ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices

Cite this: ACS Appl. Mater. Interfaces 2018, 10, 34, 28541–28552
Publication Date (Web):July 19, 2018
https://doi.org/10.1021/acsami.8b07937
Copyright © 2018 American Chemical Society

    Article Views

    4038

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (10 MB)

    Abstract

    Abstract Image

    Understanding the origins and evolution of inhomogeneity in halide perovskite solar cells appears to be a key to advancing the technology. Time-of-flight secondary-ion mass spectrometry (TOF-SIMS) is one of the few techniques that can obtain chemical information from all components of halide organic–inorganic perovskite photovoltaics in one-dimension (standard depth profiling), two-dimensions (high-resolution 100 nm imaging), as well as three-dimensions (tomography combining high-resolution imaging with depth profiling). TOF-SIMS has been used to analyze perovskite photovoltaics made by a variety of methods, and the breadth of insight that can be gained from this technique is illustrated here including: cation uniformity (depth and lateral), changes in chemistry upon alternate processing, changes in chemistry upon degradation (including at interfaces), and lateral distribution of passivating additives. Using TOF-SIMS on multiple perovskite compositions, we show that the information regarding halide perovskite formation as well as inhomogeneity critical to device performance can be extracted providing one of the best proxies for understanding compositional changes resulting from degradation. We also describe in detail the measurement artifacts and recommend the best practices that enable unique insight regarding halide perovskite solar cell materials and devices.

    Cited By

    This article is cited by 71 publications.

    1. Félix Gayot, Elise Bruhat, Muriel Bouttemy, Mathieu Frégnaux, Eric De Vito, Jean-Paul Kleider, Stéphane Cros, Matthieu Manceau. Elucidating Interfacial Limitations Induced by Tin Oxide Electron Selective Layer Grown by Atomic Layer Deposition in N−I−P Perovskite-Based Solar Cells. ACS Applied Energy Materials 2023, Article ASAP.
    2. Wenqi Zhang, Shuai Yuan, Yanyan Zhang, Hao-Yi Wang, Yi Wang, Fuyi Wang, Jian-Ping Zhang. Perovskite Solar Cell Performance Boosted by Regulating the Ion Migration and Charge Transport Dynamics via Dual-Interface Modification of Electron Transport Layer. The Journal of Physical Chemistry Letters 2023, 14 (38) , 8620-8629. https://doi.org/10.1021/acs.jpclett.3c02356
    3. Linfeng Cai, Chun Wai Suen, Ying Suet Lau, Zhaojue Lan, Jiayin Han, Furong Zhu. Mitigation of Morphological Defects in Methylammonium-Free Formamidinium-Based Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (7) , 8304-8312. https://doi.org/10.1021/acsaem.2c00846
    4. Loreta A. Muscarella, Eline M. Hutter. Halide Double-Perovskite Semiconductors beyond Photovoltaics. ACS Energy Letters 2022, 7 (6) , 2128-2135. https://doi.org/10.1021/acsenergylett.2c00811
    5. Chengwei Ma, Fan Xu, Tinglu Song. Dual-Layered Interfacial Evolution of Lithium Metal Anode: SEI Analysis via TOF-SIMS Technology. ACS Applied Materials & Interfaces 2022, 14 (17) , 20197-20207. https://doi.org/10.1021/acsami.2c00842
    6. Maki Hiraoka, Nobuyuki Ishida, Akio Matsushita, Ryusuke Uchida, Takeyuki Sekimoto, Teruaki Yamamoto, Taisuke Matsui, Yukihiro Kaneko, Kenjiro Miyano, Masatoshi Yanagida, Yasuhiro Shirai. Degradation of Perovskite Photovoltaics Manifested in the Cross-Sectional Potential Profile Studied by Quantitative Kelvin Probe Force Microscopy. ACS Applied Energy Materials 2022, 5 (4) , 4232-4239. https://doi.org/10.1021/acsaem.1c03747
    7. Hsun-Yun Chang, Wei-Chun Lin, Po-Chih Chu, Yi-Kai Wang, Mauo Sogo, Shin-ichi Iida, Chien-Jung Peng, Takuya Miyayama. X-ray Photoelectron Spectroscopy Equipped with Gas Cluster Ion Beams for Evaluation of the Sputtering Behavior of Various Nanomaterials. ACS Applied Nano Materials 2022, 5 (3) , 4260-4268. https://doi.org/10.1021/acsanm.2c00202
    8. Sarthak Jariwala, Rishi E. Kumar, Giles E. Eperon, Yangwei Shi, David P. Fenning, David S. Ginger. Dimethylammonium Addition to Halide Perovskite Precursor Increases Vertical and Lateral Heterogeneity. ACS Energy Letters 2022, 7 (1) , 204-210. https://doi.org/10.1021/acsenergylett.1c02302
    9. Kevin Ho, Mingyang Wei, Edward H. Sargent, Gilbert C. Walker. Grain Transformation and Degradation Mechanism of Formamidinium and Cesium Lead Iodide Perovskite under Humidity and Light. ACS Energy Letters 2021, 6 (3) , 934-940. https://doi.org/10.1021/acsenergylett.0c02247
    10. Onovbaramwen Jennifer Usiobo, Hiroyuki Kanda, Paul Gratia, Iwan Zimmermann, Tom Wirtz, Mohammad Khaja Nazeeruddin, Jean-Nicolas Audinot. Nanoscale Mass-Spectrometry Imaging of Grain Boundaries in Perovskite Semiconductors. The Journal of Physical Chemistry C 2020, 124 (42) , 23230-23236. https://doi.org/10.1021/acs.jpcc.0c07464
    11. Taylor Moot, Desislava R. Dikova, Abhijit Hazarika, Tracy H. Schloemer, Severin N. Habisreutinger, Noemi Leick, Sean P. Dunfield, Bryan A. Rosales, Steven P. Harvey, Jason R. Pfeilsticker, Glenn Teeter, Lance M. Wheeler, Bryon W. Larson, Joseph M. Luther. Beyond Strain: Controlling the Surface Chemistry of CsPbI3 Nanocrystal Films for Improved Stability against Ambient Reactive Oxygen Species. Chemistry of Materials 2020, 32 (18) , 7850-7860. https://doi.org/10.1021/acs.chemmater.0c02543
    12. Chittaranjan Das, Michael Wussler, Tim Hellmann, Thomas Mayer, Iwan Zimmermann, Clément Maheu, Mohammad Khaja Nazeeruddin, Wolfram Jaegermann. Surface, Interface, and Bulk Electronic and Chemical Properties of Complete Perovskite Solar Cells: Tapered Cross-Section Photoelectron Spectroscopy, a Novel Solution. ACS Applied Materials & Interfaces 2020, 12 (36) , 40949-40957. https://doi.org/10.1021/acsami.0c11484
    13. Subha Sadhu, Thierry Buffeteau, Simon Sandrez, Lionel Hirsch, Dario M. Bassani. Observing the Migration of Hydrogen Species in Hybrid Perovskite Materials through D/H Isotope Exchange. Journal of the American Chemical Society 2020, 142 (23) , 10431-10437. https://doi.org/10.1021/jacs.0c02597
    14. Cheng-Hung Hou, Shu-Han Hung, Li-Ji Jhang, Keh-Jiunh Chou, Yu-Kai Hu, Pi-Tai Chou, Wei-Fang Su, Feng-Yu Tsai, Jay Shieh, Jing-Jong Shyue. Validated Analysis of Component Distribution Inside Perovskite Solar Cells and Its Utility in Unveiling Factors of Device Performance and Degradation. ACS Applied Materials & Interfaces 2020, 12 (20) , 22730-22740. https://doi.org/10.1021/acsami.9b22492
    15. Bryan R. Wygant, Alexandre Z. Ye, Andrei Dolocan, Quyen Vu, David M. Abbot, C. Buddie Mullins. Probing the Degradation Chemistry and Enhanced Stability of 2D Organolead Halide Perovskites. Journal of the American Chemical Society 2019, 141 (45) , 18170-18181. https://doi.org/10.1021/jacs.9b08895
    16. Steven P. Harvey, Fei Zhang, Axel Palmstrom, Joseph M. Luther, Kai Zhu, Joseph J. Berry. Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (34) , 30911-30918. https://doi.org/10.1021/acsami.9b09445
    17. Philip Schulz, David Cahen, Antoine Kahn. Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews 2019, 119 (5) , 3349-3417. https://doi.org/10.1021/acs.chemrev.8b00558
    18. Elizabeth M. Tennyson, Bart Roose, Joseph L. Garrett, Chen Gong, Jeremy N. Munday, Antonio Abate, Marina S. Leite. Cesium-Incorporated Triple Cation Perovskites Deliver Fully Reversible and Stable Nanoscale Voltage Response. ACS Nano 2019, 13 (2) , 1538-1546. https://doi.org/10.1021/acsnano.8b07295
    19. Jonghee Yang, Diana K. LaFollette, Benjamin J. Lawrie, Anton V. Ievlev, Yongtao Liu, Kyle P. Kelley, Sergei V. Kalinin, Juan‐Pablo Correa‐Baena, Mahshid Ahmadi. Understanding the Role of Cesium on Chemical Complexity in Methylammonium‐Free Metal Halide Perovskites. Advanced Energy Materials 2023, 13 (33) https://doi.org/10.1002/aenm.202202880
    20. Rigan Xu, Qi Liu, Qiang Yang, Wei Yang, Daobin Mu, Chunli Li, Li Li, Renjie Chen, Feng Wu. Study on carbonate ester and ether-based electrolytes and hard carbon anodes interfaces for sodium-ion batteries. Electrochimica Acta 2023, 462 , 142787. https://doi.org/10.1016/j.electacta.2023.142787
    21. Yongshin Kim, Hannes Hempel, Steven P. Harvey, Nelson A. Rivera, Thomas Unold, David B. Mitzi. Alkali element (Li, Na, K, and Rb) doping of Cu 2 BaGe 1− x Sn x Se 4 films. Journal of Materials Chemistry A 2023, 11 (28) , 15336-15346. https://doi.org/10.1039/D3TA01494K
    22. Kai Zhang, Xianfu Zhang, Keith G. Brooks, Bin Ding, Sachin Kinge, Yong Ding, Songyuan Dai, Mohammad Khaja Nazeeruddin. Role of Ionic Liquids in Perovskite Solar Cells. Solar RRL 2023, 7 (11) https://doi.org/10.1002/solr.202300115
    23. Muhammed P.U. Haris, Jianxing Xia, Samrana Kazim, Zuzanna Molenda, Lionel Hirsch, Thierry Buffeteau, Dario M. Bassani, Mohammad Khaja Nazeeruddin, Shahzada Ahmad. Probing proton diffusion as a guide to environmental stability in powder-engineered FAPbI3 and CsFAPbI3 perovskites. Cell Reports Physical Science 2023, 4 (3) , 101304. https://doi.org/10.1016/j.xcrp.2023.101304
    24. Yanyan Zhang, Zhi Xing, Baojin Fan, Zhigang Ni, Fuyi Wang, Xiaotian Hu, Yiwang Chen. Uncovering Aging Chemistry of Perovskite Precursor Solutions and Anti‐aging Mechanism of Additives. Angewandte Chemie 2023, 135 (8) https://doi.org/10.1002/ange.202215799
    25. Yanyan Zhang, Zhi Xing, Baojin Fan, Zhigang Ni, Fuyi Wang, Xiaotian Hu, Yiwang Chen. Uncovering Aging Chemistry of Perovskite Precursor Solutions and Anti‐aging Mechanism of Additives. Angewandte Chemie International Edition 2023, 62 (8) https://doi.org/10.1002/anie.202215799
    26. Yanbo Shang, Xingcheng Li, Weitao Lian, Xiaofen Jiang, Xue Wang, Tao Chen, Zhengguo Xiao, Mingtai Wang, Yalin Lu, Shangfeng Yang. Lead acetate as a superior lead source enables highly efficient and stable all-inorganic lead-tin perovskite solar cells. Chemical Engineering Journal 2023, 457 , 141246. https://doi.org/10.1016/j.cej.2022.141246
    27. Daming Zheng, Florian Raffin, Polina Volovitch, Thierry Pauporté. Control of perovskite film crystallization and growth direction to target homogeneous monolithic structures. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34332-3
    28. Teng-Hui You, Xiang-Cao Li, Xin Ju. Study on coating exfoliation damage of KDP component under laser irradiation by surface analysis. Applied Surface Science 2022, 603 , 154255. https://doi.org/10.1016/j.apsusc.2022.154255
    29. Tinglu Song, Linjing Liu, Fan Xu, Ye-tang Pan, Mengmeng Qian, Dinghua Li, Rongjie Yang. Multi-dimensional characterizations of washing durable ZnO/phosphazene-siloxane coated fabrics via ToF-SIMS and XPS. Polymer Testing 2022, 114 , 107684. https://doi.org/10.1016/j.polymertesting.2022.107684
    30. Avi Mathur, Vivek Maheshwari. Carbon monoxide induced self-doping in methylammonium lead iodide films and associated long-term degradation effects. Journal of Materials Chemistry C 2022, 10 (19) , 7485-7493. https://doi.org/10.1039/D2TC00467D
    31. Xian-gang Wu, Shipei Sun, Tinglu Song, Xin Zhang, Chenhui Wang, Yingguo Yang, Shuangpeng Wang, Haizheng Zhong. Revealing the vertical structure of in-situ fabricated perovskite nanocrystals films toward efficient pure red light-emitting diodes. Fundamental Research 2022, 9 https://doi.org/10.1016/j.fmre.2022.05.004
    32. Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, Makhsud I. Saidaminov. Characterization of interfaces: Lessons from the past for the future of perovskite solar cells. Journal of Semiconductors 2022, 43 (5) , 051202. https://doi.org/10.1088/1674-4926/43/5/051202
    33. Filipe Richheimer, David Toth, Bekele Hailegnaw, Mark A. Baker, Robert A. Dorey, Ferry Kienberger, Fernando A. Castro, Martin Kaltenbrunner, Markus C. Scharber, Georg Gramse, Sebastian Wood. Ion-driven nanograin formation in early-stage degradation of tri-cation perovskite films. Nanoscale 2022, 14 (7) , 2605-2616. https://doi.org/10.1039/D1NR05045A
    34. Yong Ryun Kim, Juae Kim, Heejoo Kim, Hyungcheol Back, Geunjin Kim, Ayeong Gu, Chang-Yong Nam, Ju-Hyeon Kim, Hongsuk Suh, Kwanghee Lee. Conjugated polyelectrolytes for stable perovskite solar cells based on methylammonium lead triiodide. Journal of Materials Chemistry A 2022, 10 (7) , 3321-3329. https://doi.org/10.1039/D1TA10185D
    35. Jianhong Zhao, Hongzhang Wang, Liangfei Duan, Tianping Lv, Bin Xiao, Jin Zhang, Jing Liu, Yumin Zhang, Qingju Liu. Mechanism of the Dimethylammonium Cation in Hybrid Perovskites for Enhanced Performance and Stability of Printable Perovskite Solar Cells. Solar RRL 2022, 6 (2) https://doi.org/10.1002/solr.202100923
    36. Yurou Zhang, Dohyung Kim, Jung‐Ho Yun, Jongchul Lim, Min‐Cherl Jung, Xiaoming Wen, Jan Seidel, Eunyoung Choi, Mu Xiao, Tengfei Qiu, Miaoqiang Lyu, EQ Han, Mehri Ghasemi, Sean Lim, Henry J. Snaith, Jae Sung Yun, Lianzhou Wang. Self‐Assembled Perovskite Nanoislands on CH 3 NH 3 PbI 3 Cuboid Single Crystals by Energetic Surface Engineering. Advanced Functional Materials 2021, 31 (50) https://doi.org/10.1002/adfm.202105542
    37. Tinglu Song, Meishuai Zou, Defeng Lu, Hanyuan Chen, Benpeng Wang, Shuo Wang, Fan Xu. Probing Surface Information of Alloy by Time of Flight-Secondary Ion Mass Spectrometer. Crystals 2021, 11 (12) , 1465. https://doi.org/10.3390/cryst11121465
    38. Chittaranjan Das, Waqas Zia, Claudiu Mortan, Navid Hussain, Michael Saliba, Jan Ingo Flege, Małgorzata Kot. Top‐Down Approach to Study Chemical and Electronic Properties of Perovskite Solar Cells: Sputtered Depth Profiling Versus Tapered Cross‐Sectional Photoelectron Spectroscopies. Solar RRL 2021, 5 (10) https://doi.org/10.1002/solr.202100298
    39. Vishal Kumar, Nisika, Mukesh Kumar. Temporal-spatial-energy resolved advance multidimensional techniques to probe photovoltaic materials from atomistic viewpoint for next-generation energy solutions. Energy & Environmental Science 2021, 14 (9) , 4760-4802. https://doi.org/10.1039/D1EE01165K
    40. Marina M. Tepliakova, Alexandra N. Mikheeva, Pavel A. Somov, Eugene S. Statnik, Alexander M. Korsunsky, Keith J. Stevenson. Combination of Metal Oxide and Polytriarylamine: A Design Principle to Improve the Stability of Perovskite Solar Cells. Energies 2021, 14 (16) , 5115. https://doi.org/10.3390/en14165115
    41. Julie Euvrard, Yanfa Yan, David B. Mitzi. Electrical doping in halide perovskites. Nature Reviews Materials 2021, 6 (6) , 531-549. https://doi.org/10.1038/s41578-021-00286-z
    42. Julie Euvrard, Oki Gunawan, Xinjue Zhong, Steven P. Harvey, Antoine Kahn, David B. Mitzi. p-Type molecular doping by charge transfer in halide perovskite. Materials Advances 2021, 2 (9) , 2956-2965. https://doi.org/10.1039/D1MA00160D
    43. Ji Hao, Young-Hoon Kim, Severin N. Habisreutinger, Steven P. Harvey, Elisa M. Miller, Sean M. Foradori, Michael S. Arnold, Zhaoning Song, Yanfa Yan, Joseph M. Luther, Jeffrey L. Blackburn. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Science Advances 2021, 7 (18) https://doi.org/10.1126/sciadv.abf1959
    44. Changzeng Ding, Rong Huang, Christian Ahläng, Jian Lin, Lianping Zhang, Dongyu Zhang, Qun Luo, Fangsen Li, Ronald Österbacka, Chang-Qi Ma. Synergetic effects of electrochemical oxidation of Spiro-OMeTAD and Li + ion migration for improving the performance of n–i–p type perovskite solar cells. Journal of Materials Chemistry A 2021, 9 (12) , 7575-7585. https://doi.org/10.1039/D0TA12458C
    45. Liam Gollino, Thierry Pauporté. Lead‐Less Halide Perovskite Solar Cells. Solar RRL 2021, 5 (3) https://doi.org/10.1002/solr.202000616
    46. Ammarah Kausar, Abdul Sattar, Chenzhe Xu, Suicai Zhang, Zhuo Kang, Yue Zhang. Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chemical Society Reviews 2021, 50 (4) , 2696-2736. https://doi.org/10.1039/D0CS01316A
    47. Yongtao Liu, Anton V. Ievlev, Nikolay Borodinov, Matthias Lorenz, Kai Xiao, Mahshid Ahmadi, Bin Hu, Sergei V. Kalinin, Olga S. Ovchinnikova. Direct Observation of Photoinduced Ion Migration in Lead Halide Perovskites. Advanced Functional Materials 2021, 31 (8) https://doi.org/10.1002/adfm.202008777
    48. Feng Zhang, Xin Zhang, Chenhui Wang, Mengna Sun, Xiyu Luo, Yingguo Yang, Shuai Chang, Dongdong Zhang, Lian Duan. Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes. Nano Energy 2021, 79 , 105486. https://doi.org/10.1016/j.nanoen.2020.105486
    49. Yantao Wang, Aleksandra B Djurišić, Wei Chen, Fangzhou Liu, Rui Cheng, Shien Ping Feng, Alan Man Ching Ng, Zhubing He. Metal oxide charge transport layers in perovskite solar cells—optimising low temperature processing and improving the interfaces towards low temperature processed, efficient and stable devices. Journal of Physics: Energy 2021, 3 (1) , 012004. https://doi.org/10.1088/2515-7655/abc73f
    50. Ji Hao, Haipeng Lu, Sanjini U. Nanayakkara, Steven P. Harvey, Jeffrey L. Blackburn, Andrew J. Ferguson. Perovskite Electronic Ratchets for Energy Harvesting. Advanced Electronic Materials 2020, 6 (12) https://doi.org/10.1002/aelm.202000831
    51. Nengxu Li, Xiuxiu Niu, Qi Chen, Huanping Zhou. Towards commercialization: the operational stability of perovskite solar cells. Chemical Society Reviews 2020, 49 (22) , 8235-8286. https://doi.org/10.1039/D0CS00573H
    52. Jingcheng Zhao, Dezhi Yang, Rugang Chen, Liqing Yang, Xianfeng Qiao, Lintao Hou, Jiangshan Chen, Dongge Ma. Air‐Processed Perovskite Films with Inner‐to‐Outside Passivation for High‐Efficiency Solar Cells. Solar RRL 2020, 4 (11) https://doi.org/10.1002/solr.202000410
    53. Elizabeth M. Tennyson, Mojtaba Abdi‐Jalebi, Kangyu Ji, Joseph L. Garrett, Chen Gong, Alison A. Pawlicki, Olga S. Ovchinnikova, Jeremy N. Munday, Samuel D. Stranks, Marina S. Leite. Correlated Electrical and Chemical Nanoscale Properties in Potassium‐Passivated, Triple‐Cation Perovskite Solar Cells. Advanced Materials Interfaces 2020, 7 (17) https://doi.org/10.1002/admi.202000515
    54. Yongtao Liu, Matthias Lorenz, Anton V. Ievlev, Olga S. Ovchinnikova. Secondary Ion Mass Spectrometry (SIMS) for Chemical Characterization of Metal Halide Perovskites. Advanced Functional Materials 2020, 30 (35) https://doi.org/10.1002/adfm.202002201
    55. Qin Yao, Qifan Xue, Zhenchao Li, Kaicheng Zhang, Teng Zhang, Ning Li, Shihe Yang, Christoph J. Brabec, Hin‐Lap Yip, Yong Cao. Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA‐Free Perovskite Solar Cells. Advanced Materials 2020, 32 (26) https://doi.org/10.1002/adma.202000571
    56. Steven P. Harvey, Jonah Messinger, Kai Zhu, Joseph M. Luther, Joseph J. Berry. Investigating the Effects of Chemical Gradients on Performance and Reliability within Perovskite Solar Cells with TOF‐SIMS. Advanced Energy Materials 2020, 10 (26) https://doi.org/10.1002/aenm.201903674
    57. Martin C. Schubert, Laura E. Mundt, Daniel Walter, Andreas Fell, Stefan W. Glunz. Spatially Resolved Performance Analysis for Perovskite Solar Cells. Advanced Energy Materials 2020, 10 (26) https://doi.org/10.1002/aenm.201904001
    58. Jixian Xu, Caleb C. Boyd, Zhengshan J. Yu, Axel F. Palmstrom, Daniel J. Witter, Bryon W. Larson, Ryan M. France, Jérémie Werner, Steven P. Harvey, Eli J. Wolf, William Weigand, Salman Manzoor, Maikel F. A. M. van Hest, Joseph J. Berry, Joseph M. Luther, Zachary C. Holman, Michael D. McGehee. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 2020, 367 (6482) , 1097-1104. https://doi.org/10.1126/science.aaz5074
    59. Long Xu, Caixia Xu. High quality all inorganic halide lead perovskites microlasers pumped by continuous wave lasers. 2020, PvW2G.4. https://doi.org/10.1364/PVLED.2020.PvW2G.4
    60. Qian Zhao, Abhijit Hazarika, Xihan Chen, Steve P. Harvey, Bryon W. Larson, Glenn R. Teeter, Jun Liu, Tao Song, Chuanxiao Xiao, Liam Shaw, Minghui Zhang, Guoran Li, Matthew C. Beard, Joseph M. Luther. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10856-z
    61. Elizabeth M. Tennyson, Tiarnan A. S. Doherty, Samuel D. Stranks. Heterogeneity at multiple length scales in halide perovskite semiconductors. Nature Reviews Materials 2019, 4 (9) , 573-587. https://doi.org/10.1038/s41578-019-0125-0
    62. Hongxia Wang, Antonio Guerrero, Agustín Bou, Abdullah M. Al-Mayouf, Juan Bisquert. Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells. Energy & Environmental Science 2019, 12 (7) , 2054-2079. https://doi.org/10.1039/C9EE00802K
    63. Dong Hoe Kim, Christopher P. Muzzillo, Jinhui Tong, Axel F. Palmstrom, Bryon W. Larson, Chungseok Choi, Steven P. Harvey, Stephen Glynn, James B. Whitaker, Fei Zhang, Zhen Li, Haipeng Lu, Maikel F.A.M. van Hest, Joseph J. Berry, Lorelle M. Mansfield, Yu Huang, Yanfa Yan, Kai Zhu. Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS. Joule 2019, 3 (7) , 1734-1745. https://doi.org/10.1016/j.joule.2019.04.012
    64. Mikhail N. Drozdov, Pavel A. Yunin, Vlad V. Travkin, Andrey I. Koptyaev, Georgy L. Pakhomov. Direct Imaging of Current‐Induced Transformation of a Perovskite/Electrode Interface. Advanced Materials Interfaces 2019, 6 (12) https://doi.org/10.1002/admi.201900364
    65. Fei Zhang, Chuanxiao Xiao, Xihan Chen, Bryon W. Larson, Steven P. Harvey, Joseph J. Berry, Kai Zhu. Self-Seeding Growth for Perovskite Solar Cells with Enhanced Stability. Joule 2019, 3 (6) , 1452-1463. https://doi.org/10.1016/j.joule.2019.03.023
    66. Steven P. Harvey, Fei Zhang, Axel Palmstrom, Kai Zhu, Joseph M. Luther, Joe Berry. Understanding Measurement Artifacts Causing Inherent Cation Gradients in Depth Profiles of Perovskite Photovoltaics with TOF-SIMS. 2019, 1487-1490. https://doi.org/10.1109/PVSC40753.2019.8980549
    67. Jinhui Tong, Zhaoning Song, Dong Hoe Kim, Xihan Chen, Cong Chen, Axel F. Palmstrom, Paul F. Ndione, Matthew O. Reese, Sean P. Dunfield, Obadiah G. Reid, Jun Liu, Fei Zhang, Steven P. Harvey, Zhen Li, Steven T. Christensen, Glenn Teeter, Dewei Zhao, Mowafak M. Al-Jassim, Maikel F. A. M. van Hest, Matthew C. Beard, Sean E. Shaheen, Joseph J. Berry, Yanfa Yan, Kai Zhu. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364 (6439) , 475-479. https://doi.org/10.1126/science.aav7911
    68. Laura T. Schelhas, Zhen Li, Jeffrey A. Christians, Anuj Goyal, Paul Kairys, Steven P. Harvey, Dong Hoe Kim, Kevin H. Stone, Joseph M. Luther, Kai Zhu, Vladan Stevanovic, Joseph J. Berry. Insights into operational stability and processing of halide perovskite active layers. Energy & Environmental Science 2019, 12 (4) , 1341-1348. https://doi.org/10.1039/C8EE03051K
    69. . Solid Analysis by Mass Spectrometry. 2019, 131-142. https://doi.org/10.31399/asm.hb.v10.a0006651
    70. Steven Harvey, Sandrine Ricote, David Diercks, Chun-Sheng Jiang, Neil Patki, Anthony Manerbino, Brian Gorman, Mowafak Al-Jassim. Evolution of Copper Electrodes Fabricated by Electroless Plating on BaZr0.7Ce0.2Y0.1O3-δ Proton-Conducting Ceramic Membrane: From Deposition to Testing in Methane. Ceramics 2018, 1 (2) , 261-273. https://doi.org/10.3390/ceramics1020021
    71. Steven P. Harvey. Understanding Chemical Inhomogeneities and Cation Gradients in Perovskite Photovoltaics with TOF-SIMS. 2018, 2543-2546. https://doi.org/10.1109/PVSC.2018.8548045

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect