ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Hybrid Co3O4/SnO2 Core–Shell Nanospheres as Real-Time Rapid-Response Sensors for Ammonia Gas

View Author Information
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
*E-mail: [email protected]. Tel.: +86 431 85168385. Fax: +86 431 85168270.
Cite this: ACS Appl. Mater. Interfaces 2016, 8, 10, 6539–6545
Publication Date (Web):March 4, 2016
https://doi.org/10.1021/acsami.6b00305
Copyright © 2016 American Chemical Society

    Article Views

    3296

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Novel hybrid Co3O4/SnO2 core–shell nanospheres have been effectively realized by a one-step hydrothermal, template-free preparation method. Our strategy involves a simple fabrication scheme that entails the coating of natural cross-link agents followed by electrostatic interaction between the positive charges of Sn and Co ions and the negative charge of glutamic acid. The core–shell architecture enables novel flexibility of gas sensor surfaces compared to commonly used bulk materials. The highly efficient charge transfer and unique structure are key to ensuring the availability of high response and rapid-response speed. It demonstrates how hybrid core–shell nanospheres can be used as an advance function material to fabricate electrical sensing devices that may be useful as gas sensors.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.6b00305.

    • Further experimental details on the fabrication of gas sensors, STEM images, EDX mapping images, a nitrogen adsorption–desorption isotherm, and a detailed sensing performance of sensing materials (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 134 publications.

    1. Ramarajan Ramanathan, Selvakumar Nagarajan, Venkataramana Bonu, Priyanka Patel, Shubhangi Jamdar, Harish C. Barshilia, Ramesh Chandra Mallik. Enhanced Sensing Performance of Sb-Doped Nanometer-Thin SnO2 Films toward CO and NH3 Gases. ACS Applied Nano Materials 2023, 6 (9) , 7873-7886. https://doi.org/10.1021/acsanm.3c01032
    2. Aoqun Jian, Junhe Wang, Hongying Lin, Shiqiang Xu, Dan Han, Zhongyun Yuan, Kai Zhuo. Synthesis of MoS2 Nanochains by Electrospinning for Ammonia Detection at Room Temperature. ACS Omega 2022, 7 (14) , 11664-11670. https://doi.org/10.1021/acsomega.1c06456
    3. Xiaoli Xu, Shengyi Wang, Yan Chen, Wangwang Liu, Xiaoping Wang, Hongtao Jiang, Shuyi Ma, Pengdou Yun. Triethylamine Sensors Based on Nanoscale Porous Carbon Nanocages Originated from Zeolitic Imidazolate Framework Derivatives. ACS Applied Nano Materials 2022, 5 (2) , 1986-1994. https://doi.org/10.1021/acsanm.1c03660
    4. Mahmood ul Haq, Salah Ud Din, Dan Baohui, Shahid Khan, Liping Zhu. Low-Temperature Detection of Sulfur-Hexafluoride Decomposition Products Using Octahedral Co3O4-Modified NiSnO3 Nanofibers. ACS Applied Materials & Interfaces 2022, 14 (7) , 9292-9306. https://doi.org/10.1021/acsami.1c22929
    5. Biplob Mondal, Pranjal Kumar Gogoi. Nanoscale Heterostructured Materials Based on Metal Oxides for a Chemiresistive Gas Sensor. ACS Applied Electronic Materials 2022, 4 (1) , 59-86. https://doi.org/10.1021/acsaelm.1c00841
    6. Zhenyu Li, Jingyu Chen, Li Chen, Meiling Guo, Yuanpeng Wu, Yen Wei, Jinfeng Wang, Xungai Wang. Hollow Au/Polypyrrole Capsules to Form Porous and Neural Network-Like Nanofibrous Film for Wearable, Super-Rapid, and Ultrasensitive NH3 Sensor at Room Temperature. ACS Applied Materials & Interfaces 2020, 12 (49) , 55056-55063. https://doi.org/10.1021/acsami.0c15585
    7. Jian Chen, Dongliang Feng, Chen Wang, Xiaxia Xing, Lingling Du, Zhengyou Zhu, Xiaohu Huang, Dachi Yang. Gas Sensor Detecting 3-Hydroxy-2-butanone Biomarkers: Boosted Response via Decorating Pd Nanoparticles onto the {010} Facets of BiVO4 Decahedrons. ACS Sensors 2020, 5 (8) , 2620-2627. https://doi.org/10.1021/acssensors.0c01149
    8. Pil Gyu Choi, Teruaki Fuchigami, Ken-ichi Kakimoto, Yoshitake Masuda. Effect of Crystal Defect on Gas Sensing Properties of Co3O4 Nanoparticles. ACS Sensors 2020, 5 (6) , 1665-1673. https://doi.org/10.1021/acssensors.0c00290
    9. Kechuang Wan, Ding Wang, Feng Wang, Huijun Li, Jingcheng Xu, Xianying Wang, Junhe Yang. Hierarchical In2O3@SnO2 Core–Shell Nanofiber for High Efficiency Formaldehyde Detection. ACS Applied Materials & Interfaces 2019, 11 (48) , 45214-45225. https://doi.org/10.1021/acsami.9b16599
    10. Dongwook Kwak, Mengjing Wang, Kristie J. Koski, Liang Zhang, Henry Sokol, Radenka Maric, Yu Lei. Molybdenum Trioxide (α-MoO3) Nanoribbons for Ultrasensitive Ammonia (NH3) Gas Detection: Integrated Experimental and Density Functional Theory Simulation Studies. ACS Applied Materials & Interfaces 2019, 11 (11) , 10697-10706. https://doi.org/10.1021/acsami.8b20502
    11. Sharique Ahmad, Mohammad Mujahid Ali khan, Faiz Mohammad. Graphene/Nickel Oxide-Based Nanocomposite of Polyaniline with Special Reference to Ammonia Sensing. ACS Omega 2018, 3 (8) , 9378-9387. https://doi.org/10.1021/acsomega.8b00825
    12. Xiaowei Li, Changlu Shao, Dongxiao Lu, Geyu Lu, Xinghua Li, and Yichun Liu . Octahedral-Like CuO/In2O3 Mesocages with Double-Shell Architectures: Rational Preparation and Application in Hydrogen Sulfide Detection. ACS Applied Materials & Interfaces 2017, 9 (51) , 44632-44640. https://doi.org/10.1021/acsami.7b15488
    13. Eric Singh, M. Meyyappan, and Hari Singh Nalwa . Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Applied Materials & Interfaces 2017, 9 (40) , 34544-34586. https://doi.org/10.1021/acsami.7b07063
    14. Fabian Schütt, Vasile Postica, Rainer Adelung, and Oleg Lupan . Single and Networked ZnO–CNT Hybrid Tetrapods for Selective Room-Temperature High-Performance Ammonia Sensors. ACS Applied Materials & Interfaces 2017, 9 (27) , 23107-23118. https://doi.org/10.1021/acsami.7b03702
    15. Won-Tae Koo, Sunmoon Yu, Seon-Jin Choi, Ji-Soo Jang, Jun Young Cheong, and Il-Doo Kim . Nanoscale PdO Catalyst Functionalized Co3O4 Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. ACS Applied Materials & Interfaces 2017, 9 (9) , 8201-8210. https://doi.org/10.1021/acsami.7b01284
    16. Dongzhi Zhang, Chuanxing Jiang, Peng Li, and Yan’e Sun . Layer-by-Layer Self-assembly of Co3O4 Nanorod-Decorated MoS2 Nanosheet-Based Nanocomposite toward High-Performance Ammonia Detection. ACS Applied Materials & Interfaces 2017, 9 (7) , 6462-6471. https://doi.org/10.1021/acsami.6b15669
    17. Hui Chen, Jiabo Hu, Guo-Dong Li, Qian Gao, Cundi Wei, and Xiaoxin Zou . Porous Ga–In Bimetallic Oxide Nanofibers with Controllable Structures for Ultrasensitive and Selective Detection of Formaldehyde. ACS Applied Materials & Interfaces 2017, 9 (5) , 4692-4700. https://doi.org/10.1021/acsami.6b13520
    18. Fan Wang, Yu-Ting Wang, Hong Yu, Jin-Xiang Chen, Bin-Bin Gao, and Jian-Ping Lang . One Unique 1D Silver(I)-Bromide-Thiol Coordination Polymer Used for Highly Efficient Chemiresistive Sensing of Ammonia and Amines in Water. Inorganic Chemistry 2016, 55 (18) , 9417-9423. https://doi.org/10.1021/acs.inorgchem.6b01688
    19. Katlego L. Morulane, Hendrik C. Swart, David E. Motaung. A review on topical advancement and challenges of indium oxide based gas sensors: Future outlooks. Journal of Environmental Chemical Engineering 2024, 12 (2) , 112144. https://doi.org/10.1016/j.jece.2024.112144
    20. SaravanaVadivu Arunachalam, S. Balamurali, R. Suresh, B. Selvakumar, D. Sivaganesh. Facile Synthesis of Mn doped ZnO for the Sensing of Ammonia. Chemical Physics Impact 2024, 50 , 100604. https://doi.org/10.1016/j.chphi.2024.100604
    21. Paramita Maiti, Manoj K. Rajbhar, Biswanath Das, Ambuj Mishra, Binaya Kumar Panigrahi, Shikha Varma, Karuna Kar Nanda. Superior room temperature Ammonia gas sensing of Copper Selenide Nanoflowers. Journal of Environmental Chemical Engineering 2024, 7 , 112785. https://doi.org/10.1016/j.jece.2024.112785
    22. Ke Lin, Yi Li, Wenyan Dai, Zhen Yuan, Weiye He, Haoting Zhang, Chang Xue, Junyi Yan, Jincheng Mei, Jiaqing Zhuang, Xingping Wang. A V2O5/MWCNTs composite thin film gas sensor for the fast detection of ammonia. Materials Today Communications 2024, 38 , 107969. https://doi.org/10.1016/j.mtcomm.2023.107969
    23. Wanjing Wang, Jianbiao Xian, Jin Li, Mengfang Yu, Qiutian Duan, Chung Ming Leung, Min Zeng, Xingsen Gao. Construction of Co3O4/SnO2 yolk-shell nanofibers for acetone gas detection. Sensors and Actuators B: Chemical 2024, 398 , 134724. https://doi.org/10.1016/j.snb.2023.134724
    24. Zhenkai Zhang, Chen Yue, Davoud Dastan, Dandan Zhang, Xinfang Zhang, Xi-Tao Yin, Xiaoguang Ma. High response and selectivity of bimetallic MOFs-derived metal oxides Co3O4/In2O3 nanoparticles to TEA. Sensors and Actuators B: Chemical 2024, 398 , 134727. https://doi.org/10.1016/j.snb.2023.134727
    25. Baishali Kanjilal, Arameh Masoumi, Nourouddin Sharifi, Iman Noshadi. Ammonia harms and diseases: ammonia corrosion hazards on human body systems (liver, muscles, kidney, brain). 2024, 307-324. https://doi.org/10.1016/B978-0-323-88501-0.00008-2
    26. Jayaseelan Dhakshinamoorthy, Jothiramalingam Kulothungan, Vishnuraj Ramakrishnan. Metal oxide based bi/multilayer thin film heterostructures for gas sensing applications. 2024, 91-132. https://doi.org/10.1016/B978-0-323-95476-1.00002-2
    27. Vikas Kumar, Rahul Madan, Devendra Mohan. Effect of thickness on structural and acetone gas sensing properties of graphene oxide/zinc oxide thin films. Journal of Materials Science: Materials in Electronics 2023, 34 (35) https://doi.org/10.1007/s10854-023-11660-8
    28. Emmanouil Gagaoudakis, Apostolos Tsakirakis, Marilena Moschogiannaki, Angeliki Sfakianou, Vassilios Binas. Room-Temperature Nitric Oxide Gas Sensors Based on NiO/SnO2 Heterostructures. Sensors 2023, 23 (20) , 8583. https://doi.org/10.3390/s23208583
    29. Bin Jiang, Tiantian Zhou, Ling Zhang, Jiaqi Yang, Wenjiang Han, Yanfeng Sun, Fangmeng Liu, Peng Sun, Hong Zhang, Geyu Lu. Separated detection of ethanol and acetone based on SnO2-ZnO gas sensor with improved humidity tolerance. Sensors and Actuators B: Chemical 2023, 393 , 134257. https://doi.org/10.1016/j.snb.2023.134257
    30. Chunyan Li, Kyusung Kim, Teruaki Fuchigami, Toru Asaka, Ken-ichi Kakimoto, Yoshitake Masuda. Acetone gas sensor based on Nb2O5 @SnO2 hybrid structure with high selectivity and ppt-level sensitivity. Sensors and Actuators B: Chemical 2023, 393 , 134144. https://doi.org/10.1016/j.snb.2023.134144
    31. Xingyan Shao, Fuchao Jia, Tingting Liu, Jiancheng Liu, Xiaomei Wang, Guangchao Yin, Na Lv, Tong Zhou, Ramachandran Rajan, Bo Liu. Loading uniform Ag 3 PO 4 nanoparticles on three-dimensional peony-like WO 3 for good stability and excellent selectivity towards NH 3 at room temperature. Chinese Physics B 2023, 32 (8) , 080703. https://doi.org/10.1088/1674-1056/ac98a0
    32. Ki Beom Kim, Young Kook Moon, Tae-Hyun Kim, Byeong-Hun Yu, Hua-Yao Li, Yun Chan Kang, Ji-Wook Yoon. Highly selective and sensitive detection of carcinogenic benzene using a raisin bread-structured film comprising catalytic Pd-Co3O4 and gas-sensing SnO2 hollow spheres. Sensors and Actuators B: Chemical 2023, 386 , 133750. https://doi.org/10.1016/j.snb.2023.133750
    33. Zenghui Sima, Peng Song, Zhichen Lu, Qi Wang. Enhanced ammonia sensing performance of Au nanoparticle–functionalized ZnSnO3 cubes at low temperature. Journal of Nanoparticle Research 2023, 25 (5) https://doi.org/10.1007/s11051-023-05738-x
    34. Chunxia Tian, Zhijun Wang, Yu Li, Li Liu. Influence of calcination temperature on the gas-sensing performance of 3D porous SnO 2 to formaldehyde. Journal of Dispersion Science and Technology 2023, 44 (5) , 865-875. https://doi.org/10.1080/01932691.2021.1979408
    35. Shiv Dutta Lawaniya, Sanjay Kumar, Yeontae Yu, Horst-Günter Rubahn, Yogendra Kumar Mishra, Kamlendra Awasthi. Functional nanomaterials in flexible gas sensors: recent progress and future prospects. Materials Today Chemistry 2023, 29 , 101428. https://doi.org/10.1016/j.mtchem.2023.101428
    36. Pravin Adhav, Digamber Pawar, Balasaheb Diwate, Manisha Bora, Smita Jagtap, Ashish Chourasia, Sabrina Dallavalle, Vasant Chabukswar. Room temperature operable ultra-sensitive ammonia sensor based on polyaniline-silver (PANI-Ag) nanocomposites synthesized by ultra-sonication. Synthetic Metals 2023, 293 , 117237. https://doi.org/10.1016/j.synthmet.2022.117237
    37. Qionglin Cheng, Xudong Wang, Dandan Huang, Yongchang Wang, Xi Tan, Yawen Chen, Wenjie Wang, Ming Yi, Hairong Li. Highly sensitive and fast response acetone gas sensor based on Co3O4–ZnO heterojunction assembled by porous nanoflowers. Journal of Materials Science: Materials in Electronics 2023, 34 (2) https://doi.org/10.1007/s10854-022-09566-y
    38. Xiaohu Wang, Shichao Wang, Huiyong wang, Gaoqun Qiao, Wendi Liu, Ya Xiong, Jian Tian, Nannan Wu, Xinzhen Wang. Comparative and mechanistic analysis of the ethanol gas sensing properties of ZnO@In2O3 and In2O3@ZnO spherical heterostructures. Journal of Alloys and Compounds 2023, 930 , 167468. https://doi.org/10.1016/j.jallcom.2022.167468
    39. Renaud Leturcq, Rutuja Bhusari, Emanuele Barborini. Physical mechanisms underpinning conductometric gas sensing properties of metal oxide nanostructures. Advances in Physics: X 2022, 7 (1) https://doi.org/10.1080/23746149.2022.2044904
    40. Qian ZHAO, Han YU, Die HU, Lin-Lin LI, Jun JIN, Ming-Jun AI, Jian WEI, Kai SONG. Recent advances in electrochemical sensors based on palladium nanoparticles. Chinese Journal of Analytical Chemistry 2022, 50 (11) , 100144. https://doi.org/10.1016/j.cjac.2022.100144
    41. Pi-Guey Su, Meng-Shian Tsai, Chia-Jung Lu. Fabrication of noble metal (Au, Ag, Pt)/polythiophene/reduced graphene oxide ternary nanocomposites for NH 3 gas sensing at room temperature. Analytical Methods 2022, 14 (41) , 4113-4121. https://doi.org/10.1039/D2AY01317G
    42. Ming Zhou, Yu Yao, Yutong Han, Lili Xie, Zhigang Zhu. Cu 2 O/Ti 3 C 2 T x nanocomposites for detection of triethylamine gas at room temperature. Nanotechnology 2022, 33 (41) , 415501. https://doi.org/10.1088/1361-6528/ac7dec
    43. Qiang Fu, Pengfei Lyu, Stephan Handschuh-Wang, Long Teng, Bo Zheng. Facile synthesis of hierarchical Co3O4/MWCNT composites with enhanced acetone sensing property. Ceramics International 2022, 48 (19) , 28419-28427. https://doi.org/10.1016/j.ceramint.2022.06.155
    44. Huiqian Yang, Weiqiang Zhang, Qing Yuan, Jinsheng Zhao, Yuchao Li, Yu Xie. The fabrication of hierarchical porous nano-SnO2@carbon@humic acid ternary composite for enhanced capacity and stability as anode material for lithium ion battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 650 , 129560. https://doi.org/10.1016/j.colsurfa.2022.129560
    45. Li Sun, Aurelian Rotaru, Yann Garcia. A non-porous Fe(II) complex for the colorimetric detection of hazardous gases and the monitoring of meat freshness. Journal of Hazardous Materials 2022, 437 , 129364. https://doi.org/10.1016/j.jhazmat.2022.129364
    46. Zhenhua Li, Sijia Li, Zijian Song, Xueli Yang, Ziyan Wang, Hao Zhang, Lanlan Guo, Caixuan Sun, Hongyan Liu, Junkai Shao, Yehong Cheng, Guofeng Pan. Influence of Nickel Doping on Ultrahigh Toluene Sensing Performance of Core-Shell ZnO Microsphere Gas Sensor. Chemosensors 2022, 10 (8) , 327. https://doi.org/10.3390/chemosensors10080327
    47. Janine Walker, Priyanka Karnati, Sheikh A. Akbar, Patricia A. Morris. Selectivity mechanisms in resistive-type metal oxide heterostructural gas sensors. Sensors and Actuators B: Chemical 2022, 355 , 131242. https://doi.org/10.1016/j.snb.2021.131242
    48. Sasithorn Srirattanapibul, Puttipol Nakarungsee, Chaisak Issro, I-Ming Tang, Sirikanjana Thongmee. Enhanced room temperature NH3 sensing of rGO/Co3O4 nanocomposites. Materials Chemistry and Physics 2021, 272 , 125033. https://doi.org/10.1016/j.matchemphys.2021.125033
    49. Jing Sun, Yanzheng Wang, Peng Song, Zhongxi Yang, Qi Wang. Metal-organic framework-derived Cr-doped hollow In2O3 nanoboxes with excellent gas-sensing performance toward ammonia. Journal of Alloys and Compounds 2021, 879 , 160472. https://doi.org/10.1016/j.jallcom.2021.160472
    50. Gayatri Joshi, Jeevitesh K. Rajput, L.P. Purohit. SnO2–Co3O4 pores composites for CO2 gas sensing at low operating temperature. Microporous and Mesoporous Materials 2021, 326 , 111343. https://doi.org/10.1016/j.micromeso.2021.111343
    51. Daejeong Yang, Ramu Adam Gopal, Telmenbayar Lkhagvaa, Dongjin Choi. Metal-oxide gas sensors for exhaled-breath analysis: a review. Measurement Science and Technology 2021, 32 (10) , 102004. https://doi.org/10.1088/1361-6501/ac03e3
    52. Faheem Ullah Khan, Shahid Mehmood, Shiliang Liu, Wei Xu, Muhammad Naeem Shah, Xiaojin Zhao, Junxian Ma, Yatao Yang, Xiaofang Pan. A p-n Heterojunction Based Pd/PdO@ZnO Organic Frameworks for High-Sensitivity Room-Temperature Formaldehyde Gas Sensor. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.742488
    53. Shichao Wang, Xiaohu Wang, Gaoqun Qiao, Xiaoyan Chen, Xinzhen Wang, Hongzhi Cui. Core-double shell ZnO@In2O3@ZnO hollow microspheres for superior ethanol gas sensing. Sensors and Actuators B: Chemical 2021, 341 , 130002. https://doi.org/10.1016/j.snb.2021.130002
    54. Chelliah Koventhan, Venkatachalam Vinothkumar, Shen-Ming Chen. Development of an electrochemical sensor based on a cobalt oxide/tin oxide composite for determination of antibiotic drug ornidazole. New Journal of Chemistry 2021, 45 (28) , 12593-12605. https://doi.org/10.1039/D1NJ01345A
    55. Renbing Tian, Peng Ji, Zhichao Luo, Jiaming Li, Jinghua Sun. Room-temperature NH 3 gas sensor based on atomically dispersed Co with a simple structure. New Journal of Chemistry 2021, 45 (23) , 10240-10247. https://doi.org/10.1039/D1NJ01139A
    56. Mohd Shoeb, Mohammad Mobin, Sharique Ahmad, Alim H. Naqvi. Facile synthesis of polypyrrole coated graphene Gr/Ag–Ag2O/PPy nanocomposites for a rapid and selective response towards ammonia sensing at room temperature. Journal of Science: Advanced Materials and Devices 2021, 6 (2) , 223-233. https://doi.org/10.1016/j.jsamd.2021.02.003
    57. Yuequan Wang, Shumeng Li, Xinhui Wang, Qin Chen, Zhonggui He, Cong Luo, Jin Sun. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021, 271 , 120737. https://doi.org/10.1016/j.biomaterials.2021.120737
    58. Shulin Yang, Gui Lei, Huoxi Xu, Zhigao Lan, Zhao Wang, Haoshuang Gu. Metal Oxide Based Heterojunctions for Gas Sensors: A Review. Nanomaterials 2021, 11 (4) , 1026. https://doi.org/10.3390/nano11041026
    59. Haidong Bian, Zebiao Li, Jie Pan, Fucong Lyu, Xufen Xiao, Jiaoning Tang, Patrik Schmuki, Chen Liu, Jian Lu, Yang Yang Li. Anodic self-assembly method for synthesizing hierarchical FeS/FeOx hollow nanospheres. Journal of Power Sources 2021, 484 , 229268. https://doi.org/10.1016/j.jpowsour.2020.229268
    60. Juliandi Siregar, Ni Luh Wulan Septiani, Syauqi Abdurrahman Abrori, Kerista Sebayang, Irzaman, Mochammad Zakki Fahmi, Syahrul Humaidi, Timbangen Sembiring, Kurnia Sembiring, Brian Yuliarto. Review—A Pollutant Gas Sensor Based On Fe 3 O 4 Nanostructures: A Review. Journal of The Electrochemical Society 2021, 168 (2) , 027510. https://doi.org/10.1149/1945-7111/abd928
    61. Junming He, Baoyan Liang, Xianju Yan, Fangmeng Liu, Jing Wang, Zijie Yang, Rui You, Chenguang Wang, Peng Sun, Xu Yan, Hongzhen Lin, Bonan Kang, Yue Wang, Geyu Lu. A TPA-DCPP organic semiconductor film-based room temperature NH3 sensor for insight into the sensing properties. Sensors and Actuators B: Chemical 2021, 327 , 128940. https://doi.org/10.1016/j.snb.2020.128940
    62. Xiaochen Liao, Chaoyun Ma, Chulei Zhao, Wenjun Li, Yiju Song, Chenglin Hong, Xiuwen Qiao. An immunosensor detects carcinoembryonic antigen by dual catalytic signal enhancer-hydrogen peroxide based on in-situ reduction of silver nanoparticles with dopamine and graphene high-load cobalt tetroxide. Microchemical Journal 2021, 160 , 105602. https://doi.org/10.1016/j.microc.2020.105602
    63. Kun Li, Xiaofang Li, Xiao Chang, Xurong Qiao, Ya Xiong, Fujun Xia, Qingzhong Xue. Metal-organic frameworks derived hierarchical flower-like ZnO/ Co3O4 heterojunctions for ppb-level acetone detection. Sensors and Actuators B: Chemical 2020, 325 , 128814. https://doi.org/10.1016/j.snb.2020.128814
    64. Sharique Ahmad, Imran Khan, Ahmad Husain, Anish Khan, Abdullah M. Asiri. Electrical Conductivity Based Ammonia Sensing Properties of Polypyrrole/MoS2 Nanocomposite. Polymers 2020, 12 (12) , 3047. https://doi.org/10.3390/polym12123047
    65. Ajay Beniwal, Sunny. SnO 2 -ZnO-Fe 2 O 3 tri-composite based room temperature operated dual behavior ammonia and ethanol sensor for ppb level detection. Nanoscale 2020, 12 (38) , 19732-19745. https://doi.org/10.1039/D0NR05389A
    66. S. R. Cynthia, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan, K. Jeyadheepan. Room temperature ammonia gas sensing characteristics of copper oxide-tin oxide composite thin films prepared by radio frequency magnetron sputtering technique. Journal of Materials Science: Materials in Electronics 2020, 31 (20) , 18018-18036. https://doi.org/10.1007/s10854-020-04353-z
    67. Chunxia Tian, Huixiao Guo, Haiying Li, Yu Li, Xiaosong Li, Dan Sun, Jianxia Zhang, Li Liu. Constructing 3D porous SnO2 nanomaterials for enhanced formaldehyde sensing performances. Journal of Materials Science: Materials in Electronics 2020, 31 (17) , 14174-14183. https://doi.org/10.1007/s10854-020-03973-9
    68. V. Janakiraman, V. Tamilnayagam, R. S. Sundararajan, S. Suresh, C. S. Biju. Structural and optical properties of pure SnO2 and V2O5/SnO2 nanocomposite thin films for gas sensing application. Journal of Materials Science: Materials in Electronics 2020, 31 (18) , 15477-15488. https://doi.org/10.1007/s10854-020-04110-2
    69. Kelin Hu, Feipeng Wang, Zijia Shen, Hongcheng Liu, Wen Zeng, Yu Wang. Ar plasma treatment on ZnO–SnO2 heterojunction nanofibers and its enhancement mechanism of hydrogen gas sensing. Ceramics International 2020, 46 (13) , 21439-21447. https://doi.org/10.1016/j.ceramint.2020.05.242
    70. Dan Meng, Jianpeng Si, Mingyue Wang, Guosheng Wang, Yanbai Shen, Xiaoguang San, Fanli Meng. In-situ growth of V2O5 flower-like structures on ceramic tubes and their trimethylamine sensing properties. Chinese Chemical Letters 2020, 31 (8) , 2133-2136. https://doi.org/10.1016/j.cclet.2019.12.021
    71. Abebaw Abun, Bohr-Ran Huang, Adhimoorthy Saravanan, Deepa Kathiravan, Po-Da Hong. Effect of PMMA on the surface of exfoliated MoS2 nanosheets and their highly enhanced ammonia gas sensing properties at room temperature. Journal of Alloys and Compounds 2020, 832 , 155005. https://doi.org/10.1016/j.jallcom.2020.155005
    72. Manuel Aleixandre, Takamichi Nakamoto. Study of Room Temperature Ionic Liquids as Gas Sensing Materials in Quartz Crystal Microbalances. Sensors 2020, 20 (14) , 4026. https://doi.org/10.3390/s20144026
    73. Wangchang Geng, Zhiyan Ma, Yejun Zhao, Xiaowei He, Libing Duan, Jinchun Tu, Qiuyu Zhang. The self-assembly of octahedral CuxO and its triethylamine-sensing properties. Sensors and Actuators B: Chemical 2020, 312 , 128014. https://doi.org/10.1016/j.snb.2020.128014
    74. Ritu Malik, Vijay K. Tomer, Yogendra Kumar Mishra, Liwei Lin. Functional gas sensing nanomaterials: A panoramic view. Applied Physics Reviews 2020, 7 (2) https://doi.org/10.1063/1.5123479
    75. Jie Guo, Yiwen Li, Bin Jiang, Hongyu Gao, Tianshuang Wang, Peng Sun, Fangmeng Liu, Xu Yan, Xishuang Liang, Yuan Gao, Jing Zhao, Geyu Lu. Xylene gas sensing properties of hydrothermal synthesized SnO2-Co3O4 microstructure. Sensors and Actuators B: Chemical 2020, 310 , 127780. https://doi.org/10.1016/j.snb.2020.127780
    76. Sihan Li, Lili Xie, Meng He, Xiaobing Hu, Guifang Luo, Cheng Chen, Zhigang Zhu. Metal-Organic frameworks-derived bamboo-like CuO/In2O3 Heterostructure for high-performance H2S gas sensor with Low operating temperature. Sensors and Actuators B: Chemical 2020, 310 , 127828. https://doi.org/10.1016/j.snb.2020.127828
    77. Sikai Zhao, Yanbai Shen, Pengfei Zhou, Fulai Hao, Xiangyu Xu, Shuling Gao, Dezhou Wei, Yuxin Ao, Yansong Shen. Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles. Sensors and Actuators B: Chemical 2020, 308 , 127729. https://doi.org/10.1016/j.snb.2020.127729
    78. Shouli Bai, Jingyi Han, Ning Han, Kewei Zhang, Jianhua Sun, Lixia Sun, Ruixian Luo, Dianqing Li, Aifan Chen. An α-Fe 2 O 3 /NiO p–n hierarchical heterojunction for the sensitive detection of triethylamine. Inorganic Chemistry Frontiers 2020, 7 (7) , 1532-1539. https://doi.org/10.1039/C9QI01548E
    79. Yongshan Xu, Lingli Zheng, Chen Yang, Xianghong Liu, Jun Zhang. Highly sensitive and selective electronic sensor based on Co catalyzed SnO2 nanospheres for acetone detection. Sensors and Actuators B: Chemical 2020, 304 , 127237. https://doi.org/10.1016/j.snb.2019.127237
    80. Chen Su, Lu Zhang, Yutong Han, Cong Ren, Min Zeng, Zhihua Zhou, Yanjie Su, Nantao Hu, Hao Wei, Zhi Yang. Controllable synthesis of heterostructured CuO–NiO nanotubes and their synergistic effect for glycol gas sensing. Sensors and Actuators B: Chemical 2020, 304 , 127347. https://doi.org/10.1016/j.snb.2019.127347
    81. Shulin Yang, Zhao Wang, Gui Lei, Huoxi Xu, Yongming Hu, Haoshuang Gu. High-Performance Gas Sensors Based on Nanostructured Metal Oxide Heterojunctions. 2020, 19-70. https://doi.org/10.1007/978-981-15-4810-9_2
    82. Zhicheng Cai, Sunghoon Park. Enhancement mechanisms of ethanol-sensing properties based on Cr2O3 nanoparticle-anchored SnO2 nanowires. Journal of Materials Research and Technology 2020, 9 (1) , 271-281. https://doi.org/10.1016/j.jmrt.2019.10.055
    83. Dan Meng, Jianpeng Si, Mingyue Wang, Guosheng Wang, Yanbai Shen, Xiaoguang San, Fanli Meng. One-step synthesis and the enhanced trimethylamine sensing properties of Co3O4/SnO2 flower-like structures. Vacuum 2020, 171 , 108994. https://doi.org/10.1016/j.vacuum.2019.108994
    84. Prabhat Kumar Singh, Neetu Singh, Mridula Singh, Poonam Tandon, Saurabh Kumar Singh. Preparation of Nanostructured Co3O4 and Ru-Doped Co3O4 and Their Applicability in Liquefied Petroleum Gas Sensing. Journal of Materials Engineering and Performance 2019, 28 (12) , 7592-7601. https://doi.org/10.1007/s11665-019-04495-0
    85. Yun Zhou, Qiujie Ding, Junyu Li, Qingdong Yang, Tao Wu, Wenjun Zhu, Xiaoping OuYang, Lixin Liu, Yuan Wang. TiO2/InVO4n–n heterojunctions for efficient ammonia gas detection and their sensing mechanisms. Journal of Materials Science 2019, 54 (21) , 13660-13673. https://doi.org/10.1007/s10853-019-03868-z
    86. Nan Zheng, Ling Wang, Hao Wang, Jiefeng Gao, Xiaoli Dong, Yiu-Wing Mai. Conductive graphite nanoplatelets (GNPs)/polyethersulfone (PES) composites with inter-connective porous structure for chemical vapor sensing. Composites Science and Technology 2019, 184 , 107883. https://doi.org/10.1016/j.compscitech.2019.107883
    87. Dongwook Kwak, Yu Lei, Radenka Maric. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204 , 713-730. https://doi.org/10.1016/j.talanta.2019.06.034
    88. Yanqiong Yang, Xiaodong Wang, Guiyun Yi, Huimin Li, Chuang Shi, Guang Sun, Zhanying Zhang. Hydrothermal Synthesis of Co3O4/ZnO Hybrid Nanoparticles for Triethylamine Detection. Nanomaterials 2019, 9 (11) , 1599. https://doi.org/10.3390/nano9111599
    89. Daniele Ziegler, Andrea Marchisio, Giuliana Ercolino, Stefania Specchia, Jean-Marc Tulliani. Ammonia selective sensors based on cobalt spinel prepared by combustion synthesis. Solid State Ionics 2019, 337 , 91-100. https://doi.org/10.1016/j.ssi.2019.03.026
    90. Xilin Jia, Ning Wang, Junlong Tian, Yong Zhang, Donglin Lu, Junjiang Tan, Ruyi Qiao, Lulu Chen, Wang Zhang, Jianxin Zhong. A highly sensitive gas sensor employing biomorphic SnO 2 with multi-level tubes/pores structure: bio-templated from waste of flax. RSC Advances 2019, 9 (35) , 19993-20001. https://doi.org/10.1039/C9RA02064K
    91. Chen Su, Lu Zhang, Yutong Han, Xinwei Chen, Shutang Wang, Min Zeng, Nantao Hu, Yanjie Su, Zhihua Zhou, Hao Wei, Zhi Yang. Glucose-assisted synthesis of hierarchical flower-like Co3O4 nanostructures assembled by porous nanosheets for enhanced acetone sensing. Sensors and Actuators B: Chemical 2019, 288 , 699-706. https://doi.org/10.1016/j.snb.2019.03.004
    92. Xin Zhang, Weiying Lan, Junlan Xu, Yantao Luo, Jiang Pan, Cunyi Liao, Linyu Yang, Wenhu Tan, Xintang Huang. ZIF-8 derived hierarchical hollow ZnO nanocages with quantum dots for sensitive ethanol gas detection. Sensors and Actuators B: Chemical 2019, 289 , 144-152. https://doi.org/10.1016/j.snb.2019.03.090
    93. Janine M. Walker, Sheikh A. Akbar, Patricia A. Morris. Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review. Sensors and Actuators B: Chemical 2019, 286 , 624-640. https://doi.org/10.1016/j.snb.2019.01.049
    94. N. Jayababu, Madhukar Poloju, M.V. Ramana Reddy. Facile synthesis of SnO2-Fe2O3 core-shell nanostructures and their 2-methoxyethanol gas sensing characteristics. Journal of Alloys and Compounds 2019, 780 , 523-533. https://doi.org/10.1016/j.jallcom.2018.11.413
    95. Jianhua Sun, Lixia Sun, Shouli Bai, Hang Fu, Jun Guo, Yongjun Feng, Ruixian Luo, Dianqing Li, Aifan Chen. Pyrolyzing Co/Zn bimetallic organic framework to form p-n heterojunction of Co3O4/ZnO for detection of formaldehyde. Sensors and Actuators B: Chemical 2019, 285 , 291-301. https://doi.org/10.1016/j.snb.2018.12.080
    96. Hui Chen, Saren Ao, Guo-Dong Li, Qian Gao, Xiaoxin Zou, Cundi Wei. Enhanced sensing performance to toluene and xylene by constructing NiGa2O4-NiO heterostructures. Sensors and Actuators B: Chemical 2019, 282 , 331-338. https://doi.org/10.1016/j.snb.2018.11.072
    97. Dongzhi Zhang, Zhimin Yang, Zhenling Wu, Guokang Dong. Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing. Sensors and Actuators B: Chemical 2019, 283 , 42-51. https://doi.org/10.1016/j.snb.2018.11.133
    98. Ka Wai Cheung, Jerry Yu, Derek Ho. Temperature-dependent sensitivity in Pt/La2O3 nanobelt Schottky interface hydrogen sensors. Materials Research Bulletin 2019, 110 , 174-180. https://doi.org/10.1016/j.materresbull.2018.10.020
    99. W Tang, D W Li, X J Du, J Yu, Q Q Sun. 1D N-type SnO 2 nanofibers coexisted with P-type Co 3 O 4 cubes for highly selective acetone sensor. IOP Conference Series: Materials Science and Engineering 2019, 479 , 012116. https://doi.org/10.1088/1757-899X/479/1/012116
    100. Jong-Heun Lee. Technological realization of semiconducting metal oxide–based gas sensors. 2019, 167-216. https://doi.org/10.1016/B978-0-12-811224-3.00004-4
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect