Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper DevicesClick to copy article linkArticle link copied!
Abstract
Optically transparent cellulose nanopaper is one of the best candidate substrates for flexible electronics. Some types of cellulose nanopaper are made of mechanically or chemically modified cellulose nanofibers. Among these, nanopapers produced from chemically modified cellulose nanofibers are the most promising substrate because of their lower power consumption during fabrication and higher optical transparency (lower haze). However, because their thermal durability is as low as plastics, paper devices using chemically modified nanopaper often do not have sufficiently high performance. In this study, by decreasing the carboxylate content in the cellulose nanofibers, the thermal durability of chemically modified nanopaper was drastically improved while maintaining high optical transparency, low coefficient of thermal expansion, and low power consumption during fabrication. As a result, light-emitting diode lights illuminated on the chemically modified nanopaper via highly conductive lines, which were obtained by printing silver nanoparticle inks and high-temperature heating.
Cited By
This article is cited by 82 publications.
- Sishun Zhao, Zhiqiang Fang, Yu Liu, Guanhui Li, Xiaoqi Lin, Kaihuang Chen, Xueqing Qiu. Enhancing Aging Resistance of Transparent Paper: Structural Modification of Wood Fibers via Carboxymethylation. ACS Sustainable Chemistry & Engineering 2024, 12
(30)
, 11244-11252. https://doi.org/10.1021/acssuschemeng.4c02619
- Qing-Fang Guan, Kun-Peng Yang, Zi-Meng Han, Huai-Bin Yang, Zhang-Chi Ling, Chong-Han Yin, Shu-Hong Yu. Sustainable Multiscale High-Haze Transparent Cellulose Fiber Film via a Biomimetic Approach. ACS Materials Letters 2022, 4
(1)
, 87-92. https://doi.org/10.1021/acsmaterialslett.1c00630
- Hiroyuki Kono, Taiki Uno, Haruto Tsujisaki, Tokuo Matsushima, Kenji Tajima. Nanofibrillated Bacterial Cellulose Modified with (3-Aminopropyl)trimethoxysilane under Aqueous Conditions: Applications to Poly(methyl methacrylate) Fiber-Reinforced Nanocomposites. ACS Omega 2020, 5
(45)
, 29561-29569. https://doi.org/10.1021/acsomega.0c04533
- Hiroyuki Kono, Taiki Uno, Haruto Tsujisaki, Hikaru Anai, Ryota Kishimoto, Tokuo Matsushima, Kenji Tajima. Nanofibrillated Bacterial Cellulose Surface Modified with Methyltrimethoxysilane for Fiber-Reinforced Composites. ACS Applied Nano Materials 2020, 3
(8)
, 8232-8241. https://doi.org/10.1021/acsanm.0c01670
- Gaoyuan Hou, Yu Liu, Dejian Zhang, Guanhui Li, Hong Xie, Zhiqiang Fang. Approaching Theoretical Haze of Highly Transparent All-Cellulose Composite Films. ACS Applied Materials & Interfaces 2020, 12
(28)
, 31998-32005. https://doi.org/10.1021/acsami.0c08586
- Kousuke Tsuchiya, Neval Yilmaz, Takaaki Miyamoto, Hiroyasu Masunaga, Keiji Numata. Zwitterionic Polypeptides: Chemoenzymatic Synthesis and Loosening Function for Cellulose Crystals. Biomacromolecules 2020, 21
(5)
, 1785-1794. https://doi.org/10.1021/acs.biomac.9b01700
- Ruiping Wang, Huang Yu, Mahmut Dirican, Linlin Chen, Dongjun Fang, Yan Tian, Chaoyi Yan, Jingyi Xie, Dongmei Jia, Hao Liu, Jiasheng Wang, Fangcheng Tang, Abdullah M. Asiri, Xiangwu Zhang, Jinsong Tao. Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells. ACS Applied Energy Materials 2020, 3
(1)
, 785-793. https://doi.org/10.1021/acsaem.9b01943
- Dabum Kim, Youngsang Ko, Goomin Kwon, Ung-Jin Kim, Jong Hun Lee, Jungmok You. 2,2,6,6-Tetramethylpiperidine-1-oxy-Oxidized Cellulose Nanofiber-Based Nanocomposite Papers for Facile In Situ Surface-Enhanced Raman Scattering Detection. ACS Sustainable Chemistry & Engineering 2019, 7
(18)
, 15640-15647. https://doi.org/10.1021/acssuschemeng.9b03680
- Lei Gao, Chengxian Zhu, Lin Li, Chengwu Zhang, Jinhua Liu, Hai-Dong Yu, Wei Huang. All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. ACS Applied Materials & Interfaces 2019, 11
(28)
, 25034-25042. https://doi.org/10.1021/acsami.9b07465
- Dabum Kim, Youngsang Ko, Goomin Kwon, Ung-Jin Kim, Jungmok You. Micropatterning Silver Nanowire Networks on Cellulose Nanopaper for Transparent Paper Electronics. ACS Applied Materials & Interfaces 2018, 10
(44)
, 38517-38525. https://doi.org/10.1021/acsami.8b15230
- Mingwei Zhu, Chao Jia, Yilin Wang, Zhiqiang Fang, Jiaqi Dai, Lisha Xu, Dafang Huang, Jiayang Wu, Yongfeng Li, Jianwei Song, Yonggang Yao, Emily Hitz, Yanbin Wang, Liangbing Hu. Isotropic Paper Directly from Anisotropic Wood: Top-Down Green Transparent Substrate Toward Biodegradable Electronics. ACS Applied Materials & Interfaces 2018, 10
(34)
, 28566-28571. https://doi.org/10.1021/acsami.8b08055
- Deepu A. Gopakumar, Avinash R. Pai, Yasir Beeran Pottathara, Daniel Pasquini, Luís Carlos de Morais, Mereena Luke, Nandakumar Kalarikkal, Yves Grohens, Sabu Thomas. Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band. ACS Applied Materials & Interfaces 2018, 10
(23)
, 20032-20043. https://doi.org/10.1021/acsami.8b04549
- Youngjun Song, Sejung Kim, and Michael J. Heller . An Implantable Transparent Conductive Film with Water Resistance and Ultrabendability for Electronic Devices. ACS Applied Materials & Interfaces 2017, 9
(48)
, 42302-42312. https://doi.org/10.1021/acsami.7b11801
- Chao Jia, Huiyang Bian, Tingting Gao, Feng Jiang, Iain Michael Kierzewski, Yilin Wang, Yonggang Yao, Liheng Chen, Ziqiang Shao, J. Y. Zhu, and Liangbing Hu . Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. ACS Applied Materials & Interfaces 2017, 9
(34)
, 28922-28929. https://doi.org/10.1021/acsami.7b08760
- Siyi Ming, Gang Chen, Jiahao He, Yudi Kuang, Yu Liu, Ruiqiang Tao, Honglong Ning, Penghui Zhu, Yingyao Liu, and Zhiqiang Fang . Highly Transparent and Self-Extinguishing Nanofibrillated Cellulose-Monolayer Clay Nanoplatelet Hybrid Films. Langmuir 2017, 33
(34)
, 8455-8462. https://doi.org/10.1021/acs.langmuir.7b01665
- Honglong Ning, Yong Zeng, Yudi Kuang, Zeke Zheng, Panpan Zhou, Rihui Yao, Hongke Zhang, Wenzhong Bao, Gang Chen, Zhiqiang Fang, and Junbiao Peng . Room-Temperature Fabrication of High-Performance Amorphous In–Ga–Zn–O/Al2O3 Thin-Film Transistors on Ultrasmooth and Clear Nanopaper. ACS Applied Materials & Interfaces 2017, 9
(33)
, 27792-27800. https://doi.org/10.1021/acsami.7b07525
- Oleksandr Nechyporchuk, Junchun Yu, Vincent A. Nierstrasz, and Romain Bordes . Cellulose Nanofibril-Based Coatings of Woven Cotton Fabrics for Improved Inkjet Printing with a Potential in E-Textile Manufacturing. ACS Sustainable Chemistry & Engineering 2017, 5
(6)
, 4793-4801. https://doi.org/10.1021/acssuschemeng.7b00200
- Huajing Fang, Jiangwei Li, Jie Ding, Yue Sun, Qiang Li, Jia-Lin Sun, Liduo Wang, and Qingfeng Yan . An Origami Perovskite Photodetector with Spatial Recognition Ability. ACS Applied Materials & Interfaces 2017, 9
(12)
, 10921-10928. https://doi.org/10.1021/acsami.7b02213
- Thanakorn Yeamsuksawat, Hyo Jeong Kim, Youngho Eom. Shape-tunable and sustainable carbon materials derived from nanocellulose and nanochitin: carbonization, structures, and applications. Materials Today Energy 2024, 43 , 101604. https://doi.org/10.1016/j.mtener.2024.101604
- Xingyu Huang, Zhongyuan Sun, Yidan Zhong, Xiaoliang Ding, Lu Chen, Hua Chen, Zhijun Hu, Xiaofan Zhou, Hailong Lu. Constructing a “micro-nano collaboration” network via disk-milling: Value-enhanced utilization of flexible temperature-resistant cellulose insulation films. International Journal of Biological Macromolecules 2024, 264 , 130345. https://doi.org/10.1016/j.ijbiomac.2024.130345
- Zuwu Tang, Xinxing Lin, Meiqiong Yu, Ajoy Kanti Mondal, Hui Wu. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. International Journal of Biological Macromolecules 2024, 259 , 129081. https://doi.org/10.1016/j.ijbiomac.2023.129081
- Nisha Nandakumar, Vidya Francis, P. S. Shasiya, Ajalesh B. Nair. Potential Applications of Nanocellulose. 2024, 1-26. https://doi.org/10.1007/978-981-19-6772-6_36-1
- Nisha Nandakumar, Vidya Francis, P. S. Shasiya, Ajalesh B. Nair. Potential Applications of Nanocellulose. 2024, 959-983. https://doi.org/10.1007/978-981-99-6727-8_36
- Xingyu Huang, Yidan Zhong, Lu Chen, Xiaoliang Ding, Hua Chen, Zhijun Hu, Xiaofan Zhou, Minliang Wang, Xianzhong Dai. A novel salt-barrier method of preparation flexible temperature resistant full-component nanocellulose membranes. International Journal of Biological Macromolecules 2023, 253 , 127387. https://doi.org/10.1016/j.ijbiomac.2023.127387
- Yintong Huang, Takaaki Kasuga, Masaya Nogi, Hirotaka Koga. Clearly transparent and air-permeable nanopaper with porous structures consisting of TEMPO-oxidized cellulose nanofibers. RSC Advances 2023, 13
(31)
, 21494-21501. https://doi.org/10.1039/D3RA03840H
- Bruno Las-Casas, Valdeir Arantes. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging. International Journal of Biological Macromolecules 2023, 242 , 125057. https://doi.org/10.1016/j.ijbiomac.2023.125057
- Jianzhong Wang, Kaiqing Wang, Fei Xiao. A simple and efficient transfer method for fabricating stretchable AgNW patterns on PDMS using carboxylated cellulose nanofibers as a sacrificial layer. Nanoscale 2023, 15
(20)
, 9031-9039. https://doi.org/10.1039/D3NR01029E
- Yeon Ho Kim, Hyun-Ji Kim, Ki Sun Yoon, Jong-Whan Rhim. Cellulose nanofiber/deacetylated quaternary chitosan composite packaging film for growth inhibition of Listeria monocytogenes in raw salmon. Food Packaging and Shelf Life 2023, 35 , 101040. https://doi.org/10.1016/j.fpsl.2023.101040
- Xuan-Ran Ong, Adrielle Xianwen Chen, Ning Li, Yi Yan Yang, He-Kuan Luo. Nanocellulose: Recent Advances Toward Biomedical Applications. Small Science 2023, 3
(2)
https://doi.org/10.1002/smsc.202200076
- Mary T. Motloung, Sifiso I. Magagula, Andiswa Kaleni, Tlholohelo S. Sikhosana, Kgomotso Lebelo, Mokgaotsa J. Mochane. Recent Advances on Chemically Functionalized Cellulose-Based Materials for Arsenic Removal in Wastewater: A Review. Water 2023, 15
(4)
, 793. https://doi.org/10.3390/w15040793
- . Collective Motions of Electrons Around Various Charged Insulators. 2022, 185-194. https://doi.org/10.1002/9783527829712.ch10
- Tengku Arisyah Tengku Yasim-Anuar, Hidayah Ariffin, Farah Nadia Mohammad Padzil, Nur Sharmila Sharip, Lawrence Ng Yee-Foong, Siti Shazra Shazleen, Liana Noor Megashah, Nur Farisha Abd-Rahim, Mohd Ali Hassan. Nanocellulose applications in packaging materials. 2022, 289-310. https://doi.org/10.1016/B978-0-323-89909-3.00003-1
- Anindita De, Mridula Guin, N.B. Singh. Synthesis and properties of cellulose-based nanobiosorbents. 2022, 275-316. https://doi.org/10.1016/B978-0-323-90912-9.00013-7
- Yoko Okahisa, Yuno Yasunaga, Karin Iwai, Shin-ichi Yagi, Kentaro Abe, Ibuki Nishizawa, Shinsuke Ifuku. Optically transparent silk fibroin nanofiber paper maintaining native β-sheet secondary structure obtained by cyclic mechanical nanofibrillation process. Materials Today Communications 2021, 29 , 102895. https://doi.org/10.1016/j.mtcomm.2021.102895
- Hyun-Ji Kim, Swarup Roy, Jong-Whan Rhim. Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. Journal of Environmental Chemical Engineering 2021, 9
(5)
, 106043. https://doi.org/10.1016/j.jece.2021.106043
- Son Van Nguyen, Bong-Kee Lee. Microfibrillated cellulose film with enhanced mechanical and water-resistant properties by glycerol and hot-pressing treatment. Cellulose 2021, 28
(9)
, 5693-5705. https://doi.org/10.1007/s10570-021-03894-8
- Naoto Koyama, Itsuo Hanasaki. Spatio-temporally controlled suppression of the coffee-ring phenomenon by cellulose nanofibers. Soft Matter 2021, 17
(18)
, 4826-4833. https://doi.org/10.1039/D1SM00315A
- Mengying Wang, Xiangxiang Jia, Wanshuang Liu, Xiaobo Lin. Water insoluble and flexible transparent film based on carboxymethyl cellulose. Carbohydrate Polymers 2021, 255 , 117353. https://doi.org/10.1016/j.carbpol.2020.117353
- Viktoriya Pakharenko, Javad Sameni, Samir Konar, Muhammad Pervaiz, Weimin Yang, Jimi Tjong, Kristiina Oksman, Mohini Sain. Cellulose nanofiber thin-films as transparent and durable flexible substrates for electronic devices. Materials & Design 2021, 197 , 109274. https://doi.org/10.1016/j.matdes.2020.109274
- Chenyang Li, Takaaki Kasuga, Kojiro Uetani, Hirotaka Koga, Masaya Nogi. High-Speed Fabrication of Clear Transparent Cellulose Nanopaper by Applying Humidity-Controlled Multi-Stage Drying Method. Nanomaterials 2020, 10
(11)
, 2194. https://doi.org/10.3390/nano10112194
- Daisuke Shindo, Zentaro Akase. Direct observation of electric and magnetic fields of functional materials. Materials Science and Engineering: R: Reports 2020, 142 , 100564. https://doi.org/10.1016/j.mser.2020.100564
- Liana Noor Megashah, Hidayah Ariffin, Mohd Rafein Zakaria, Mohd Ali Hassan, Yoshito Andou, Farah Nadia Mohammad Padzil. Modification of cellulose degree of polymerization by superheated steam treatment for versatile properties of cellulose nanofibril film. Cellulose 2020, 27
(13)
, 7417-7429. https://doi.org/10.1007/s10570-020-03296-2
- Jyotish Patidar, Susumu Horita. Deposition Condition at Low Temperature for Crystallization Enhancement of YSZ Films on Glass Substrates by Reactive Sputtering. 2020, 89-92. https://doi.org/10.23919/AM-FPD49417.2020.9224496
- Xinping Li, Xin Zhang, Shuangquan Yao, Hui Chang, Yaoyu Wang, Zhao Zhang. UV-blocking, transparent and hazy cellulose nanopaper with superior strength based on varied components of poplar mechanical pulp. Cellulose 2020, 27
(11)
, 6563-6576. https://doi.org/10.1007/s10570-020-03236-0
- Hairul Abral, Jeri Ariksa, Melbi Mahardika, Dian Handayani, Ibtisamatul Aminah, Neny Sandrawati, Eni Sugiarti, Ahmad Novi Muslimin, Santi Dewi Rosanti. Effect of heat treatment on thermal resistance, transparency and antimicrobial activity of sonicated ginger cellulose film. Carbohydrate Polymers 2020, 240 , 116287. https://doi.org/10.1016/j.carbpol.2020.116287
- Tatsuya Sato, Shunichi Mori, Melati Septiyanti, Hiroyuki Nakamura, Chizuru Hongo, Takuya Matsumoto, Takashi Nishino. Preparation and characterization of cellulose nanofiber cryogels as oil absorbents and enzymatic lipolysis scaffolds. Carbohydrate Research 2020, 493 , 108020. https://doi.org/10.1016/j.carres.2020.108020
- Hui He, Ruoyang Chen, Liyuan Zhang, Timothy Williams, Xiya Fang, Wei Shen. Fabrication of single-crystalline gold nanowires on cellulose nanofibers. Journal of Colloid and Interface Science 2020, 562 , 333-341. https://doi.org/10.1016/j.jcis.2019.11.093
- Guodong Li, Dehai Yu, Zhaoping Song, Huili Wang, Wenxia Liu. Reducing formation time while improving transparency and strength of cellulose nanostructured paper with polyvinylpyrrolidone and Laponite. Carbohydrate Polymers 2020, 230 , 115580. https://doi.org/10.1016/j.carbpol.2019.115580
- Hairul Abral, Jeri Ariksa, Melbi Mahardika, Dian Handayani, Ibtisamatul Aminah, Neny Sandrawati, Angga Bahri Pratama, Nural Fajri, S.M. Sapuan, R.A. Ilyas. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocolloids 2020, 98 , 105266. https://doi.org/10.1016/j.foodhyd.2019.105266
- Weisheng Yang, Ying Gao, Chu Zuo, Yulin Deng, Hongqi Dai. Thermally-induced cellulose nanofibril films with near-complete ultraviolet-blocking and improved water resistance. Carbohydrate Polymers 2019, 223 , 115050. https://doi.org/10.1016/j.carbpol.2019.115050
- Pegah Tayeb, Ali H. Tayeb. Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review. Carbohydrate Polymers 2019, 224 , 115149. https://doi.org/10.1016/j.carbpol.2019.115149
- Zhiqiang Fang, Gaoyuan Hou, Chaoji Chen, Liangbing Hu. Nanocellulose-based films and their emerging applications. Current Opinion in Solid State and Materials Science 2019, 23
(4)
, 100764. https://doi.org/10.1016/j.cossms.2019.07.003
- Zhenzhen Li, Wenxia Liu, Feixiang Guan, Guodong Li, Zhaoping Song, Dehai Yu, Huili Wang, Hong Liu. Using cellulose fibers to fabricate transparent paper by microfibrillation. Carbohydrate Polymers 2019, 214 , 26-33. https://doi.org/10.1016/j.carbpol.2019.03.019
- Helen H. Hsu, Wen Zhong. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review. Membranes 2019, 9
(6)
, 74. https://doi.org/10.3390/membranes9060074
- Jingze Liu, Jiamei Lai, Xingyuan Huang, Hesheng Liu. Nanocellulose-Based Hybrid Hydrogels as Flexible Cathodes of Aqueous Zn-Ion Batteries. Nano 2019, 14
(04)
, 1950047. https://doi.org/10.1142/S1793292019500474
- Jing Ru, Congcong Tong, Ning Chen, Pengjia Shan, Xingke Zhao, Xuying Liu, Jinzhou Chen, Qian Li, Xiaohuan Liu, Hongzhi Liu, Ying Zhao. Morphological and property characteristics of surface-quaternized nanofibrillated cellulose derived from bamboo pulp. Cellulose 2019, 26
(3)
, 1683-1701. https://doi.org/10.1007/s10570-018-2146-z
- Reiji Motohashi, Itsuo Hanasaki. Characterization of aqueous cellulose nanofiber dispersions from microscopy movie data of Brownian particles by trajectory analysis. Nanoscale Advances 2019, 1
(1)
, 421-429. https://doi.org/10.1039/C8NA00214B
- Robson R. Silva, Sidney J.L. Ribeiro, Hernane S. Barud, Helida O. Barud, Osvaldo N. Oliveira, J.R. Mejía-Salazar. Biopolymer-Metal Composites. 2019, 261-301. https://doi.org/10.1016/B978-0-08-102378-5.00011-8
- Antonio Norio Nakagaito, Yukiko Ishikura, Hitoshi Takagi. Transparent Green Composites. 2018, 187-210. https://doi.org/10.1002/9781119323327.ch8
- Yiliang Zhou, Yinyong Li, Feyza Dundar, Kenneth R. Carter, James J. Watkins. Fabrication of patterned cellulose film via solvent-assisted soft nanoimprint lithography at a submicron scale. Cellulose 2018, 25
(9)
, 5185-5194. https://doi.org/10.1007/s10570-018-1920-2
- Jianyu Xia, Zhe Zhang, Wei Liu, Vincent C. F. Li, Yunfeng Cao, Wei Zhang, Yulin Deng. Highly transparent 100% cellulose nanofibril films with extremely high oxygen barriers in high relative humidity. Cellulose 2018, 25
(7)
, 4057-4066. https://doi.org/10.1007/s10570-018-1843-y
- Eero Kontturi, Päivi Laaksonen, Markus B. Linder, Nonappa, André H. Gröschel, Orlando J. Rojas, Olli Ikkala. Advanced Materials through Assembly of Nanocelluloses. Advanced Materials 2018, 30
(24)
https://doi.org/10.1002/adma.201703779
- Takaaki Kasuga, Noriyuki Isobe, Hitomi Yagyu, Hirotaka Koga, Masaya Nogi. Clearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication. Nanomaterials 2018, 8
(2)
, 104. https://doi.org/10.3390/nano8020104
- Wenyi Huang. Cellulose Nanopapers. 2018, 121-173. https://doi.org/10.1016/B978-0-323-48019-2.00005-0
- Erhan Zor, Sabri Alpaydin, Aylin Arici, Muhammed Esad Saglam, Haluk Bingol. Photoluminescent nanopaper-based microcuvette for iodide detection in seawater. Sensors and Actuators B: Chemical 2018, 254 , 1216-1224. https://doi.org/10.1016/j.snb.2017.07.208
- Noriyuki Isobe, Takaki Kasuga, Masaya Nogi. Clear transparent cellulose nanopaper prepared from a concentrated dispersion by high-humidity drying. RSC Advances 2018, 8
(4)
, 1833-1837. https://doi.org/10.1039/C7RA12672G
- Yuanyuan Li, Xuan Yang, Qiliang Fu, Ramiro Rojas, Min Yan, Lars Berglund. Towards centimeter thick transparent wood through interface manipulation. Journal of Materials Chemistry A 2018, 6
(3)
, 1094-1101. https://doi.org/10.1039/C7TA09973H
- Daniel Hoenders, Jiaqi Guo, Anja S. Goldmann, Christopher Barner-Kowollik, Andreas Walther. Photochemical ligation meets nanocellulose: a versatile platform for self-reporting functional materials. Materials Horizons 2018, 5
(3)
, 560-568. https://doi.org/10.1039/C8MH00241J
- Masami Aono, Tomo Harata, Taku Odawara, Shinnosuke Asai, Dai Orihara, Masaya Nogi. Deposition of amorphous carbon nitride films on flexible substrates by reactive sputtering for applications in light-driven active devices. Japanese Journal of Applied Physics 2018, 57
(1S)
, 01AC01. https://doi.org/10.7567/JJAP.57.01AC01
- Tiina Nypelö, Christiane Laine, Jérôme Colson, Ute Henniges, Tekla Tammelin. Submicron hierarchy of cellulose nanofibril films with etherified hemicelluloses. Carbohydrate Polymers 2017, 177 , 126-134. https://doi.org/10.1016/j.carbpol.2017.08.086
- Karin Lichtenstein, Nathalie Lavoine. Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polymer Degradation and Stability 2017, 146 , 53-60. https://doi.org/10.1016/j.polymdegradstab.2017.09.018
- Tae Gwang Yun, Donghyuk Kim, Yong Ho Kim, Minkyu Park, Seungmin Hyun, Seung Min Han. Photoresponsive Smart Coloration Electrochromic Supercapacitor. Advanced Materials 2017, 29
(32)
https://doi.org/10.1002/adma.201606728
- Xu Du, Zhe Zhang, Wei Liu, Yulin Deng. Nanocellulose-based conductive materials and their emerging applications in energy devices - A review. Nano Energy 2017, 35 , 299-320. https://doi.org/10.1016/j.nanoen.2017.04.001
- Hitomi Yagyu, Shinsuku Ifuku, Masaya Nogi. Acetylation of optically transparent cellulose nanopaper for high thermal and moisture resistance in a flexible device substrate. Flexible and Printed Electronics 2017, 2
(1)
, 014003. https://doi.org/10.1088/2058-8585/aa60f4
- Ming-Chun Hsieh, Hirotaka Koga, Katsuaki Suganuma, Masaya Nogi. Hazy Transparent Cellulose Nanopaper. Scientific Reports 2017, 7
(1)
https://doi.org/10.1038/srep41590
- Ahmed Barhoum, Pieter Samyn, Thomas Öhlund, Alain Dufresne. Review of recent research on flexible multifunctional nanopapers. Nanoscale 2017, 9
(40)
, 15181-15205. https://doi.org/10.1039/C7NR04656A
- Farhan Ansari, Erik L. Lindh, Istvan Furo, Mats K.G. Johansson, Lars A. Berglund. Interface tailoring through covalent hydroxyl-epoxy bonds improves hygromechanical stability in nanocellulose materials. Composites Science and Technology 2016, 134 , 175-183. https://doi.org/10.1016/j.compscitech.2016.08.002
- Umberto Celano, Kazuki Nagashima, Hirotaka Koga, Masaya Nogi, Fuwei Zhuge, Gang Meng, Yong He, Jo De Boeck, Malgorzata Jurczak, Wilfried Vandervorst, Takeshi Yanagida. All-nanocellulose nonvolatile resistive memory. NPG Asia Materials 2016, 8
(9)
, e310-e310. https://doi.org/10.1038/am.2016.144
- Fanny Hoeng, Aurore Denneulin, Julien Bras. Use of nanocellulose in printed electronics: a review. Nanoscale 2016, 8
(27)
, 13131-13154. https://doi.org/10.1039/C6NR03054H
- Yasir Beeran P. T., Vid Bobnar, Selestina Gorgieva, Yves Grohens, Matjaž Finšgar, Sabu Thomas, Vanja Kokol. Mechanically strong, flexible and thermally stable graphene oxide/nanocellulosic films with enhanced dielectric properties. RSC Advances 2016, 6
(54)
, 49138-49149. https://doi.org/10.1039/C6RA06744A
- Lingju Meng, Seyed Milad Mahpeykar, Qiuyang Xiong, Behzad Ahvazi, Xihua Wang. Strain sensors on water-soluble cellulose nanofibril paper by polydimethylsiloxane (PDMS) stencil lithography. RSC Advances 2016, 6
(88)
, 85427-85433. https://doi.org/10.1039/C6RA10069D
- Fanny Hoeng, Aurore Denneulin, Guillaume Krosnicki, Julien Bras. Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films. Journal of Materials Chemistry C 2016, 4
(46)
, 10945-10954. https://doi.org/10.1039/C6TC03629E
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.