ACS Publications. Most Trusted. Most Cited. Most Read
Co-intercalation of Mg2+ and Na+ in Na0.69Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries
My Activity

Figure 1Loading Img
    Research Article

    Co-intercalation of Mg2+ and Na+ in Na0.69Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries
    Click to copy article linkArticle link copied!

    View Author Information
    School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
    School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
    § Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13509, South Korea
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2016, 8, 13, 8554–8560
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.6b01352
    Published March 11, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Thanks to the advantages of low cost and good safety, magnesium metal batteries get the limelight as substituent for lithium ion batteries. However, the energy density of state-of-the-art magnesium batteries is not high enough because of their low operating potential; thus, it is necessary to improve the energy density by developing new high-voltage cathode materials. In this study, nanosized Berlin green Fe2(CN)6 and Prussian blue Na0.69Fe2(CN)6 are compared as high-voltage cathode materials for magnesium batteries. Interestingly, while Mg2+ ions cannot be intercalated in Fe2(CN)6, Na0.69Fe2(CN)6 shows reversible intercalation and deintercalation of Mg2+ ions, although they have the same crystal structure except for the presence of Na+ ions. This phenomenon is attributed to the fact that Mg2+ ions are more stable in Na+-containing Na0.69Fe2(CN)6 than in Na+-free Fe2(CN)6, indicating Na+ ions in Na0.69Fe2(CN)6 plays a crucial role in stabilizing Mg2+ ions. Na0.69Fe2(CN)6 delivers reversible capacity of approximately 70 mA h g–1 at 3.0 V vs Mg/Mg2+ and shows stable cycle performance over 35 cycles. Therefore, Prussian blue analogues are promising structures for high-voltage cathode materials in Mg batteries. Furthermore, this co-intercalation effect suggests new avenues for the development of cathode materials in hybrid magnesium batteries that use both Mg2+ and Na+ ions as charge carriers.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.6b01352.

    • Electrochemical Stability of electrolyte, calibration of AC electrode and detailed ex situ XRD analysis of electrodes (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 65 publications.

    1. Xuli Hu, Jiebang Peng, Fei Xu, Mingyue Ding. Rechargeable Mg2+/Li+, Mg2+/Na+, and Mg2+/K+ Hybrid Batteries Based on Layered VS2. ACS Applied Materials & Interfaces 2021, 13 (48) , 57252-57263. https://doi.org/10.1021/acsami.1c17433
    2. Jinlei Zhang, Zeyu Chang, Zhonghua Zhang, Aobing Du, Shanmu Dong, Zhenjiang Li, Guicun Li, Guanglei Cui. Current Design Strategies for Rechargeable Magnesium-Based Batteries. ACS Nano 2021, 15 (10) , 15594-15624. https://doi.org/10.1021/acsnano.1c06530
    3. Min Je Park, Arumugam Manthiram. Unveiling the Charge Storage Mechanism in Nonaqueous and Aqueous Zn/Na3V2(PO4)2F3 Batteries. ACS Applied Energy Materials 2020, 3 (5) , 5015-5023. https://doi.org/10.1021/acsaem.0c00505
    4. Pieremanuele Canepa, Gopalakrishnan Sai Gautam, Daniel C. Hannah, Rahul Malik, Miao Liu, Kevin G. Gallagher, Kristin A. Persson, and Gerbrand Ceder . Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chemical Reviews 2017, 117 (5) , 4287-4341. https://doi.org/10.1021/acs.chemrev.6b00614
    5. Osama Gohar, Hafiz Ahmad Ishfaq, Muhammad Ahmad Iqbal, Muhammad Zubair Khan, Sadia Basharat, Nafeesa Kanwal, Asad Riaz, Mohsin Saleem, Jung-Hyuk Koh, Iftikhar Hussain, Muhammad Aftab Akram. Recent advancements in high-performance and durable electrodes materials for magnesium-ion batteries. Coordination Chemistry Reviews 2025, 538 , 216702. https://doi.org/10.1016/j.ccr.2025.216702
    6. Lu Zhang, Yuping Liu, Xiaolei Wang, Zhihong Cui, Chenglong Xiao, Changguo Chen, Jingfeng Wang, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Deciphering the interfacial electrochemistry of non-nucleophilic Mg(TFSI)2 as 4 V-class electrolyte for Mg batteries. Chemical Engineering Journal 2025, 4 , 162410. https://doi.org/10.1016/j.cej.2025.162410
    7. Ashwani Tyagi, Sreeraj Puravankara. Tilt Engineering in Prussian White Cathode Na1+xFe[Fe(CN)6] via Mg‐doping for Enhanced Electrochemical Performance in Na‐ion Batteries. Batteries & Supercaps 2025, https://doi.org/10.1002/batt.202500045
    8. Andrey Arbenin, Semyon Egorov, Igor Prikhodko, Anna Fedorova, Anastasia Penkova, Artem Selyutin. Prussian Blue Analogues Based on 3d-Metals as Cathode Materials for Magnesium Ion Batteries. Energies 2025, 18 (3) , 711. https://doi.org/10.3390/en18030711
    9. Laurin Rademacher, Joachim Häcker, J. Alberto Blázquez, Maryam Nojabaee, K. Andreas Friedrich. Corrosion Study of Current Collectors for Magnesium Batteries. Batteries & Supercaps 2025, 8 (2) https://doi.org/10.1002/batt.202400392
    10. Dong Wang, Zhenyu Zhang, Yue Hao, Hongxing Jia, Xing Shen, Baihua Qu, Guangsheng Huang, Xiaoyuan Zhou, Jingfeng Wang, Chaohe Xu, Fusheng Pan. Challenges and Progress in Rechargeable Magnesium‐Ion Batteries: Materials, Interfaces, and Devices. Advanced Functional Materials 2024, 34 (51) https://doi.org/10.1002/adfm.202410406
    11. Runjing Xu, Xin Gao, Ya Chen, Xiaodong Chen, Lifeng Cui. Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters 2024, 35 (11) , 109852. https://doi.org/10.1016/j.cclet.2024.109852
    12. Wenbo Guo, Zening Wu, Shuyuan Zhao, Jichen Zhao, Xue Han, Boao Wanyan, Jiehua Wang, Lei Yan, Liyuan Zhang, Haoxiang Yu, Ting-Feng Yi, Jie Shu. Zinc hexacyanoferrate with open framework for efficient aqueous cobalt ions storage. Chemical Engineering Journal 2024, 499 , 156480. https://doi.org/10.1016/j.cej.2024.156480
    13. Mecaelah S. Palaganas, Jayson S. Garcia, Giancarlo Dominador D. Sanglay, Lora Monique E. Sapanta, Lawrence A. Limjuco, Joey D. Ocon. Can Prussian Blue Analogues be Holy Grail for Advancing Post‐Lithium Batteries?. Batteries & Supercaps 2024, 29 https://doi.org/10.1002/batt.202400280
    14. Hongyu Cheng, Yinping Qin, Yi-Nuo Liu, Zhuo-Er Yu, Ruyi Li, Riming Chen, Jingjing Zhou, Yang Liu, Bingkun Guo. Introducing zinc ions into manganese-based Prussian blue for improving the structural stability of sodium-ion batteries. Journal of Materials Chemistry C 2024, 12 (19) , 6785-6792. https://doi.org/10.1039/D4TC00931B
    15. Rafael Trócoli, Raphaëlle Houdeville, Carlos Frontera, Smobin Vincent, Juan Maria Garcia Lastra, M. Rosa Palacín. Prussian Blue Analogues as Positive Electrodes for Mg Batteries: Insights into Mg 2+ Intercalation. ChemSusChem 2024, 17 (5) https://doi.org/10.1002/cssc.202301224
    16. Xiaoqian He, Ruiqi Cheng, Xinyu Sun, Hao Xu, Zhao Li, Fengzhan Sun, Yang Zhan, Jianxin Zou, Richard M. Laine. Organic cathode materials for rechargeable magnesium-ion batteries: Fundamentals, recent advances, and approaches to optimization. Journal of Magnesium and Alloys 2023, 11 (12) , 4359-4389. https://doi.org/10.1016/j.jma.2023.11.008
    17. Runjing Xu, Xin Gao, Ya Chen, Chengxin Peng, Zhiyuan Zhang, Cheng Wang, Hongchao Sun, Xiaodong Chen, Lifeng Cui. Research advances of the electrolytes for rechargeable magnesium ion batteries. Materials Today Physics 2023, 36 , 101186. https://doi.org/10.1016/j.mtphys.2023.101186
    18. Jia-Qi Huang, Rui Du, Hang Zhang, Yang Liu, Jian Chen, Yi-Jie Liu, Li Li, Jian Peng, Yun Qiao, Shu-Lei Chou. Low-cost Prussian blue analogues for sodium-ion batteries and other metal-ion batteries. Chemical Communications 2023, 59 (61) , 9320-9335. https://doi.org/10.1039/D3CC01548C
    19. Violeta Koleva, Mariya Kalapsazova, Delyana Marinova, Sonya Harizanova, Radostina Stoyanova. Dual‐Ion Intercalation Chemistry Enabling Hybrid Metal‐Ion Batteries. ChemSusChem 2023, 16 (4) https://doi.org/10.1002/cssc.202201442
    20. Masashi Kotobuki, Binggong Yan, Li Lu. Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Materials 2023, 54 , 227-253. https://doi.org/10.1016/j.ensm.2022.10.034
    21. Xinyi Liu, Yu Cao, Jie Sun. Defect Engineering in Prussian Blue Analogs for High‐Performance Sodium‐Ion Batteries. Advanced Energy Materials 2022, 12 (46) https://doi.org/10.1002/aenm.202202532
    22. Kiran Kumar Reddy Reddygunta, Behara Dilip Kumar. Moving toward high‐energy rechargeable Mg batteries: Status and challenges. International Journal of Energy Research 2022, 46 (15) , 22285-22313. https://doi.org/10.1002/er.8647
    23. Ziheng Zhang, Maxim Avdeev, Huaican Chen, Wen Yin, Wang Hay Kan, Guang He. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-35376-1
    24. Xiang Bai, Yierxiati. Dilixiati, Yaya Wang, Xinglei Wang, Wei Liu, Xinze Luo, Xiaoyan He. A long-cycle life recharge magnesium ion battery using the Na2Li2Ti6O14 nanoparticles as an anode material. Journal of Alloys and Compounds 2022, 920 , 165686. https://doi.org/10.1016/j.jallcom.2022.165686
    25. Nikola Cvjetićanin, Ivana Stojković Simatović. Comparative Electrochemical Study of Li + , Na + and Mg 2+ -ion Insertion into VO 2 (B) from Aqueous Nitrate Solutions. Journal of The Electrochemical Society 2022, 169 (10) , 100528. https://doi.org/10.1149/1945-7111/ac8ee7
    26. Qianchen Wang, Jingbo Li, Haibo Jin, Sen Xin, Hongcai Gao. Prussian‐blue materials: Revealing new opportunities for rechargeable batteries. InfoMat 2022, 4 (6) https://doi.org/10.1002/inf2.12311
    27. Bingxing Xie, Baoyu Sun, Tianyu Gao, Yulin Ma, Geping Yin, Pengjian Zuo. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coordination Chemistry Reviews 2022, 460 , 214478. https://doi.org/10.1016/j.ccr.2022.214478
    28. Mewin Vincent, Venkata Sai Avvaru, Maciej Haranczyk, Vinodkumar Etacheri. Fast-charging and long-lasting Mg-Na hybrid batteries based on extremely pseudocapacitive bronze TiO2 nanosheet cathodes. Chemical Engineering Journal 2022, 433 , 133810. https://doi.org/10.1016/j.cej.2021.133810
    29. Xikun Zhang, Maoting Xia, Haoxiang Yu, Junwei Zhang, Zhengwei Yang, Liyuan Zhang, Jie Shu. Hydrogen Bond-Assisted Ultra-Stable and Fast Aqueous NH4+ Storage. Nano-Micro Letters 2021, 13 (1) https://doi.org/10.1007/s40820-021-00671-x
    30. Behnam Nayebi, Kasra Pourrostami Niavol, Behzad Nayebi, Soo Young Kim, Ki Tae Nam, Ho Won Jang, Rajender S. Varma, Mohammadreza Shokouhimehr. Prussian blue-based nanostructured materials: Catalytic applications for environmental remediation and energy conversion. Molecular Catalysis 2021, 514 , 111835. https://doi.org/10.1016/j.mcat.2021.111835
    31. Daile Zhang, Qiong Chen, Jianghua Zhang, Ting Sun. MgMn2O4/multiwalled carbon nanotubes composite fabricated by electrochemical conversion as a high-performance cathode material for aqueous rechargeable magnesium ion battery. Journal of Alloys and Compounds 2021, 873 , 159872. https://doi.org/10.1016/j.jallcom.2021.159872
    32. Guolang Zhou, Linlin Chen, Yanhong Chao, Xiaowei Li, Guiling Luo, Wenshuai Zhu. Progress in electrochemical lithium ion pumping for lithium recovery. Journal of Energy Chemistry 2021, 59 , 431-445. https://doi.org/10.1016/j.jechem.2020.11.012
    33. Alexander Kraft. Some considerations on the structure, composition, and properties of Prussian blue: a contribution to the current discussion. Ionics 2021, 27 (6) , 2289-2305. https://doi.org/10.1007/s11581-021-04013-0
    34. Yirui Li, Qi Dang, Wenqian Chen, Liang Tang, Ming Hu. Recent Advances in Rechargeable Batteries with Prussian Blue Analogs Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials 2021, 31 (5) , 1877-1893. https://doi.org/10.1007/s10904-021-01886-6
    35. Guangyu Du, Huan Pang. Recent advancements in Prussian blue analogues: Preparation and application in batteries. Energy Storage Materials 2021, 36 , 387-408. https://doi.org/10.1016/j.ensm.2021.01.006
    36. Longtao Ma, Huilin Cui, Shengmei Chen, Xinliang Li, Binbin Dong, Chunyi Zhi. Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: The electrochemical redox reactions. Nano Energy 2021, 81 , 105632. https://doi.org/10.1016/j.nanoen.2020.105632
    37. Fanfan Liu, Tiantian Wang, Xiaobin Liu, Li‐Zhen Fan. Challenges and Recent Progress on Key Materials for Rechargeable Magnesium Batteries. Advanced Energy Materials 2021, 11 (2) https://doi.org/10.1002/aenm.202000787
    38. Cunyuan Pei, Fangyu Xiong, Yameng Yin, Ziang Liu, Han Tang, Ruimin Sun, Qinyou An, Liqiang Mai. Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries. Small 2021, 17 (3) https://doi.org/10.1002/smll.202004108
    39. Chaolin You, Xiongwei Wu, Xinhai Yuan, Yuhui Chen, Lili Liu, Yusong Zhu, Lijun Fu, Yuping Wu, Yu-Guo Guo, Teunis van Ree. Advances in rechargeable Mg batteries. Journal of Materials Chemistry A 2020, 8 (48) , 25601-25625. https://doi.org/10.1039/D0TA09330K
    40. Ya Xiong, Yueqiang Lin, Qingzhong Xue. Review—Open-Framework Structure Based Cathode Materials Coupled with Metallic Anodes for Rechargeable Multivalent Ion Batteries. Journal of The Electrochemical Society 2020, 167 (16) , 160530. https://doi.org/10.1149/1945-7111/abcd10
    41. Youhuan Zhu, Zhi Zhang, Junjie Bao, Shaohua Zeng, Wangyan Nie, Pengpeng Chen, Yifeng Zhou, Ying Xu. Multi‐metal doped high capacity and stable Prussian blue analogue for sodium ion batteries. International Journal of Energy Research 2020, 44 (11) , 9205-9212. https://doi.org/10.1002/er.5576
    42. Jiazheng Niu, Zhonghua Zhang, Doron Aurbach. Alloy Anode Materials for Rechargeable Mg Ion Batteries. Advanced Energy Materials 2020, 10 (23) https://doi.org/10.1002/aenm.202000697
    43. Matthew Li, Tongchao Liu, Xuanxuan Bi, Zhongwei Chen, Khalil Amine, Cheng Zhong, Jun Lu. Cationic and anionic redox in lithium-ion based batteries. Chemical Society Reviews 2020, 49 (6) , 1688-1705. https://doi.org/10.1039/C8CS00426A
    44. Junsheng Chen, Li Wei, Asif Mahmood, Zengxia Pei, Zheng Zhou, Xuncai Chen, Yuan Chen. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials 2020, 25 , 585-612. https://doi.org/10.1016/j.ensm.2019.09.024
    45. Muhammad Rashad, Muhammad Asif, Yuxin Wang, Zhen He, Iftikhar Ahmed. Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Materials 2020, 25 , 342-375. https://doi.org/10.1016/j.ensm.2019.10.004
    46. Jing Zeng, Dongzheng Wu, Xin Wang, Junnan Wu, Jiyang Li, Jing Wang, Jinbao Zhao. Insights into the Mg storage property and mechanism based on the honeycomb-like structured Na3V2(PO4)3/C/G in anhydrous electrolyte. Chemical Engineering Journal 2019, 372 , 37-45. https://doi.org/10.1016/j.cej.2019.04.128
    47. Zhuo Li, Lu Han, Yongfei Wang, Xinyan Li, Jinlin Lu, Xianwei Hu. Microstructure Characteristics of Cathode Materials for Rechargeable Magnesium Batteries. Small 2019, 15 (32) https://doi.org/10.1002/smll.201900105
    48. Duri Kim, Ji Heon Ryu. Amorphous V2O5 Positive Electrode Materials by Precipitation Method in Magnesium Rechargeable Batteries. Electronic Materials Letters 2019, 15 (4) , 415-420. https://doi.org/10.1007/s13391-019-00138-7
    49. Yufei Zhang, Hongbo Geng, Weifeng Wei, Jianmin Ma, Libao Chen, Cheng Chao Li. Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Materials 2019, 20 , 118-138. https://doi.org/10.1016/j.ensm.2018.11.033
    50. Radostina Stoyanova, Violeta Koleva, Antonia Stoyanova. Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage. The Chemical Record 2019, 19 (2-3) , 474-501. https://doi.org/10.1002/tcr.201800081
    51. Hyeon Jeong Lee, Jaeho Shin, Jang Wook Choi. Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries. Advanced Materials 2018, 30 (42) https://doi.org/10.1002/adma.201705851
    52. Jiangfeng Qian, Chen Wu, Yuliang Cao, Zifeng Ma, Yunhui Huang, Xinping Ai, Hanxi Yang. Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries. Advanced Energy Materials 2018, 8 (17) https://doi.org/10.1002/aenm.201702619
    53. Baoqi Wang, Yu Han, Xiao Wang, Naoufal Bahlawane, Hongge Pan, Mi Yan, Yinzhu Jiang. Prussian Blue Analogs for Rechargeable Batteries. iScience 2018, 3 , 110-133. https://doi.org/10.1016/j.isci.2018.04.008
    54. Claudiu B. Bucur. Magnesium Electrodes. 2018, 39-53. https://doi.org/10.1007/978-3-319-65067-8_3
    55. Angelo Mullaliu, Moulay-Tahar Sougrati, Nicolas Louvain, Giuliana Aquilanti, Marie-Liesse Doublet, Lorenzo Stievano, Marco Giorgetti. The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials?. Electrochimica Acta 2017, 257 , 364-371. https://doi.org/10.1016/j.electacta.2017.10.107
    56. Jing Zeng, Yang Yang, Shaobo Lai, Jianxing Huang, Yiyong Zhang, Jing Wang, Jinbao Zhao. A Promising High‐Voltage Cathode Material Based on Mesoporous Na 3 V 2 (PO 4 ) 3 /C for Rechargeable Magnesium Batteries. Chemistry – A European Journal 2017, 23 (66) , 16898-16905. https://doi.org/10.1002/chem.201704303
    57. Yuxia Xu, Shasha Zheng, Hanfei Tang, Xiaotian Guo, Huaiguo Xue, Huan Pang. Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Materials 2017, 9 , 11-30. https://doi.org/10.1016/j.ensm.2017.06.002
    58. John Muldoon, Claudiu B. Bucur, Thomas Gregory. Magnesiumbatterien – ein Aufruf an Synthesechemiker: Elektrolyte und Kathoden dringend gesucht. Angewandte Chemie 2017, 129 (40) , 12232-12253. https://doi.org/10.1002/ange.201700673
    59. John Muldoon, Claudiu B. Bucur, Thomas Gregory. Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists—Electrolytes and Cathodes Needed. Angewandte Chemie International Edition 2017, 56 (40) , 12064-12084. https://doi.org/10.1002/anie.201700673
    60. Feng Ma, Qing Li, Tanyuan Wang, Hanguang Zhang, Gang Wu. Energy storage materials derived from Prussian blue analogues. Science Bulletin 2017, 62 (5) , 358-368. https://doi.org/10.1016/j.scib.2017.01.030
    61. Yanan Xu, Chang Xu, Qinyou An, Qiulong Wei, Jinzhi Sheng, Fangyu Xiong, Cunyuan Pei, Liqiang Mai. Robust LiTi 2 (PO 4 ) 3 microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. Journal of Materials Chemistry A 2017, 5 (27) , 13950-13956. https://doi.org/10.1039/C7TA03392C
    62. Robert C. Massé, Chaofeng Liu, Yanwei Li, Liqiang Mai, Guozhong Cao. Energy storage through intercalation reactions: electrodes for rechargeable batteries. National Science Review 2017, 4 (1) , 26-53. https://doi.org/10.1093/nsr/nww093
    63. Jia-Ying Liao, Qiao Hu, Bang-Kun Zou, Jun-Xiang Xiang, Chun-Hua Chen. The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries. Electrochimica Acta 2016, 220 , 114-121. https://doi.org/10.1016/j.electacta.2016.10.062
    64. Albert L. Lipson, Sang-Don Han, Soojeong Kim, Baofei Pan, Niya Sa, Chen Liao, Timothy T. Fister, Anthony K. Burrell, John T. Vaughey, Brian J. Ingram. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. Journal of Power Sources 2016, 325 , 646-652. https://doi.org/10.1016/j.jpowsour.2016.06.019
    65. Xiaolei Jiang, Hongjin Liu, Jie Song, Changfang Yin, Huayun Xu. Hierarchical mesoporous octahedral K 2 Mn 1−x Co x Fe(CN) 6 as a superior cathode material for sodium-ion batteries. Journal of Materials Chemistry A 2016, 4 (41) , 16205-16212. https://doi.org/10.1039/C6TA06658E

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2016, 8, 13, 8554–8560
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.6b01352
    Published March 11, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    3284

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.