ACS Publications. Most Trusted. Most Cited. Most Read
Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode
My Activity

Figure 1Loading Img
    Research Article

    Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ Department of Physics, Nanoscale Research Facility, and Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi 110016, India
    § Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2016, 8, 12, 8213–8223
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.5b12393
    Published March 10, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky–Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene–GaN Schottky diodes may have the underlying trend for replacing metal–GaN Schottky diodes.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.5b12393.

    • Electrostatic calculations of Fermi level shifts in graphene due to graphene–GaN and graphene–Au interactions

      (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 60 publications.

    1. Sheetal Dewan, Prabal Dweep Khanikar, Richa Mudgal, Avneet Singh, Pranaba Kishor Muduli, Rajendra Singh, Samaresh Das. Large-Area GeSe Realized Using Pulsed Laser Deposition for Ultralow-Noise and Ultrafast Broadband Phototransistors. ACS Applied Materials & Interfaces 2023, 15 (22) , 27285-27298. https://doi.org/10.1021/acsami.3c02522
    2. Hardhyan Sheoran, Vikram Kumar, Rajendra Singh. A Comprehensive Review on Recent Developments in Ohmic and Schottky Contacts on Ga2O3 for Device Applications. ACS Applied Electronic Materials 2022, 4 (6) , 2589-2628. https://doi.org/10.1021/acsaelm.2c00101
    3. Tongyu Dai, Chengying Chen, Le Huang, Jianhua Jiang, Lian-Mao Peng, Zhiyong Zhang. Ultrasensitive Magnetic Sensors Enabled by Heterogeneous Integration of Graphene Hall Elements and Silicon Processing Circuits. ACS Nano 2020, 14 (12) , 17606-17614. https://doi.org/10.1021/acsnano.0c08435
    4. Jing Li, Xin Xi, Shan Lin, Zhanhong Ma, Xiaodong Li, Lixia Zhao. Ultrahigh Sensitivity Graphene/Nanoporous GaN Ultraviolet Photodetectors. ACS Applied Materials & Interfaces 2020, 12 (10) , 11965-11971. https://doi.org/10.1021/acsami.9b22651
    5. Sangmoon Han, Ilgyu Choi, Cheul-Ro Lee, Kwang-Un Jeong, Seoung-Ki Lee, Jin Soo Kim. Fast Response Characteristics of Flexible Ultraviolet Photosensors with GaN Nanowires and Graphene. ACS Applied Materials & Interfaces 2020, 12 (1) , 970-979. https://doi.org/10.1021/acsami.9b13109
    6. Wen-Cheng Ke, Solomun Teklahymanot Tesfay, Tae-Yeon Seong, Zhong-Yi Liang, Chih-Yung Chiang, Chieh-Yi Chen, Widi Son, Kuo-Jen Chang, Jia-Ching Lin. Solid-State Carbon-Doped GaN Schottky Diodes by Controlling Dissociation of the Graphene Interlayer with a Sputtered AlN Capping Layer. ACS Applied Materials & Interfaces 2019, 11 (51) , 48086-48094. https://doi.org/10.1021/acsami.9b18976
    7. Mouhui Yan, Haotian Wang, Wenqi Wei, Tianxiang Zhu, Guanghui Cao, Jianxin Zhong, Wei Ren. Unveiling charge transport in monolayer and few-layer CoPS3/metal contact: Insight from C-AFM. APL Materials 2024, 12 (8) https://doi.org/10.1063/5.0222472
    8. P. Kruszewski, P. Sai, A. Krajewska, K. Sakowski, Y. Ivonyak, R. Jakiela, J. Plesiewicz, P. Prystawko. Graphene Schottky barrier diode acting as a semi-transparent contact to n-GaN. AIP Advances 2024, 14 (7) https://doi.org/10.1063/5.0210798
    9. Siva Pratap Reddy Mallem, Peddathimula Puneetha, Yeojin Choi, Seung Mun Baek, Dong-Yeon Lee, Ki-Sik Im, Sung Jin An. Barrier Height, Ideality Factor and Role of Inhomogeneities at the AlGaN/GaN Interface in GaN Nanowire Wrap-Gate Transistor. Nanomaterials 2023, 13 (24) , 3159. https://doi.org/10.3390/nano13243159
    10. J. Smulko, K. Drozdowska, A. Rehman, T. Welearegay, L. Österlund, S. Rumyantsev, G. Cywiński, B. Stonio, A. Krajewska, M. Filipiak, P. Sai. Low-frequency noise in Au-decorated graphene–Si Schottky barrier diode at selected ambient gases. Applied Physics Letters 2023, 122 (21) https://doi.org/10.1063/5.0152456
    11. Ekta Sharma, Ankit Panchal, Reena Rathi, D. Vamshi Krishna. Effect of temperature on forward and reverse bias characteristics of GaN based Schottky diode. Materials Today: Proceedings 2023, 79 , 324-327. https://doi.org/10.1016/j.matpr.2022.12.025
    12. Sreenath Mylo Valappil, Abdelrahman Zkria, Shinya Ohmagari, Tsuyoshi Yoshitake. Overcoming the impact of post-annealing on uniformity of diamond (100) Schottky barrier diodes through corrosion-resistant nanocarbon ohmic contacts. Materials Research Express 2022, 9 (11) , 115901. https://doi.org/10.1088/2053-1591/aca31f
    13. Sahin Sorifi, Shuchi Kaushik, Hardhyan Sheoran, Rajendra Singh. Investigation of a vertical 2D/3D semiconductor heterostructure based on GaSe and Ga 2 O 3. Journal of Physics D: Applied Physics 2022, 55 (36) , 365105. https://doi.org/10.1088/1361-6463/ac7987
    14. J. Glemža, V. Palenskis, R. Gudaitis, Š. Jankauskas, A. Guobienė, A. Vasiliauskas, Š. Meškinis, S. Pralgauskaitė, J. Matukas. Low-frequency noise of directly synthesized graphene/Si(100) junction. Diamond and Related Materials 2022, 127 , 109207. https://doi.org/10.1016/j.diamond.2022.109207
    15. Y. Abbas, M. Baker, M. Rezeq. Photoelectric Characterization of a Single Layer of CNTs using CAFM. 2022, 186-189. https://doi.org/10.1109/NANO54668.2022.9928657
    16. AC Varonides. Excess current due to embedded superlattices in Graphene/Ox/n-GaAs solar cells, at 50 Suns and above. 2022, 0637-0642. https://doi.org/10.1109/PVSC48317.2022.9938788
    17. S Sakamoto, M Tomiya, R Iida. DFT-NEGF Study of Electron Transfer Property in Graphene Nanoribbon Double Barrier System. Journal of Physics: Conference Series 2022, 2207 (1) , 012044. https://doi.org/10.1088/1742-6596/2207/1/012044
    18. Furkan Turker, Siavash Rajabpour, Joshua A. Robinson. Material considerations for the design of 2D/3D hot electron transistors. APL Materials 2021, 9 (8) https://doi.org/10.1063/5.0051885
    19. Mansi Agrawal, Anubha Jain, Vishakha Kaushik, Akhilesh Pandey, B.R. Mehta, R. Muralidharan. Structural and vibrational properties of CVD grown few layers MoS2 on catalyst free PAMBE grown GaN nanowires on Si (111) substrates. Journal of Alloys and Compounds 2021, 861 , 157965. https://doi.org/10.1016/j.jallcom.2020.157965
    20. Ya-Yi Chen, Yuan Liu, Yuan Ren, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Temperature dependence of conduction and low frequency noise characteristics in GaN Schottky barrier diodes. Modern Physics Letters B 2021, 35 (08) , 2150134. https://doi.org/10.1142/S0217984921501347
    21. Ashutosh Kumar, Tadakatsu Ohkubo. Combined APT and STEM Analyses. 2020, 5-1-5-28. https://doi.org/10.1063/9780735422698_005
    22. Z. Wu, W. Jie, Z. Yang, J. Hao. Hybrid heterostructures and devices based on two-dimensional layers and wide bandgap materials. Materials Today Nano 2020, 12 , 100092. https://doi.org/10.1016/j.mtnano.2020.100092
    23. Mansi Agrawal, Anubha Jain, B.R. Mehta, R. Muralidharan. Plasma Assisted Molecular Beam Epitaxy Grown GaN Nanowires On Si (211) Substrates for UV Sensing Applications. 2020, 1-4. https://doi.org/10.1109/ICEE50728.2020.9776961
    24. Xue Shen, Dong Wang, Jing Ning, Boyu Wang, Haibin Guo, Chi Zhang, Yanqing Jia, Jianguo Dong, Xin Feng, Xinran Wang, Jincheng Zhang, Yue Hao. MMA-enabled ultraclean graphene transfer for fast-response graphene/GaN ultraviolet photodetectors. Carbon 2020, 169 , 92-98. https://doi.org/10.1016/j.carbon.2020.07.029
    25. Sachin V. Mukhamale, Apparao R. Chavan, Rajkumar M. Lokhande, Pankaj P. Khirade. Enhanced solar-cell efficiency via fabricated zinc sulfide nanocrystalline thin film-based Schottky diodes as a bypass: An experimental and theoretical investigations. Solar Energy 2020, 211 , 866-878. https://doi.org/10.1016/j.solener.2020.10.018
    26. J X Ran, B Y Liu, X L Ji, A Fariza, Z T Liu, J X Wang, P Gao, T B Wei. Impact of graphene interlayer on performance parameters of sandwich structure Pt/GaN Schottky barrier diodes. Journal of Physics D: Applied Physics 2020, 53 (40) , 404003. https://doi.org/10.1088/1361-6463/ab9a9b
    27. Principia Dardano, Maria Antonietta Ferrara. Integrated Photodetectors Based on Group IV and Colloidal Semiconductors: Current State of Affairs. Micromachines 2020, 11 (9) , 842. https://doi.org/10.3390/mi11090842
    28. Ashutosh Kumar, Wei Yi, Jun Uzuhashi, Tadakatsu Ohkubo, Jun Chen, Takashi Sekiguchi, Ryo Tanaka, Shinya Takashima, Masaharu Edo, Kazuhiro Hono. Influence of implanted Mg concentration on defects and Mg distribution in GaN. Journal of Applied Physics 2020, 128 (6) https://doi.org/10.1063/5.0014717
    29. Monika Moun, Rajendra Singh. Exploring conduction mechanism and photoresponse in P- GaN /n- MoS2 heterojunction diode. Journal of Applied Physics 2020, 127 (13) https://doi.org/10.1063/1.5143015
    30. Moonsang Lee, Chang Wan Ahn, Thi Kim Oanh Vu, Hyun Uk Lee, Yesul Jeong, Myung Gwan Hahm, Eun Kyu Kim, Sungsoo Park. Current Transport Mechanism in Palladium Schottky Contact on Si-Based Freestanding GaN. Nanomaterials 2020, 10 (2) , 297. https://doi.org/10.3390/nano10020297
    31. Kallol Roy. Bilayer-Graphene-on-MoS$$_2$$ Heterostructures: Channel Bandgap, Transconductance, and Noise. 2020, 171-189. https://doi.org/10.1007/978-3-030-59627-9_8
    32. Yapeng Li, Yingfeng Li, Jianhua Zhang, Xiangyu Zou, Yongshan Wang. Analysis on the temperature dependent electrical properties of graphene/Al–ZnO Schottky contact. Current Applied Physics 2019, 19 (10) , 1063-1067. https://doi.org/10.1016/j.cap.2019.06.007
    33. Manjari Garg, Ashutosh Kumar, Haiding Sun, Che-Hao Liao, Xiaohang Li, Rajendra Singh. Temperature dependent electrical studies on Cu/AlGaN/GaN Schottky barrier diodes with its microstructural characterization. Journal of Alloys and Compounds 2019, 806 , 852-857. https://doi.org/10.1016/j.jallcom.2019.07.234
    34. Mitsuyoshi Tomiya, Shoichi Sakamoto, Taiga Wakai. I-V Characteristics of In-Plate Graphene Nanoribbon/h-BN Heterojunctions and Resonant Tunneling. Journal of Physics: Conference Series 2019, 1290 (1) , 012010. https://doi.org/10.1088/1742-6596/1290/1/012010
    35. Ajinkya K. Ranade, Rakesh D. Mahyavanshi, Pradeep Desai, Masashi Kato, Masaki Tanemura, Golap Kalita. Ultraviolet light induced electrical hysteresis effect in graphene-GaN heterojunction. Applied Physics Letters 2019, 114 (15) https://doi.org/10.1063/1.5084190
    36. Peter F. Satterthwaite, Ananth Saran Yalamarthy, Sam Vaziri, Miguel Munoz Rojo, Eric Pop, Debbie G. Senesky. Process-induced anomalous current transport in graphene/InAlN/GaN heterostructured diodes. 2019, 1-6. https://doi.org/10.1109/IRPS.2019.8720465
    37. Weifeng Jin, Yufei Liu, Kai Yuan, Kun Zhang, Yu Ye, Wei Wei, Lun Dai. Barrier Height Inhomogeneity in Mixed-Dimensional Graphene/Single CdSe Nanobelt Schottky Junctions. IEEE Electron Device Letters 2019, 40 (1) , 119-122. https://doi.org/10.1109/LED.2018.2880476
    38. Monika Moun, Mukesh Kumar, Manjari Garg, Ravi Pathak, Rajendra Singh. Understanding of MoS2/GaN Heterojunction Diode and its Photodetection Properties. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-30237-8
    39. Rajkumar Jana, Sayantan Sil, Arka Dey, Joydeep Datta, Partha Pratim Ray. Analysis of temperature dependent electrical performance of Al/CuO/ITO Schottky barrier diode and explanation of inhomogeneous barrier heights by double Gaussian distribution. AIP Advances 2018, 8 (12) https://doi.org/10.1063/1.5066258
    40. Ashutosh Kumar, Kazutaka Mitsuishi, Toru Hara, Koji Kimoto, Yoshihiro Irokawa, Toshihide Nabatame, Shinya Takashima, Katsunori Ueno, Masaharu Edo, Yasuo Koide. Comparative Analysis of Defects in Mg-Implanted and Mg-Doped GaN Layers on Freestanding GaN Substrates. Nanoscale Research Letters 2018, 13 (1) https://doi.org/10.1186/s11671-018-2804-y
    41. Taiga Wakai, Shoichi Sakamoto, Mitsuyoshi Tomiya. I – V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling. Journal of Physics: Condensed Matter 2018, 30 (26) , 265302. https://doi.org/10.1088/1361-648X/aac59d
    42. Golap Kalita, Mai Kobayashi, Muhammad Dzulsyahmi Shaarin, Rakesh D. Mahyavanshi, Masaki Tanemura. Schottky Barrier Diode Characteristics of Graphene-GaN Heterojunction with Hexagonal Boron Nitride Interfacial Layer. physica status solidi (a) 2018, 22 https://doi.org/10.1002/pssa.201800089
    43. C S Pathak, Manjari Garg, J P Singh, R Singh. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes. Semiconductor Science and Technology 2018, 33 (5) , 055006. https://doi.org/10.1088/1361-6641/aab8a6
    44. Maxim Trushin. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction. Applied Physics Letters 2018, 112 (17) https://doi.org/10.1063/1.5027271
    45. Veerendra Dhyani, Priyanka Dwivedi, Saakshi Dhanekar, Samaresh Das. High performance broadband photodetector based on MoS2/porous silicon heterojunction. Applied Physics Letters 2017, 111 (19) https://doi.org/10.1063/1.5004025
    46. Intu Sharma, B R Mehta. Optical properties and band alignments in ZnTe nanoparticles/MoS 2 layer hetero-interface using SE and KPFM studies. Nanotechnology 2017, 28 (44) , 445701. https://doi.org/10.1088/1361-6528/aa87c5
    47. Intu Sharma, Bodh Raj Mehta. KPFM and CAFM based studies of MoS2 (2D)/WS2 heterojunction patterns fabricated using stencil mask lithography technique. Journal of Alloys and Compounds 2017, 723 , 50-57. https://doi.org/10.1016/j.jallcom.2017.06.203
    48. Mrinmay Das, Joydeep Datta, Arka Dey, Soumi Halder, Sayantan Sil, Partha Pratim Ray. Temperature dependent properties of Al/rGO-ZnCdS Schottky diode and analysis of barrier inhomogeneities by double Gaussian distribution. Materials Letters 2017, 204 , 184-187. https://doi.org/10.1016/j.matlet.2017.06.006
    49. Suk-Ho Choi. Graphene-based vertical-junction diodes and applications. Journal of the Korean Physical Society 2017, 71 (6) , 311-318. https://doi.org/10.3938/jkps.71.311
    50. Golap Kalita, Muhammad Dzulsyahmi Shaarin, Balaram Paudel, Rakesh Mahyavanshi, Masaki Tanemura. Temperature dependent diode and photovoltaic characteristics of graphene-GaN heterojunction. Applied Physics Letters 2017, 111 (1) https://doi.org/10.1063/1.4992114
    51. Y.S. Ang, Shi-Jun Liang, L.K. Ang. Theoretical modeling of electron emission from graphene. MRS Bulletin 2017, 42 (07) , 505-510. https://doi.org/10.1557/mrs.2017.141
    52. Ashutosh Kumar, Raman Kapoor, M Garg, V Kumar, R Singh. Direct evidence of barrier inhomogeneities at metal/AlGaN/GaN interfaces using nanoscopic electrical characterizations. Nanotechnology 2017, 28 (26) , 26LT02. https://doi.org/10.1088/1361-6528/aa72d3
    53. Markus Neuwirth, Elisabeth Seydel, Heinz Kalt, Michael Hetterich. Band-Gap Engineering in Cu2ZnSn(S,Se)4 Solar Cells by Post-Sulphurization of Selenized Absorber Layers. 2017, 1682-1685. https://doi.org/10.1109/PVSC.2017.8366100
    54. F. Giannazzo, G. Fisichella, G. Greco, A. La Magna, F. Roccaforte, B. Pecz, R. Yakimova, R. Dagher, A. Michon, Y. Cordier. Graphene integration with nitride semiconductors for high power and high frequency electronics. physica status solidi (a) 2017, 214 (4) , 1600460. https://doi.org/10.1002/pssa.201600460
    55. Intu Sharma, B. R. Mehta. Enhanced charge separation at 2D MoS2/ZnS heterojunction: KPFM based study of interface photovoltage. Applied Physics Letters 2017, 110 (6) https://doi.org/10.1063/1.4975779
    56. Maddaka Reddeppa, Byung-Guon Park, Sang-Tae Lee, Nguyen Hoang Hai, Moon-Deock Kim, Jae-Eung Oh. Improved Schottky behavior of GaN nanorods using hydrogen plasma treatment. Current Applied Physics 2017, 17 (2) , 192-196. https://doi.org/10.1016/j.cap.2016.11.025
    57. Teng-Fei Zhang, Zhi-Peng Li, Jiu-Zhen Wang, Wei-Yu Kong, Guo-An Wu, Yu-Zhen Zheng, Yuan-Wei Zhao, En-Xu Yao, Nai-Xi Zhuang, Lin-Bao Luo. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep38569
    58. Ashutosh Kumar, V Kumar, R Singh. Understanding current transport at the Ni/GaN interface using low-frequency noise spectroscopy. Journal of Physics D: Applied Physics 2016, 49 (47) , 47LT01. https://doi.org/10.1088/0022-3727/49/47/47LT01
    59. Ashutosh Kumar, M. Heilmann, Michael Latzel, Raman Kapoor, Intu Sharma, M. Göbelt, Silke H. Christiansen, Vikram Kumar, Rajendra Singh. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep27553
    60. A C Varonides. New modeling for thermionic emission in ideal graphene/n-Si schottky solar cells. 2016, 0720-0723. https://doi.org/10.1109/PVSC.2016.7749696

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2016, 8, 12, 8213–8223
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.5b12393
    Published March 10, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    2334

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.