07.208
    66. Noriyuki Isobe, Takaki Kasuga, Masaya Nogi. Clear transparent cellulose nanopaper prepared from a concentrated dispersion by high-humidity drying. RSC Advances 2018, 8 (4) , 1833-1837. https://doi.org/10.1039/C7RA12672G
    67. Yuanyuan Li, Xuan Yang, Qiliang Fu, Ramiro Rojas, Min Yan, Lars Berglund. Towards centimeter thick transparent wood through interface manipulation. Journal of Materials Chemistry A 2018, 6 (3) , 1094-1101. https://doi.org/10.1039/C7TA09973H
    68. Daniel Hoenders, Jiaqi Guo, Anja S. Goldmann, Christopher Barner-Kowollik, Andreas Walther. Photochemical ligation meets nanocellulose: a versatile platform for self-reporting functional materials. Materials Horizons 2018, 5 (3) , 560-568. https://doi.org/10.1039/C8MH00241J
    69. Masami Aono, Tomo Harata, Taku Odawara, Shinnosuke Asai, Dai Orihara, Masaya Nogi. Deposition of amorphous carbon nitride films on flexible substrates by reactive sputtering for applications in light-driven active devices. Japanese Journal of Applied Physics 2018, 57 (1S) , 01AC01. https://doi.org/10.7567/JJAP.57.01AC01
    70. Tiina Nypelö, Christiane Laine, Jérôme Colson, Ute Henniges, Tekla Tammelin. Submicron hierarchy of cellulose nanofibril films with etherified hemicelluloses. Carbohydrate Polymers 2017, 177 , 126-134. https://doi.org/10.1016/j.carbpol.2017.08.086
    71. Karin Lichtenstein, Nathalie Lavoine. Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polymer Degradation and Stability 2017, 146 , 53-60. https://doi.org/10.1016/j.polymdegradstab.2017.09.018
    72. Tae Gwang Yun, Donghyuk Kim, Yong Ho Kim, Minkyu Park, Seungmin Hyun, Seung Min Han. Photoresponsive Smart Coloration Electrochromic Supercapacitor. Advanced Materials 2017, 29 (32) https://doi.org/10.1002/adma.201606728
    73. Xu Du, Zhe Zhang, Wei Liu, Yulin Deng. Nanocellulose-based conductive materials and their emerging applications in energy devices - A review. Nano Energy 2017, 35 , 299-320. https://doi.org/10.1016/j.nanoen.2017.04.001
    74. Hitomi Yagyu, Shinsuku Ifuku, Masaya Nogi. Acetylation of optically transparent cellulose nanopaper for high thermal and moisture resistance in a flexible device substrate. Flexible and Printed Electronics 2017, 2 (1) , 014003. https://doi.org/10.1088/2058-8585/aa60f4
    75. Ming-Chun Hsieh, Hirotaka Koga, Katsuaki Suganuma, Masaya Nogi. Hazy Transparent Cellulose Nanopaper. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep41590
    76. Ahmed Barhoum, Pieter Samyn, Thomas Öhlund, Alain Dufresne. Review of recent research on flexible multifunctional nanopapers. Nanoscale 2017, 9 (40) , 15181-15205. https://doi.org/10.1039/C7NR04656A
    77. Farhan Ansari, Erik L. Lindh, Istvan Furo, Mats K.G. Johansson, Lars A. Berglund. Interface tailoring through covalent hydroxyl-epoxy bonds improves hygromechanical stability in nanocellulose materials. Composites Science and Technology 2016, 134 , 175-183. https://doi.org/10.1016/j.compscitech.2016.08.002
    78. Umberto Celano, Kazuki Nagashima, Hirotaka Koga, Masaya Nogi, Fuwei Zhuge, Gang Meng, Yong He, Jo De Boeck, Malgorzata Jurczak, Wilfried Vandervorst, Takeshi Yanagida. All-nanocellulose nonvolatile resistive memory. NPG Asia Materials 2016, 8 (9) , e310-e310. https://doi.org/10.1038/am.2016.144
    79. Fanny Hoeng, Aurore Denneulin, Julien Bras. Use of nanocellulose in printed electronics: a review. Nanoscale 2016, 8 (27) , 13131-13154. https://doi.org/10.1039/C6NR03054H
    80. Yasir Beeran P. T., Vid Bobnar, Selestina Gorgieva, Yves Grohens, Matjaž Finšgar, Sabu Thomas, Vanja Kokol. Mechanically strong, flexible and thermally stable graphene oxide/nanocellulosic films with enhanced dielectric properties. RSC Advances 2016, 6 (54) , 49138-49149. https://doi.org/10.1039/C6RA06744A
    81. Lingju Meng, Seyed Milad Mahpeykar, Qiuyang Xiong, Behzad Ahvazi, Xihua Wang. Strain sensors on water-soluble cellulose nanofibril paper by polydimethylsiloxane (PDMS) stencil lithography. RSC Advances 2016, 6 (88) , 85427-85433. https://doi.org/10.1039/C6RA10069D
    82. Fanny Hoeng, Aurore Denneulin, Guillaume Krosnicki, Julien Bras. Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films. Journal of Materials Chemistry C 2016, 4 (46) , 10945-10954. https://doi.org/10.1039/C6TC03629E

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2015, 7, 39, 22012–22017
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.5b06915
    Published September 24, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    4208

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.