A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel ProteinClick to copy article linkArticle link copied!
- Daniel F. Sauer
- Tomoki Himiyama
- Kengo Tachikawa
- Kazuki Fukumoto
- Akira Onoda
- Eiichi Mizohata
- Tsuyoshi Inoue
- Marco Bocola
- Ulrich Schwaneberg
- Takashi Hayashi
- Jun Okuda
Abstract

A series of Grubbs–Hoveyda type catalyst precursors for olefin metathesis containing a maleimide moiety in the backbone of the NHC ligand was covalently incorporated in the cavity of the β-barrel protein nitrobindin. By using two protein mutants with different cavity sizes and choosing the suitable spacer length, an artificial metalloenzyme for olefin metathesis reactions in water in the absence of any organic cosolvents was obtained. High efficiencies reaching TON > 9000 in the ROMP of a water-soluble 7-oxanorbornene derivative and TON > 100 in ring-closing metathesis (RCM) of 4,4-bis(hydroxymethyl)-1,6-heptadiene in water under relatively mild conditions (pH 6, T = 25–40 °C) were observed.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 70 publications.
- Chenlin Lu, Xue Peng, Basudev Maity, Xiang Sheng, Yinhuan Zhou, Takafumi Ueno, Zheng Liu, Diannan Lu. Novel Au(I)-Based Artificial Metallo-Cycloisomerase for Catalyzing the Cycloisomerization of γ-Alkynoic Acids. ACS Catalysis 2023, 13
(15)
, 9918-9924. https://doi.org/10.1021/acscatal.3c01197
- Shunzhi Huang, Wen-Hao Deng, Rong-Zhen Liao, Chunmao He. Repurposing a Nitric Oxide Transport Hemoprotein Nitrophorin 2 for Olefin Cyclopropanation. ACS Catalysis 2022, 12
(21)
, 13725-13731. https://doi.org/10.1021/acscatal.2c03515
- Alina Stein, Dongping Chen, Nico V. Igareta, Yoann Cotelle, Johannes G. Rebelein, Thomas R. Ward. A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase. ACS Central Science 2021, 7
(11)
, 1874-1884. https://doi.org/10.1021/acscentsci.1c00825
- Sandro Fischer, Thomas R. Ward, Alexandria D. Liang. Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag. ACS Catalysis 2021, 11
(10)
, 6343-6347. https://doi.org/10.1021/acscatal.1c01470
- Ulrich Markel, Daniel F. Sauer, Malte Wittwer, Johannes Schiffels, Haiyang Cui, Mehdi D. Davari, Konstantin W. Kröckert, Sonja Herres-Pawlis, Jun Okuda, Ulrich Schwaneberg. Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catalysis 2021, 11
(9)
, 5079-5087. https://doi.org/10.1021/acscatal.1c00134
- Shunsuke Kato, Akira Onoda, Alexander R. Grimm, Kengo Tachikawa, Ulrich Schwaneberg, Takashi Hayashi. Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp2)–H Bond Functionalization. Inorganic Chemistry 2020, 59
(19)
, 14457-14463. https://doi.org/10.1021/acs.inorgchem.0c02245
- Holly
J. Davis, Thomas R. Ward. Artificial Metalloenzymes: Challenges and Opportunities. ACS Central Science 2019, 5
(7)
, 1120-1136. https://doi.org/10.1021/acscentsci.9b00397
- Koji Oohora, Akira Onoda, Takashi Hayashi. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts. Accounts of Chemical Research 2019, 52
(4)
, 945-954. https://doi.org/10.1021/acs.accounts.8b00676
- Alexandria
Deliz Liang, Joan Serrano-Plana, Ryan L. Peterson, Thomas R. Ward. Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Accounts of Chemical Research 2019, 52
(3)
, 585-595. https://doi.org/10.1021/acs.accounts.8b00618
- Manfred T. Reetz. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?. Accounts of Chemical Research 2019, 52
(2)
, 336-344. https://doi.org/10.1021/acs.accounts.8b00582
- Sacha
N. W. Toussaint, Ryan T. Calkins, Sumin Lee, Brian W. Michel. Olefin Metathesis-Based Fluorescent Probes for the Selective Detection of Ethylene in Live Cells. Journal of the American Chemical Society 2018, 140
(41)
, 13151-13155. https://doi.org/10.1021/jacs.8b05191
- Alexander
R. Grimm, Daniel F. Sauer, Mehdi D. Davari, Leilei Zhu, Marco Bocola, Shunsuke Kato, Akira Onoda, Takashi Hayashi, Jun Okuda, Ulrich Schwaneberg. Cavity Size Engineering of a β-Barrel Protein Generates Efficient Biohybrid Catalysts for Olefin Metathesis. ACS Catalysis 2018, 8
(4)
, 3358-3364. https://doi.org/10.1021/acscatal.7b03652
- Yang Yu, Cheng Hu, Lin Xia, and Jiangyun Wang . Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catalysis 2018, 8
(3)
, 1851-1863. https://doi.org/10.1021/acscatal.7b03754
- Taku Kitanosono, Koichiro Masuda, Pengyu Xu, and Shu̅ Kobayashi . Catalytic Organic Reactions in Water toward Sustainable Society. Chemical Reviews 2018, 118
(2)
, 679-746. https://doi.org/10.1021/acs.chemrev.7b00417
- Fabian Schwizer, Yasunori Okamoto, Tillmann Heinisch, Yifan Gu, Michela M. Pellizzoni, Vincent Lebrun, Raphael Reuter, Valentin Köhler, Jared C. Lewis, and Thomas R. Ward . Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chemical Reviews 2018, 118
(1)
, 142-231. https://doi.org/10.1021/acs.chemrev.7b00014
- Tillmann Heinisch and Thomas R. Ward . Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Challenges and Opportunities. Accounts of Chemical Research 2016, 49
(9)
, 1711-1721. https://doi.org/10.1021/acs.accounts.6b00235
- Aaron A. Ingram, Dong Wang, Ulrich Schwaneberg, Jun Okuda. Grubbs-Hoveyda catalysts conjugated to a β-barrel protein: Effect of halide substitution on aqueous olefin metathesis activity. Journal of Inorganic Biochemistry 2024, 258 , 112616. https://doi.org/10.1016/j.jinorgbio.2024.112616
- Zhi Zou, Shuke Wu, Daniel Gerngross, Boris Lozhkin, Dongping Chen, Ryo Tachibana, Thomas R. Ward. Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis. Nature Synthesis 2024, 3
(9)
, 1113-1123. https://doi.org/10.1038/s44160-024-00575-9
- Zhi Zou, Bradley Higginson, Thomas R. Ward. Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond. Chem 2024, 10
(8)
, 2373-2389. https://doi.org/10.1016/j.chempr.2024.07.007
- Rémy Gay, Yannick Masson, Wadih Ghattas, Guillermo A. Oliveira Udry, Christian Herrero, Agathe Urvoas, Jean‐Pierre Mahy, Rémy Ricoux. Binding and Stabilization of a Semiquinone Radical by an Artificial Metalloenzyme Containing a Binuclear Copper (II) Cofactor. ChemBioChem 2024, https://doi.org/10.1002/cbic.202400139
- Dong Wang, Aaron A. Ingram, Akira Okumura, Thomas P. Spaniol, Ulrich Schwaneberg, Jun Okuda. Benzylic C(sp
3
)−H Bond Oxidation with Ketone Selectivity by a Cobalt(IV)‐Oxo Embedded in a
β
‐Barrel Protein. Chemistry – A European Journal 2024, 30
(5)
https://doi.org/10.1002/chem.202303066
- Thomas Ward, Zhi Zou, Shuke Wu, Daniel Gerngross, Boris Lozhkin, Dongping Chen, Ryo Tachibana. A Microbial Cell Factory Combining an Artificial Metathase with a Fatty Acid Decarboxylase for New-to-Nature Synthesis of Cycloalkenes. 2023https://doi.org/10.21203/rs.3.rs-3706252/v1
- Nicholas J. Dacon, Nathan B. Wu, Brian W. Michel. Red-shifted activity-based sensors for ethylene
via
direct conjugation of fluorophore to metal–carbene. RSC Chemical Biology 2023, 4
(11)
, 871-878. https://doi.org/10.1039/D3CB00079F
- Noriyuki Suzuki, Ken Watanabe, Chirika Takahashi, Yuko Takeoka, Masahiro Rikukawa. Ruthenium-catalyzed Olefin Metathesis in Water using Thermo-responsive Diblock
Copolymer Micelles. Current Organic Chemistry 2023, 27
(15)
, 1347-1356. https://doi.org/10.2174/1385272827666230911115809
- . Artificial Enzymes as Promiscuous Catalysts in Organic and Pharmaceutical Chemistry. 2023, 279-316. https://doi.org/10.1002/9783527836895.ch7
- Stefanie Hanreich, Elisa Bonandi, Ivana Drienovská. Design of Artificial Enzymes: Insights into Protein Scaffolds. ChemBioChem 2023, 24
(6)
https://doi.org/10.1002/cbic.202200566
- Katrina H. Jensen, Brian W. Michel. Detection of Ethylene with Defined Metal Complexes: Strategies and Recent Advances. Analysis & Sensing 2023, 3
(2)
https://doi.org/10.1002/anse.202200058
- Derek C. Church, Elizabathe Davis, Adam A. Caparco, Lauren Takiguchi, Young Hun Chung, Nicole F. Steinmetz, Jonathan K. Pokorski. Polynorbornene-based bioconjugates by aqueous grafting-from ring-opening metathesis polymerization reduce protein immunogenicity. Cell Reports Physical Science 2022, 3
(10)
, 101067. https://doi.org/10.1016/j.xcrp.2022.101067
- Yifei Liu, Ka Lun Lai, Kenward Vong. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. European Journal of Inorganic Chemistry 2022, 2022
(21)
https://doi.org/10.1002/ejic.202200215
- Michela M. Pellizzoni, Andriy Lubskyy. Bioorganometallics: Artificial Metalloenzymes With Organometallic Moieties. 2022, 96-120. https://doi.org/10.1016/B978-0-12-820206-7.00065-2
- Tomás Pessatti, Hernán Terenzi, Jean Bertoldo. Protein Modifications: From Chemoselective Probes to Novel Biocatalysts. Catalysts 2021, 11
(12)
, 1466. https://doi.org/10.3390/catal11121466
- Malte Wittwer, Ulrich Markel, Johannes Schiffels, Jun Okuda, Daniel F. Sauer, Ulrich Schwaneberg. Engineering and emerging applications of artificial metalloenzymes with whole cells. Nature Catalysis 2021, 4
(10)
, 814-827. https://doi.org/10.1038/s41929-021-00673-3
- Franco Scalambra, Pablo Lorenzo-Luis, Isaac de los Rios, Antonio Romerosa. New achievements on C-C bond formation in water catalyzed by metal complexes. Coordination Chemistry Reviews 2021, 443 , 213997. https://doi.org/10.1016/j.ccr.2021.213997
- Daniel F. Sauer, Malte Wittwer, Ulrich Markel, Alexander Minges, Markus Spiertz, Johannes Schiffels, Mehdi D. Davari, Georg Groth, Jun Okuda, Ulrich Schwaneberg. Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catalysis Science & Technology 2021, 11
(13)
, 4491-4499. https://doi.org/10.1039/D1CY00609F
- Andreas Thiel, Daniel F. Sauer, Ulrich Markel, M. A. Stephanie Mertens, Tino Polen, Ulrich Schwaneberg, Jun Okuda. An artificial ruthenium-containing β-barrel protein for alkene–alkyne coupling reaction. Organic & Biomolecular Chemistry 2021, 19
(13)
, 2912-2916. https://doi.org/10.1039/D1OB00279A
- Takashi Matsuo. Functionalization of Hoveyda-Grubbs-type Complexes for Application to Biomolecules. Journal of Synthetic Organic Chemistry, Japan 2021, 79
(4)
, 311-321. https://doi.org/10.5059/yukigoseikyokaishi.79.311
- Takashi Matsuo. Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021, 11
(3)
, 359. https://doi.org/10.3390/catal11030359
- Kenward Vong, Igor Nasibullin, Katsunori Tanaka. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. Bulletin of the Chemical Society of Japan 2021, 94
(2)
, 382-396. https://doi.org/10.1246/bcsj.20200316
- Jean-Pierre Mahy, Frédéric Avenier, Wadih Ghattas, Rémy Ricoux, Michèle Salmain. Current Applications of Artificial Metalloenzymes and Future Developments. 2021, 363-411. https://doi.org/10.1007/978-3-030-58315-6_12
- Wei Wei, Guochen Jia. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. 2021, 123-439. https://doi.org/10.1016/B978-0-08-102688-5.00049-0
- Woo Jae Jeong, Jaeseung Yu, Woon Ju Song. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chemical Communications 2020, 56
(67)
, 9586-9599. https://doi.org/10.1039/D0CC03137B
- Derek C. Church, Lauren Takiguchi, Jonathan K. Pokorski. Optimization of ring-opening metathesis polymerization (ROMP) under physiologically relevant conditions. Polymer Chemistry 2020, 11
(27)
, 4492-4499. https://doi.org/10.1039/D0PY00716A
- Yuki Hishikawa, Basudev Maity, Nozomi Ito, Satoshi Abe, Diannan Lu, Takafumi Ueno. Design of Multinuclear Gold Binding Site at the Two-fold Symmetric Interface of the Ferritin Cage. Chemistry Letters 2020, 49
(7)
, 840-844. https://doi.org/10.1246/cl.200217
- Tomoki Himiyama, Yasunori Okamoto. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020, 25
(13)
, 2989. https://doi.org/10.3390/molecules25132989
- Katsunori TANAKA, Kenward VONG. Unlocking the therapeutic potential of artificial metalloenzymes. Proceedings of the Japan Academy, Series B 2020, 96
(3)
, 79-94. https://doi.org/10.2183/pjab.96.007
- Kenward Vong, Katsunori Tanaka.
In Vivo
Metal Catalysis in Living Biological Systems. 2020, 309-353. https://doi.org/10.1002/9783527344406.ch11
- Takuma Adachi, Akira Harada, Hiroyasu Yamaguchi. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Scientific Reports 2019, 9
(1)
https://doi.org/10.1038/s41598-019-49844-0
- Takashi Matsuo, Teruyuki Miyake, Shun Hirota. Recent developments on creation of artificial metalloenzymes. Tetrahedron Letters 2019, 60
(45)
, 151226. https://doi.org/10.1016/j.tetlet.2019.151226
- Carlos Perez-Rizquez, Alba Rodriguez-Otero, Jose M. Palomo. Combining enzymes and organometallic complexes: novel artificial metalloenzymes and hybrid systems for C–H activation chemistry. Organic & Biomolecular Chemistry 2019, 17
(30)
, 7114-7123. https://doi.org/10.1039/C9OB01091B
- Ulrich Markel, Daniel F. Sauer, Johannes Schiffels, Jun Okuda, Ulrich Schwaneberg. Auf dem Weg zur Evolution artifizieller Metalloenzyme – aus einem Protein‐Engineering‐Blickwinkel. Angewandte Chemie 2019, 131
(14)
, 4500-4511. https://doi.org/10.1002/ange.201811042
- Ulrich Markel, Daniel F. Sauer, Johannes Schiffels, Jun Okuda, Ulrich Schwaneberg. Towards the Evolution of Artificial Metalloenzymes—A Protein Engineer's Perspective. Angewandte Chemie International Edition 2019, 58
(14)
, 4454-4464. https://doi.org/10.1002/anie.201811042
- Yangxin Wang, Ningning Zhang, En Zhang, Yunhu Han, Zhenhui Qi, Marion B. Ansorge‐Schumacher, Yan Ge, Changzhu Wu. Heterogeneous Metal–Organic‐Framework‐Based Biohybrid Catalysts for Cascade Reactions in Organic Solvent. Chemistry – A European Journal 2019, 25
(7)
, 1716-1721. https://doi.org/10.1002/chem.201805680
- Daniel F. Sauer, Takashi Matsuo, Akira Onoda, Jun Okuda, Takashi Hayashi. Artificially Created Metalloenzyme Consisting of an Organometallic Complex Immobilized to a Protein Matrix. 2019, 307-328. https://doi.org/10.1016/B978-0-12-814197-7.00015-7
- Daniel F. Sauer, Ulrich Schwaneberg, Jun Okuda. Künstliche Metalloproteine für die Olefinmetathese. Nachrichten aus der Chemie 2018, 66
(9)
, 857-861. https://doi.org/10.1002/nadc.20184067311
- Daniel J. Raines, Justin E. Clarke, Elena V. Blagova, Eleanor J. Dodson, Keith S. Wilson, Anne-K. Duhme-Klair. Redox-switchable siderophore anchor enables reversible artificial metalloenzyme assembly. Nature Catalysis 2018, 1
(9)
, 680-688. https://doi.org/10.1038/s41929-018-0124-3
- Peter J. Deuss, Megan V. Doble, Amanda G. Jarvis, Paul C.J. Kamer. Hybrid Catalysts for Other
C
C
and
C
X
Bond Formation Reactions. 2018, 285-319. https://doi.org/10.1002/9783527804085.ch10
- Jose M. Palomo. Synthesis and Application of Hybrid Catalysts with Metalloenzyme‐Like Properties. 2018, 383-404. https://doi.org/10.1002/9783527804085.ch13
- Thomas Classen, Jörg Pietruszka. Complex molecules, clever solutions – Enzymatic approaches towards natural product and active agent syntheses. Bioorganic & Medicinal Chemistry 2018, 26
(7)
, 1285-1303. https://doi.org/10.1016/j.bmc.2017.06.045
- Florian Rudroff, Marko D. Mihovilovic, Harald Gröger, Radka Snajdrova, Hans Iding, Uwe T. Bornscheuer. Opportunities and challenges for combining chemo- and biocatalysis. Nature Catalysis 2018, 1
(1)
, 12-22. https://doi.org/10.1038/s41929-017-0010-4
- Daniel F Sauer, Johannes Schiffels, Takashi Hayashi, Ulrich Schwaneberg, Jun Okuda. Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis. Beilstein Journal of Organic Chemistry 2018, 14 , 2861-2871. https://doi.org/10.3762/bjoc.14.265
- Tomoki Himiyama, Naomasa Taniguchi, Shunsuke Kato, Akira Onoda, Takashi Hayashi. A Pyrene‐Linked Cavity within a β‐Barrel Protein Promotes an Asymmetric Diels–Alder Reaction. Angewandte Chemie 2017, 129
(44)
, 13806-13810. https://doi.org/10.1002/ange.201704524
- Tomoki Himiyama, Naomasa Taniguchi, Shunsuke Kato, Akira Onoda, Takashi Hayashi. A Pyrene‐Linked Cavity within a β‐Barrel Protein Promotes an Asymmetric Diels–Alder Reaction. Angewandte Chemie International Edition 2017, 56
(44)
, 13618-13622. https://doi.org/10.1002/anie.201704524
- Ying-Wu Lin. Rational design of metalloenzymes: From single to multiple active sites. Coordination Chemistry Reviews 2017, 336 , 1-27. https://doi.org/10.1016/j.ccr.2017.01.001
- James W. Herndon. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coordination Chemistry Reviews 2016, 329 , 53-162. https://doi.org/10.1016/j.ccr.2016.08.007
- Anthony Neville, Javier Iniesta, Jose Palomo. Design of Heterogeneous Hoveyda–Grubbs Second-Generation Catalyst–Lipase Conjugates. Molecules 2016, 21
(12)
, 1680. https://doi.org/10.3390/molecules21121680
- . Directed Evolution of Promiscuity: Artificial Enzymes as Catalysts in Organic Chemistry. 2016, 237-266. https://doi.org/10.1002/9783527655465.ch7
- XiaoZhi Lim. The new breed of cutting-edge catalysts. Nature 2016, 537
(7619)
, 156-158. https://doi.org/10.1038/537156a
- Markus Jeschek, Raphael Reuter, Tillmann Heinisch, Christian Trindler, Juliane Klehr, Sven Panke, Thomas R. Ward. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 2016, 537
(7622)
, 661-665. https://doi.org/10.1038/nature19114
- M. Jeschek, S. Panke, T.R. Ward. Periplasmic Screening for Artificial Metalloenzymes. 2016, 539-556. https://doi.org/10.1016/bs.mie.2016.05.037
- D. F. Sauer, S. Gotzen, J. Okuda. Metatheases: artificial metalloproteins for olefin metathesis. Organic & Biomolecular Chemistry 2016, 14
(39)
, 9174-9183. https://doi.org/10.1039/C6OB01475E
- Hassan Osseili, Daniel F Sauer, Klaus Beckerle, Marcus Arlt, Tomoki Himiyama, Tino Polen, Akira Onoda, Ulrich Schwaneberg, Takashi Hayashi, Jun Okuda. Artificial Diels–Alderase based on the transmembrane protein FhuA. Beilstein Journal of Organic Chemistry 2016, 12 , 1314-1321. https://doi.org/10.3762/bjoc.12.124
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.