ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch Article

Low-Valent Iron Mono-Diazadiene Compounds: Electronic Structure and Catalytic Application

View Author Information
Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
Department of Chemistry & Pharmacy, Friedrich-Alexander University, Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058 Erlangen, Germany
§ van ’t Hoff Institute for Molecular Sciences, Department of Homogeneous Catalysis, Faculty of Science, Universiteit van Amsterdam, Postbus 94720, 1090 GS Amsterdam, The Netherlands
*E-mail for C.L.: [email protected]
*E-mail for H.G.: [email protected]
Cite this: ACS Catal. 2015, 5, 10, 6230–6240
Publication Date (Web):September 15, 2015
https://doi.org/10.1021/acscatal.5b01416
Copyright © 2015 American Chemical Society

    Article Views

    1815

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (7)»

    Abstract

    Abstract Image

    A series of monodiazadiene diolefin iron compounds, [Fe(trop2dad)(L)] (4; L = neutral ligand), has been prepared by one-electron oxidation of the FeI species [NaFe(trop2dad)(thf)3] (dad = diazadiene; trop = 5H-dibenzo[a,d]cyclohepten-5-yl). The electronic structures of compounds 4 were investigated by NMR and Mössbauer spectroscopy, single-crystal X-ray diffraction, solid- and liquid-phase magnetic susceptibility measurements, and DFT calculations. Compounds of type 4 with labile ligands L were found to be active (pre)catalysts for the dehydrogenative coupling of (alkyl)amine–boranes. Remarkably high activities were observed, especially for the homogeneous dehydrogenative polymerization of methylamine–borane.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.5b01416.

    • Single-crystal X-ray analyses, Mössbauer spectroscopy, DFT calculations, isotropic shift analysis, and catalysis (PDF)

    • Crystallographic data for 1a (CIF)

    • Crystallographic data for 3 (CIF)

    • Crystallographic data for 4a (CIF)

    • Crystallographic data for 4b (CIF)

    • Crystallographic data for 4c (CIF)

    • Crystallographic data for 4d (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 43 publications.

    1. Qiuming Liang, Datong Song. Syntheses and Reactivity of Piano-Stool Iron Complexes of Picolyl-Functionalized N-Heterocyclic Carbene Ligands. Organometallics 2021, 40 (23) , 3943-3951. https://doi.org/10.1021/acs.organomet.1c00515
    2. Felix J. de Zwart, Bente Reus, Annechien A.H. Laporte, Vivek Sinha, Bas de Bruin. Metrical Oxidation States of 1,4-Diazadiene-Derived Ligands. Inorganic Chemistry 2021, 60 (5) , 3274-3281. https://doi.org/10.1021/acs.inorgchem.0c03685
    3. Mathis Benedikter, Janis Musso, Manoj K. Kesharwani, K. Leonard Sterz, Iris Elser, Felix Ziegler, Felix Fischer, Bernd Plietker, Wolfgang Frey, Johannes Kästner, Mario Winkler, Joris van Slageren, Michal Nowakowski, Matthias Bauer, Michael R. Buchmeiser. Charge Distribution in Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes: A Combined X-ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach. ACS Catalysis 2020, 10 (24) , 14810-14823. https://doi.org/10.1021/acscatal.0c03978
    4. Thomas M. Maier, Martin Gawron, Peter Coburger, Michael Bodensteiner, Robert Wolf, Nicolaas P. van Leest, Bas de Bruin, Serhiy Demeshko, Franc Meyer. Low-Valence Anionic α-Diimine Iron Complexes: Synthesis, Characterization, and Catalytic Hydroboration Studies. Inorganic Chemistry 2020, 59 (21) , 16035-16052. https://doi.org/10.1021/acs.inorgchem.0c02606
    5. Diego A. Resendiz-Lara, George R. Whittell, Erin M. Leitao, Ian Manners. Catalytic Synthesis, Characterization, and Properties of Polyaminoborane Homopolymers and Random Copolymers. Macromolecules 2019, 52 (18) , 7052-7064. https://doi.org/10.1021/acs.macromol.9b01139
    6. Andreas Bäcker, Yinwu Li, Maximilian Fritz, Maik Grätz, Zhuofeng Ke, Robert Langer. Redox-Active, Boron-Based Ligands in Iron Complexes with Inverted Hydride Reactivity in Dehydrogenation Catalysis. ACS Catalysis 2019, 9 (8) , 7300-7309. https://doi.org/10.1021/acscatal.9b00882
    7. Robert Knitsch, Delong Han, Felix Anke, Lukas Ibing, Haijun Jiao, Michael Ryan Hansen, Torsten Beweries. Fe(II) Hydride Complexes for the Homogeneous Dehydrocoupling of Hydrazine Borane: Catalytic Mechanism via DFT Calculations and Detailed Spectroscopic Characterization. Organometallics 2019, 38 (14) , 2714-2723. https://doi.org/10.1021/acs.organomet.9b00053
    8. Gemma M. Adams, Annie L. Colebatch, Joseph T. Skornia, Alasdair I. McKay, Heather C. Johnson, Guy C. Lloyd−Jones, Stuart A. Macgregor, Nicholas A. Beattie, and Andrew S. Weller . Dehydropolymerization of H3B·NMeH2 To Form Polyaminoboranes Using [Rh(Xantphos-alkyl)] Catalysts. Journal of the American Chemical Society 2018, 140 (4) , 1481-1495. https://doi.org/10.1021/jacs.7b11975
    9. Nathan T. Coles, Mary F. Mahon, and Ruth L. Webster . Phosphine- and Amine-Borane Dehydrocoupling Using a Three-Coordinate Iron(II) β-Diketiminate Precatalyst. Organometallics 2017, 36 (11) , 2262-2268. https://doi.org/10.1021/acs.organomet.7b00326
    10. Arne Glüer, Moritz Förster, Vinicius R. Celinski, Jörn Schmedt auf der Günne, Max C. Holthausen, and Sven Schneider . Highly Active Iron Catalyst for Ammonia Borane Dehydrocoupling at Room Temperature. ACS Catalysis 2015, 5 (12) , 7214-7217. https://doi.org/10.1021/acscatal.5b02406
    11. Cheng Peng, Wei Liu, Yong Wang. Mechanistic insights into H 3 B·NMeH 2 dehydrogenation by Co-based complexes: a DFT perspective. New Journal of Chemistry 2023, 47 (14) , 6661-6672. https://doi.org/10.1039/D2NJ06155D
    12. G. G. Kazakov, N. O. Druzhkov, E. V. Baranov, V. K. Cherkasov. Iron Tricarbonyl Complexes Based on N,N'-Disubstituted Phenanthrenediimines. Russian Journal of Coordination Chemistry 2023, 49 (3) , 117-123. https://doi.org/10.1134/S1070328423700410
    13. Matthias Maier, Jonas Klopf, Clemens Glasmacher, Felipe Fantuzzi, Jonas Bachmann, Ozan Ayhan, Abhishek Koner, Bernd Engels, Holger Helten. Electrophilic activation of difunctional aminoboranes: B–N coupling versus intramolecular Cl/Me exchange. Chemical Communications 2022, 58 (28) , 4464-4467. https://doi.org/10.1039/D2CC00976E
    14. Holger Helten. Organoboron and Related Group 13 Polymers. 2022, 71-134. https://doi.org/10.1016/B978-0-12-820206-7.00155-4
    15. Anna Hanft, Dennis Rottschäfer, Nele Wieprecht, Felix Geist, Krzysztof Radacki, Crispin Lichtenberg. Aminotroponiminates: Impact of the NO 2 Functional Group on Coordination, Isomerisation, and Backbone Substitution. Chemistry – A European Journal 2021, 27 (57) , 14250-14262. https://doi.org/10.1002/chem.202102324
    16. Marc Devillard, Carlos Antonio De Albuquerque Pinheiro, Elsa Caytan, Claire Roiland, Chiara Dinoi, Iker Del Rosal, Gilles Alcaraz. Uncatalyzed Formation of Polyaminoboranes from Diisopropylaminoborane and Primary Amines: a Kinetically Controlled Polymerization Reaction. Advanced Synthesis & Catalysis 2021, 363 (9) , 2417-2426. https://doi.org/10.1002/adsc.202001458
    17. Anna Hanft, Krzysztof Radacki, Crispin Lichtenberg. Cationic Bismuth Aminotroponiminates: Charge Controls Redox Properties. Chemistry – A European Journal 2021, 27 (20) , 6230-6239. https://doi.org/10.1002/chem.202005186
    18. Michael L. Neidig, Nikki J. Bakas, Peter G.N. Neate, Jeffrey D. Sears. Metal-Carbon Bonds of Iron and Manganese. 2021, 82-122. https://doi.org/10.1016/B978-0-08-102688-5.00050-7
    19. Qiuming Liang, Jack H. Lin, Joshua C. DeMuth, Michael L. Neidig, Datong Song. Syntheses and characterizations of iron complexes of bulky o -phenylenediamide ligand. Dalton Transactions 2020, 49 (35) , 12287-12297. https://doi.org/10.1039/D0DT02087G
    20. Luca Piccirilli, Danielle Lobo Justo Pinheiro, Martin Nielsen. Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts 2020, 10 (7) , 773. https://doi.org/10.3390/catal10070773
    21. Felix Anke, Susanne Boye, Anke Spannenberg, Albena Lederer, Detlef Heller, Torsten Beweries. Dehydropolymerisation of Methylamine Borane and an N ‐Substituted Primary Amine Borane Using a PNP Fe Catalyst. Chemistry – A European Journal 2020, 26 (35) , 7889-7899. https://doi.org/10.1002/chem.202000809
    22. Dominik Gärtner, Sebastian Sandl, Axel Jacobi von Wangelin. Homogeneous vs. heterogeneous: mechanistic insights into iron group metal-catalyzed reductions from poisoning experiments. Catalysis Science & Technology 2020, 10 (11) , 3502-3514. https://doi.org/10.1039/D0CY00644K
    23. Marius I. Arz, Alastair W. Knights, Ian Manners. Synthesis and Post‐Polymerization Functionalization of Halogen‐Substituted Polyphosphinoboranes to Access Alkyne‐Functionalized Derivatives. Macromolecular Rapid Communications 2020, 41 (4) https://doi.org/10.1002/marc.201900468
    24. Nikolaus Gorgas, Berthold Stöger, Luis F. Veiros, Karl Kirchner. Access to Fe II Bis(σ‐B−H) Aminoborane Complexes through Protonation of a Borohydride Complex and Dehydrogenation of Amine‐Boranes. Angewandte Chemie International Edition 2019, 58 (39) , 13874-13879. https://doi.org/10.1002/anie.201906971
    25. Nikolaus Gorgas, Berthold Stöger, Luis F. Veiros, Karl Kirchner. Access to Fe II Bis(σ‐B−H) Aminoborane Complexes through Protonation of a Borohydride Complex and Dehydrogenation of Amine‐Boranes. Angewandte Chemie 2019, 131 (39) , 14012-14017. https://doi.org/10.1002/ange.201906971
    26. Elisabetta Alberico, Lydia K. Vogt, Nils Rockstroh, Henrik Junge. Base‐Metal‐Catalyzed Hydrogen Generation from Carbon‐ and Boron Nitrogen‐Based Substrates. 2019, 453-488. https://doi.org/10.1002/9783527699087.ch17
    27. Delong Han, Felix Anke, Michael Trose, Torsten Beweries. Recent advances in transition metal catalysed dehydropolymerisation of amine boranes and phosphine boranes. Coordination Chemistry Reviews 2019, 380 , 260-286. https://doi.org/10.1016/j.ccr.2018.09.016
    28. Annie L. Colebatch, Andrew S. Weller. Amine–Borane Dehydropolymerization: Challenges and Opportunities. Chemistry – A European Journal 2019, 25 (6) , 1379-1390. https://doi.org/10.1002/chem.201804592
    29. Thomas M. Maier, Sebastian Sandl, Ilya G. Shenderovich, Axel Jacobi von Wangelin, Jan J. Weigand, Robert Wolf. Amine‐Borane Dehydrogenation and Transfer Hydrogenation Catalyzed by α‐Diimine Cobaltates. Chemistry – A European Journal 2019, 25 (1) , 238-245. https://doi.org/10.1002/chem.201804811
    30. Joshua Turner, Nicholas F. Chilton, Amit Kumar, Annie L. Colebatch, George R. Whittell, Hazel A. Sparkes, Andrew S. Weller, Ian Manners. Iron Precatalysts with Bulky Tri( tert ‐butyl)cyclopentadienyl Ligands for the Dehydrocoupling of Dimethylamine‐Borane. Chemistry – A European Journal 2018, 24 (53) , 14127-14136. https://doi.org/10.1002/chem.201705316
    31. Ozan Ayhan, Nicolas A. Riensch, Clemens Glasmacher, Holger Helten. Cyclolinear Oligo‐ and Poly(iminoborane)s: The Missing Link in Inorganic Main‐Group Macromolecular Chemistry. Chemistry – A European Journal 2018, 24 (22) , 5883-5894. https://doi.org/10.1002/chem.201705913
    32. Vivek Sinha, Bruno Pribanic, Bas de Bruin, Monica Trincado, Hansjörg Grützmacher. Ligand‐ and Metal‐Based Reactivity of a Neutral Ruthenium Diolefin Diazadiene Complex: The Innocent, the Guilty and the Suspicious. Chemistry – A European Journal 2018, 24 (21) , 5513-5521. https://doi.org/10.1002/chem.201705957
    33. Carlos Antonio De Albuquerque Pinheiro, Claire Roiland, Philippe Jehan, Gilles Alcaraz. Solventless and Metal‐Free Synthesis of High‐Molecular‐Mass Polyaminoboranes from Diisopropylaminoborane and Primary Amines. Angewandte Chemie 2018, 130 (6) , 1535-1538. https://doi.org/10.1002/ange.201710293
    34. Carlos Antonio De Albuquerque Pinheiro, Claire Roiland, Philippe Jehan, Gilles Alcaraz. Solventless and Metal‐Free Synthesis of High‐Molecular‐Mass Polyaminoboranes from Diisopropylaminoborane and Primary Amines. Angewandte Chemie International Edition 2018, 57 (6) , 1519-1522. https://doi.org/10.1002/anie.201710293
    35. Titel Jurca, Theresa Dellermann, Naomi E. Stubbs, Diego A. Resendiz-Lara, George R. Whittell, Ian Manners. Step-growth titanium-catalysed dehydropolymerisation of amine–boranes. Chemical Science 2018, 9 (13) , 3360-3366. https://doi.org/10.1039/C7SC05395A
    36. M. Trose, M. Reiß, F. Reiß, F. Anke, A. Spannenberg, S. Boye, A. Lederer, P. Arndt, T. Beweries. Dehydropolymerisation of methylamine borane using a dinuclear 1,3-allenediyl bridged zirconocene complex. Dalton Transactions 2018, 47 (37) , 12858-12862. https://doi.org/10.1039/C8DT03311K
    37. Nathan T. Coles, Ruth L. Webster. Iron Catalyzed Dehydrocoupling of Amine‐ and Phosphine‐Boranes. Israel Journal of Chemistry 2017, 57 (12) , 1070-1081. https://doi.org/10.1002/ijch.201700018
    38. Enrique Huang Kwan, Hayato Ogawa, Makoto Yamashita. A Highly Active PBP–Iridium Catalyst for the Dehydrogenation of Dimethylamine–Borane: Catalytic Performance and Mechanism. ChemCatChem 2017, 9 (13) , 2457-2462. https://doi.org/10.1002/cctc.201700384
    39. Uttam Chakraborty, Serhiy Demeshko, Franc Meyer, Christophe Rebreyend, Bas de Bruin, Mihail Atanasov, Frank Neese, Bernd Mühldorf, Robert Wolf. Elektronische Struktur und magnetische Anisotropie eines ungesättigten Cyclopentadienyleisen(I)‐Komplexes mit 15 Valenzelektronen. Angewandte Chemie 2017, 129 (27) , 8107-8112. https://doi.org/10.1002/ange.201702454
    40. Uttam Chakraborty, Serhiy Demeshko, Franc Meyer, Christophe Rebreyend, Bas de Bruin, Mihail Atanasov, Frank Neese, Bernd Mühldorf, Robert Wolf. Electronic Structure and Magnetic Anisotropy of an Unsaturated Cyclopentadienyl Iron(I) Complex with 15 Valence Electrons. Angewandte Chemie International Edition 2017, 56 (27) , 7995-7999. https://doi.org/10.1002/anie.201702454
    41. Stefan Pelties, Thomas Maier, Dirk Herrmann, Bas de Bruin, Christophe Rebreyend, Stefanie Gärtner, Ilya G. Shenderovich, Robert Wolf. Selective P 4 Activation by a Highly Reduced Cobaltate: Synthesis of Dicobalt Tetraphosphido Complexes. Chemistry – A European Journal 2017, 23 (25) , 6094-6102. https://doi.org/10.1002/chem.201603296
    42. Ekambaram Balaraman, Avanashiappan Nandakumar, Garima Jaiswal, Manoj K. Sahoo. Iron-catalyzed dehydrogenation reactions and their applications in sustainable energy and catalysis. Catalysis Science & Technology 2017, 7 (15) , 3177-3195. https://doi.org/10.1039/C7CY00879A
    43. F. Anke, D. Han, M. Klahn, A. Spannenberg, T. Beweries. Formation of high-molecular weight polyaminoborane by Fe hydride catalysed dehydrocoupling of methylamine borane. Dalton Transactions 2017, 46 (21) , 6843-6847. https://doi.org/10.1039/C7DT01487B

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect