ACS Publications. Most Trusted. Most Cited. Most Read
A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel Protein
My Activity
    Research Article

    A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel Protein
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
    Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
    § Institute of Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52056 Aachen, Germany
    *E-mail for T.H.: [email protected]
    *E-mail for J.O.: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Catalysis

    Cite this: ACS Catal. 2015, 5, 12, 7519–7522
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.5b01792
    Published November 16, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A series of Grubbs–Hoveyda type catalyst precursors for olefin metathesis containing a maleimide moiety in the backbone of the NHC ligand was covalently incorporated in the cavity of the β-barrel protein nitrobindin. By using two protein mutants with different cavity sizes and choosing the suitable spacer length, an artificial metalloenzyme for olefin metathesis reactions in water in the absence of any organic cosolvents was obtained. High efficiencies reaching TON > 9000 in the ROMP of a water-soluble 7-oxanorbornene derivative and TON > 100 in ring-closing metathesis (RCM) of 4,4-bis(hydroxymethyl)-1,6-heptadiene in water under relatively mild conditions (pH 6, T = 25–40 °C) were observed.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.5b01792.

    • Molecular modeling, synthetic details, CD, UV/vis, MALDI-TOF mass, and ESI-TOF mass spectra, and a list of experiments (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 70 publications.

    1. Chenlin Lu, Xue Peng, Basudev Maity, Xiang Sheng, Yinhuan Zhou, Takafumi Ueno, Zheng Liu, Diannan Lu. Novel Au(I)-Based Artificial Metallo-Cycloisomerase for Catalyzing the Cycloisomerization of γ-Alkynoic Acids. ACS Catalysis 2023, 13 (15) , 9918-9924. https://doi.org/10.1021/acscatal.3c01197
    2. Shunzhi Huang, Wen-Hao Deng, Rong-Zhen Liao, Chunmao He. Repurposing a Nitric Oxide Transport Hemoprotein Nitrophorin 2 for Olefin Cyclopropanation. ACS Catalysis 2022, 12 (21) , 13725-13731. https://doi.org/10.1021/acscatal.2c03515
    3. Alina Stein, Dongping Chen, Nico V. Igareta, Yoann Cotelle, Johannes G. Rebelein, Thomas R. Ward. A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase. ACS Central Science 2021, 7 (11) , 1874-1884. https://doi.org/10.1021/acscentsci.1c00825
    4. Sandro Fischer, Thomas R. Ward, Alexandria D. Liang. Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag. ACS Catalysis 2021, 11 (10) , 6343-6347. https://doi.org/10.1021/acscatal.1c01470
    5. Ulrich Markel, Daniel F. Sauer, Malte Wittwer, Johannes Schiffels, Haiyang Cui, Mehdi D. Davari, Konstantin W. Kröckert, Sonja Herres-Pawlis, Jun Okuda, Ulrich Schwaneberg. Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catalysis 2021, 11 (9) , 5079-5087. https://doi.org/10.1021/acscatal.1c00134
    6. Shunsuke Kato, Akira Onoda, Alexander R. Grimm, Kengo Tachikawa, Ulrich Schwaneberg, Takashi Hayashi. Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp2)–H Bond Functionalization. Inorganic Chemistry 2020, 59 (19) , 14457-14463. https://doi.org/10.1021/acs.inorgchem.0c02245
    7. Holly J. Davis, Thomas R. Ward. Artificial Metalloenzymes: Challenges and Opportunities. ACS Central Science 2019, 5 (7) , 1120-1136. https://doi.org/10.1021/acscentsci.9b00397
    8. Koji Oohora, Akira Onoda, Takashi Hayashi. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts. Accounts of Chemical Research 2019, 52 (4) , 945-954. https://doi.org/10.1021/acs.accounts.8b00676
    9. Alexandria Deliz Liang, Joan Serrano-Plana, Ryan L. Peterson, Thomas R. Ward. Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Accounts of Chemical Research 2019, 52 (3) , 585-595. https://doi.org/10.1021/acs.accounts.8b00618
    10. Manfred T. Reetz. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?. Accounts of Chemical Research 2019, 52 (2) , 336-344. https://doi.org/10.1021/acs.accounts.8b00582
    11. Sacha N. W. Toussaint, Ryan T. Calkins, Sumin Lee, Brian W. Michel. Olefin Metathesis-Based Fluorescent Probes for the Selective Detection of Ethylene in Live Cells. Journal of the American Chemical Society 2018, 140 (41) , 13151-13155. https://doi.org/10.1021/jacs.8b05191
    12. Alexander R. Grimm, Daniel F. Sauer, Mehdi D. Davari, Leilei Zhu, Marco Bocola, Shunsuke Kato, Akira Onoda, Takashi Hayashi, Jun Okuda, Ulrich Schwaneberg. Cavity Size Engineering of a β-Barrel Protein Generates Efficient Biohybrid Catalysts for Olefin Metathesis. ACS Catalysis 2018, 8 (4) , 3358-3364. https://doi.org/10.1021/acscatal.7b03652
    13. Yang Yu, Cheng Hu, Lin Xia, and Jiangyun Wang . Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catalysis 2018, 8 (3) , 1851-1863. https://doi.org/10.1021/acscatal.7b03754
    14. Taku Kitanosono, Koichiro Masuda, Pengyu Xu, and Shu̅ Kobayashi . Catalytic Organic Reactions in Water toward Sustainable Society. Chemical Reviews 2018, 118 (2) , 679-746. https://doi.org/10.1021/acs.chemrev.7b00417
    15. Fabian Schwizer, Yasunori Okamoto, Tillmann Heinisch, Yifan Gu, Michela M. Pellizzoni, Vincent Lebrun, Raphael Reuter, Valentin Köhler, Jared C. Lewis, and Thomas R. Ward . Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chemical Reviews 2018, 118 (1) , 142-231. https://doi.org/10.1021/acs.chemrev.7b00014
    16. Tillmann Heinisch and Thomas R. Ward . Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Challenges and Opportunities. Accounts of Chemical Research 2016, 49 (9) , 1711-1721. https://doi.org/10.1021/acs.accounts.6b00235
    17. Aaron A. Ingram, Dong Wang, Ulrich Schwaneberg, Jun Okuda. Grubbs-Hoveyda catalysts conjugated to a β-barrel protein: Effect of halide substitution on aqueous olefin metathesis activity. Journal of Inorganic Biochemistry 2024, 258 , 112616. https://doi.org/10.1016/j.jinorgbio.2024.112616
    18. Zhi Zou, Shuke Wu, Daniel Gerngross, Boris Lozhkin, Dongping Chen, Ryo Tachibana, Thomas R. Ward. Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis. Nature Synthesis 2024, 3 (9) , 1113-1123. https://doi.org/10.1038/s44160-024-00575-9
    19. Zhi Zou, Bradley Higginson, Thomas R. Ward. Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond. Chem 2024, 10 (8) , 2373-2389. https://doi.org/10.1016/j.chempr.2024.07.007
    20. Rémy Gay, Yannick Masson, Wadih Ghattas, Guillermo A. Oliveira Udry, Christian Herrero, Agathe Urvoas, Jean‐Pierre Mahy, Rémy Ricoux. Binding and Stabilization of a Semiquinone Radical by an Artificial Metalloenzyme Containing a Binuclear Copper (II) Cofactor. ChemBioChem 2024, https://doi.org/10.1002/cbic.202400139
    21. Dong Wang, Aaron A. Ingram, Akira Okumura, Thomas P. Spaniol, Ulrich Schwaneberg, Jun Okuda. Benzylic C(sp 3 )−H Bond Oxidation with Ketone Selectivity by a Cobalt(IV)‐Oxo Embedded in a β ‐Barrel Protein. Chemistry – A European Journal 2024, 30 (5) https://doi.org/10.1002/chem.202303066
    22. Thomas Ward, Zhi Zou, Shuke Wu, Daniel Gerngross, Boris Lozhkin, Dongping Chen, Ryo Tachibana. A Microbial Cell Factory Combining an Artificial Metathase with a Fatty Acid Decarboxylase for New-to-Nature Synthesis of Cycloalkenes. 2023https://doi.org/10.21203/rs.3.rs-3706252/v1
    23. Nicholas J. Dacon, Nathan B. Wu, Brian W. Michel. Red-shifted activity-based sensors for ethylene via direct conjugation of fluorophore to metal–carbene. RSC Chemical Biology 2023, 4 (11) , 871-878. https://doi.org/10.1039/D3CB00079F
    24. Noriyuki Suzuki, Ken Watanabe, Chirika Takahashi, Yuko Takeoka, Masahiro Rikukawa. Ruthenium-catalyzed Olefin Metathesis in Water using Thermo-responsive Diblock Copolymer Micelles. Current Organic Chemistry 2023, 27 (15) , 1347-1356. https://doi.org/10.2174/1385272827666230911115809
    25. . Artificial Enzymes as Promiscuous Catalysts in Organic and Pharmaceutical Chemistry. 2023, 279-316. https://doi.org/10.1002/9783527836895.ch7
    26. Stefanie Hanreich, Elisa Bonandi, Ivana Drienovská. Design of Artificial Enzymes: Insights into Protein Scaffolds. ChemBioChem 2023, 24 (6) https://doi.org/10.1002/cbic.202200566
    27. Katrina H. Jensen, Brian W. Michel. Detection of Ethylene with Defined Metal Complexes: Strategies and Recent Advances. Analysis & Sensing 2023, 3 (2) https://doi.org/10.1002/anse.202200058
    28. Derek C. Church, Elizabathe Davis, Adam A. Caparco, Lauren Takiguchi, Young Hun Chung, Nicole F. Steinmetz, Jonathan K. Pokorski. Polynorbornene-based bioconjugates by aqueous grafting-from ring-opening metathesis polymerization reduce protein immunogenicity. Cell Reports Physical Science 2022, 3 (10) , 101067. https://doi.org/10.1016/j.xcrp.2022.101067
    29. Yifei Liu, Ka Lun Lai, Kenward Vong. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. European Journal of Inorganic Chemistry 2022, 2022 (21) https://doi.org/10.1002/ejic.202200215
    30. Michela M. Pellizzoni, Andriy Lubskyy. Bioorganometallics: Artificial Metalloenzymes With Organometallic Moieties. 2022, 96-120. https://doi.org/10.1016/B978-0-12-820206-7.00065-2
    31. Tomás Pessatti, Hernán Terenzi, Jean Bertoldo. Protein Modifications: From Chemoselective Probes to Novel Biocatalysts. Catalysts 2021, 11 (12) , 1466. https://doi.org/10.3390/catal11121466
    32. Malte Wittwer, Ulrich Markel, Johannes Schiffels, Jun Okuda, Daniel F. Sauer, Ulrich Schwaneberg. Engineering and emerging applications of artificial metalloenzymes with whole cells. Nature Catalysis 2021, 4 (10) , 814-827. https://doi.org/10.1038/s41929-021-00673-3
    33. Franco Scalambra, Pablo Lorenzo-Luis, Isaac de los Rios, Antonio Romerosa. New achievements on C-C bond formation in water catalyzed by metal complexes. Coordination Chemistry Reviews 2021, 443 , 213997. https://doi.org/10.1016/j.ccr.2021.213997
    34. Daniel F. Sauer, Malte Wittwer, Ulrich Markel, Alexander Minges, Markus Spiertz, Johannes Schiffels, Mehdi D. Davari, Georg Groth, Jun Okuda, Ulrich Schwaneberg. Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catalysis Science & Technology 2021, 11 (13) , 4491-4499. https://doi.org/10.1039/D1CY00609F
    35. Andreas Thiel, Daniel F. Sauer, Ulrich Markel, M. A. Stephanie Mertens, Tino Polen, Ulrich Schwaneberg, Jun Okuda. An artificial ruthenium-containing β-barrel protein for alkene–alkyne coupling reaction. Organic & Biomolecular Chemistry 2021, 19 (13) , 2912-2916. https://doi.org/10.1039/D1OB00279A
    36. Takashi Matsuo. Functionalization of Hoveyda-Grubbs-type Complexes for Application to Biomolecules. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (4) , 311-321. https://doi.org/10.5059/yukigoseikyokaishi.79.311
    37. Takashi Matsuo. Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021, 11 (3) , 359. https://doi.org/10.3390/catal11030359
    38. Kenward Vong, Igor Nasibullin, Katsunori Tanaka. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. Bulletin of the Chemical Society of Japan 2021, 94 (2) , 382-396. https://doi.org/10.1246/bcsj.20200316
    39. Jean-Pierre Mahy, Frédéric Avenier, Wadih Ghattas, Rémy Ricoux, Michèle Salmain. Current Applications of Artificial Metalloenzymes and Future Developments. 2021, 363-411. https://doi.org/10.1007/978-3-030-58315-6_12
    40. Wei Wei, Guochen Jia. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. 2021, 123-439. https://doi.org/10.1016/B978-0-08-102688-5.00049-0
    41. Woo Jae Jeong, Jaeseung Yu, Woon Ju Song. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chemical Communications 2020, 56 (67) , 9586-9599. https://doi.org/10.1039/D0CC03137B
    42. Derek C. Church, Lauren Takiguchi, Jonathan K. Pokorski. Optimization of ring-opening metathesis polymerization (ROMP) under physiologically relevant conditions. Polymer Chemistry 2020, 11 (27) , 4492-4499. https://doi.org/10.1039/D0PY00716A
    43. Yuki Hishikawa, Basudev Maity, Nozomi Ito, Satoshi Abe, Diannan Lu, Takafumi Ueno. Design of Multinuclear Gold Binding Site at the Two-fold Symmetric Interface of the Ferritin Cage. Chemistry Letters 2020, 49 (7) , 840-844. https://doi.org/10.1246/cl.200217
    44. Tomoki Himiyama, Yasunori Okamoto. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020, 25 (13) , 2989. https://doi.org/10.3390/molecules25132989
    45. Katsunori TANAKA, Kenward VONG. Unlocking the therapeutic potential of artificial metalloenzymes. Proceedings of the Japan Academy, Series B 2020, 96 (3) , 79-94. https://doi.org/10.2183/pjab.96.007
    46. Kenward Vong, Katsunori Tanaka. In Vivo Metal Catalysis in Living Biological Systems. 2020, 309-353. https://doi.org/10.1002/9783527344406.ch11
    47. Takuma Adachi, Akira Harada, Hiroyasu Yamaguchi. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-49844-0
    48. Takashi Matsuo, Teruyuki Miyake, Shun Hirota. Recent developments on creation of artificial metalloenzymes. Tetrahedron Letters 2019, 60 (45) , 151226. https://doi.org/10.1016/j.tetlet.2019.151226
    49. Carlos Perez-Rizquez, Alba Rodriguez-Otero, Jose M. Palomo. Combining enzymes and organometallic complexes: novel artificial metalloenzymes and hybrid systems for C–H activation chemistry. Organic & Biomolecular Chemistry 2019, 17 (30) , 7114-7123. https://doi.org/10.1039/C9OB01091B
    50. Ulrich Markel, Daniel F. Sauer, Johannes Schiffels, Jun Okuda, Ulrich Schwaneberg. Auf dem Weg zur Evolution artifizieller Metalloenzyme – aus einem Protein‐Engineering‐Blickwinkel. Angewandte Chemie 2019, 131 (14) , 4500-4511. https://doi.org/10.1002/ange.201811042
    51. Ulrich Markel, Daniel F. Sauer, Johannes Schiffels, Jun Okuda, Ulrich Schwaneberg. Towards the Evolution of Artificial Metalloenzymes—A Protein Engineer's Perspective. Angewandte Chemie International Edition 2019, 58 (14) , 4454-4464. https://doi.org/10.1002/anie.201811042
    52. Yangxin Wang, Ningning Zhang, En Zhang, Yunhu Han, Zhenhui Qi, Marion B. Ansorge‐Schumacher, Yan Ge, Changzhu Wu. Heterogeneous Metal–Organic‐Framework‐Based Biohybrid Catalysts for Cascade Reactions in Organic Solvent. Chemistry – A European Journal 2019, 25 (7) , 1716-1721. https://doi.org/10.1002/chem.201805680
    53. Daniel F. Sauer, Takashi Matsuo, Akira Onoda, Jun Okuda, Takashi Hayashi. Artificially Created Metalloenzyme Consisting of an Organometallic Complex Immobilized to a Protein Matrix. 2019, 307-328. https://doi.org/10.1016/B978-0-12-814197-7.00015-7
    54. Daniel F. Sauer, Ulrich Schwaneberg, Jun Okuda. Künstliche Metalloproteine für die Olefinmetathese. Nachrichten aus der Chemie 2018, 66 (9) , 857-861. https://doi.org/10.1002/nadc.20184067311
    55. Daniel J. Raines, Justin E. Clarke, Elena V. Blagova, Eleanor J. Dodson, Keith S. Wilson, Anne-K. Duhme-Klair. Redox-switchable siderophore anchor enables reversible artificial metalloenzyme assembly. Nature Catalysis 2018, 1 (9) , 680-688. https://doi.org/10.1038/s41929-018-0124-3
    56. Peter J. Deuss, Megan V. Doble, Amanda G. Jarvis, Paul C.J. Kamer. Hybrid Catalysts for Other C  C and C  X Bond Formation Reactions. 2018, 285-319. https://doi.org/10.1002/9783527804085.ch10
    57. Jose M. Palomo. Synthesis and Application of Hybrid Catalysts with Metalloenzyme‐Like Properties. 2018, 383-404. https://doi.org/10.1002/9783527804085.ch13
    58. Thomas Classen, Jörg Pietruszka. Complex molecules, clever solutions – Enzymatic approaches towards natural product and active agent syntheses. Bioorganic & Medicinal Chemistry 2018, 26 (7) , 1285-1303. https://doi.org/10.1016/j.bmc.2017.06.045
    59. Florian Rudroff, Marko D. Mihovilovic, Harald Gröger, Radka Snajdrova, Hans Iding, Uwe T. Bornscheuer. Opportunities and challenges for combining chemo- and biocatalysis. Nature Catalysis 2018, 1 (1) , 12-22. https://doi.org/10.1038/s41929-017-0010-4
    60. Daniel F Sauer, Johannes Schiffels, Takashi Hayashi, Ulrich Schwaneberg, Jun Okuda. Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis. Beilstein Journal of Organic Chemistry 2018, 14 , 2861-2871. https://doi.org/10.3762/bjoc.14.265
    61. Tomoki Himiyama, Naomasa Taniguchi, Shunsuke Kato, Akira Onoda, Takashi Hayashi. A Pyrene‐Linked Cavity within a β‐Barrel Protein Promotes an Asymmetric Diels–Alder Reaction. Angewandte Chemie 2017, 129 (44) , 13806-13810. https://doi.org/10.1002/ange.201704524
    62. Tomoki Himiyama, Naomasa Taniguchi, Shunsuke Kato, Akira Onoda, Takashi Hayashi. A Pyrene‐Linked Cavity within a β‐Barrel Protein Promotes an Asymmetric Diels–Alder Reaction. Angewandte Chemie International Edition 2017, 56 (44) , 13618-13622. https://doi.org/10.1002/anie.201704524
    63. Ying-Wu Lin. Rational design of metalloenzymes: From single to multiple active sites. Coordination Chemistry Reviews 2017, 336 , 1-27. https://doi.org/10.1016/j.ccr.2017.01.001
    64. James W. Herndon. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coordination Chemistry Reviews 2016, 329 , 53-162. https://doi.org/10.1016/j.ccr.2016.08.007
    65. Anthony Neville, Javier Iniesta, Jose Palomo. Design of Heterogeneous Hoveyda–Grubbs Second-Generation Catalyst–Lipase Conjugates. Molecules 2016, 21 (12) , 1680. https://doi.org/10.3390/molecules21121680
    66. . Directed Evolution of Promiscuity: Artificial Enzymes as Catalysts in Organic Chemistry. 2016, 237-266. https://doi.org/10.1002/9783527655465.ch7
    67. XiaoZhi Lim. The new breed of cutting-edge catalysts. Nature 2016, 537 (7619) , 156-158. https://doi.org/10.1038/537156a
    68. Markus Jeschek, Raphael Reuter, Tillmann Heinisch, Christian Trindler, Juliane Klehr, Sven Panke, Thomas R. Ward. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 2016, 537 (7622) , 661-665. https://doi.org/10.1038/nature19114
    69. M. Jeschek, S. Panke, T.R. Ward. Periplasmic Screening for Artificial Metalloenzymes. 2016, 539-556. https://doi.org/10.1016/bs.mie.2016.05.037
    70. D. F. Sauer, S. Gotzen, J. Okuda. Metatheases: artificial metalloproteins for olefin metathesis. Organic & Biomolecular Chemistry 2016, 14 (39) , 9174-9183. https://doi.org/10.1039/C6OB01475E
    71. Hassan Osseili, Daniel F Sauer, Klaus Beckerle, Marcus Arlt, Tomoki Himiyama, Tino Polen, Akira Onoda, Ulrich Schwaneberg, Takashi Hayashi, Jun Okuda. Artificial Diels–Alderase based on the transmembrane protein FhuA. Beilstein Journal of Organic Chemistry 2016, 12 , 1314-1321. https://doi.org/10.3762/bjoc.12.124

    ACS Catalysis

    Cite this: ACS Catal. 2015, 5, 12, 7519–7522
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.5b01792
    Published November 16, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2802

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.