Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Efficient and Stable Ammonia Synthesis by Self-Organized Flat Ru Nanoparticles on Calcium Amide

View Author Information
Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226−8503, Japan
Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226−8503, Japan
§ High Energy Accelerator Research Organization, KEK, 1-1, Oho, Tsukuba, Ibaraki 305−0801, Japan
Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
ACCEL, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
# Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226−8503, Japan
Cite this: ACS Catal. 2016, 6, 11, 7577–7584
Publication Date (Web):October 7, 2016
https://doi.org/10.1021/acscatal.6b01940
Copyright © 2016 American Chemical Society

    Article Views

    5121

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Efficient and stable catalysts for ammonia synthesis under mild conditions are required to meet the strong demand for NH3 as an important precursor chemical and hydrogen carrier. Here we report that during ammonia synthesis, flat-shaped Ru nanoparticles with a narrow distribution (2.1 ± 1.0 nm) and self-organized on Ca(NH2)2 exhibit high catalytic performance far exceeding alkali-promoted Ru-based catalysts in yield and turnover frequency (TOF). This catalyst enables continuous NH3 production, even at 473 K under ambient pressure. During ammonia synthesis, Ru nanoparticles are distinctly anchored on the surface of Ca(NH2)2 by strong Ru–N interaction, which leads to the epitaxial growth of Ru on the support surface. The high catalytic performance is due to the formation of high-density flat-shaped Ru nanoparticles and high electron donor ability at the Ru/Ca(NH2)2 interface. The catalytic stability is significantly improved by Ba-doping of Ca(NH2)2, and no degradation was observed after ca. 700 h of operation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.6b01940.

    • Experimental methods, characterization, kinetic analysis, and supplemental data, as noted in the text (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 128 publications.

    1. Yuheng Wu, Xiangdong Kong, Yechao Su, Jiankang Zhao, Yiling Ma, Tongzheng Ji, Di Wu, Junyang Meng, Yan Liu, Zhigang Geng, Jie Zeng. Thiol Ligand-Modified Au for Highly Efficient Electroreduction of Nitrate to Ammonia. Precision Chemistry 2024, 2 (3) , 112-119. https://doi.org/10.1021/prechem.3c00107
    2. Chunzheng Zheng, Bin Guan, Jiangfeng Guo, Tianxu Su, Jiefei Zhou, Junyan Chen, Yaoyao Zhang, Yuheng Yuan, Wenkai Xie, Nanxin Zhou, Zhen Huang. Research Status, Optimization Strategies, and Future Prospects of Ammonia Decomposition Catalysts for COx-Free Hydrogen. Industrial & Engineering Chemistry Research 2023, 62 (29) , 11305-11336. https://doi.org/10.1021/acs.iecr.3c01261
    3. Qianru Wang, Hong Wen, Yeqin Guan, Shengyuan Zhang, Wenbo Gao, Jianping Guo, Ping Chen. Ruthenium Complex Hydride Catalyst as a Platform for Ammonia Synthesis: The Effect of Alkali or Alkaline Earth Elements. ACS Catalysis 2023, 13 (14) , 9882-9890. https://doi.org/10.1021/acscatal.3c02068
    4. Bosong Lin, Fouzia Hasan Nowrin, Justin J. Rosenthal, Abhoyjit S. Bhown, Mahdi Malmali. Perspective on Intensification of Haber−Bosch to Enable Ammonia Production under Milder Conditions. ACS Sustainable Chemistry & Engineering 2023, 11 (27) , 9880-9899. https://doi.org/10.1021/acssuschemeng.2c06711
    5. Jiageng Zheng, Hao Zhang, Jiabao Lv, Meng Zhang, Jieying Wan, Nick Gerrits, Angjian Wu, Bingru Lan, Weitao Wang, Shuangyin Wang, Xin Tu, Annemie Bogaerts, Xiaodong Li. Enhanced NH3 Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2. JACS Au 2023, 3 (5) , 1328-1336. https://doi.org/10.1021/jacsau.3c00087
    6. Xinbin Yu, Jisue Moon, Yongqiang Cheng, Luke Daemen, Jue Liu, Sung Wng Kim, Abinash Kumar, Miaofang Chi, Victor Fung, Anibal J. Ramirez-Cuesta, Zili Wu. In Situ Neutron Scattering Study of the Structure Dynamics of the Ru/Ca2N:e– Catalyst in Ammonia Synthesis. Chemistry of Materials 2023, 35 (6) , 2456-2462. https://doi.org/10.1021/acs.chemmater.2c03599
    7. Yining Zhang, Sha Li, Chao Sun, Ping Wang, Yijun Yang, Ding Yi, Xi Wang, Jiannian Yao. Understanding and Modifying the Scaling Relations for Ammonia Synthesis on Dilute Metal Alloys: From Single-Atom Alloys to Dimer Alloys. ACS Catalysis 2022, 12 (15) , 9201-9212. https://doi.org/10.1021/acscatal.2c00745
    8. Žiga Ponikvar, Blaž Likozar, Sašo Gyergyek. Electrification of Catalytic Ammonia Production and Decomposition Reactions: From Resistance, Induction, and Dielectric Reactor Heating to Electrolysis. ACS Applied Energy Materials 2022, 5 (5) , 5457-5472. https://doi.org/10.1021/acsaem.1c03045
    9. Yanliang Zhou, Cong-Qiao Xu, Zhenni Tan, Hongfang Cai, Xiuyun Wang, Jialiang Li, Lirong Zheng, Chak-tong Au, Jun Li, Lilong Jiang. Integrating Dissociative and Associative Routes for Efficient Ammonia Synthesis over a TiCN-Promoted Ru-Based Catalyst. ACS Catalysis 2022, 12 (4) , 2651-2660. https://doi.org/10.1021/acscatal.1c05613
    10. Florian Brix, Gilles Frapper, Émilie Gaudry. Ammonia Synthesis on the RRuSi(001) (R = Ca,La) Surfaces: DFT Insights Revealing the Active La Termination of the LaRuSi Electride. The Journal of Physical Chemistry C 2022, 126 (6) , 3009-3016. https://doi.org/10.1021/acs.jpcc.1c08725
    11. Xuanbei Peng, Hongfang Cai, Yanliang Zhou, Jun Ni, Xiuyun Wang, Bingyu Lin, Jianxin Lin, Lirong Zheng, Chak-tong Au, Lilong Jiang. Studies of a Highly Active Cobalt Atomic Cluster Catalyst for Ammonia Synthesis. ACS Sustainable Chemistry & Engineering 2022, 10 (5) , 1951-1960. https://doi.org/10.1021/acssuschemeng.1c08054
    12. Maksim Kulichenko, Andrey N. Utenyshev, Konstantin V. Bozhenko. Designing Molecular Electrides from Defective Unit Cells of Cubic Alkaline Earth Oxides. The Journal of Physical Chemistry C 2021, 125 (17) , 9564-9570. https://doi.org/10.1021/acs.jpcc.1c02710
    13. Hideo Hosono, Masaaki Kitano. Advances in Materials and Applications of Inorganic Electrides. Chemical Reviews 2021, 121 (5) , 3121-3185. https://doi.org/10.1021/acs.chemrev.0c01071
    14. Tian-Nan Ye, Sang-Won Park, Yangfan Lu, Jiang Li, Masato Sasase, Masaaki Kitano, Hideo Hosono. Contribution of Nitrogen Vacancies to Ammonia Synthesis over Metal Nitride Catalysts. Journal of the American Chemical Society 2020, 142 (33) , 14374-14383. https://doi.org/10.1021/jacs.0c06624
    15. Kazuhisa Kishida, Masaaki Kitano, Masato Sasase, Peter V. Sushko, Hitoshi Abe, Yasuhiro Niwa, Kiya Ogasawara, Toshiharu Yokoyama, Hideo Hosono. Air-Stable Calcium Cyanamide-Supported Ruthenium Catalyst for Ammonia Synthesis and Decomposition. ACS Applied Energy Materials 2020, 3 (7) , 6573-6582. https://doi.org/10.1021/acsaem.0c00754
    16. Takuya Nakao, Tomofumi Tada, Hideo Hosono. First-Principles and Microkinetic Study on the Mechanism for Ammonia Synthesis Using Ru-Loaded Hydride Catalyst. The Journal of Physical Chemistry C 2020, 124 (3) , 2070-2078. https://doi.org/10.1021/acs.jpcc.9b10850
    17. Masaaki Kitano, Jun Kujirai, Kiya Ogasawara, Satoru Matsuishi, Tomofumi Tada, Hitoshi Abe, Yasuhiro Niwa, Hideo Hosono. Low-Temperature Synthesis of Perovskite Oxynitride-Hydrides as Ammonia Synthesis Catalysts. Journal of the American Chemical Society 2019, 141 (51) , 20344-20353. https://doi.org/10.1021/jacs.9b10726
    18. Deepak K. Ojha, Matthew J. Kale, Alon V. McCormick, Michael Reese, Mahdi Malmali, Paul Dauenhauer, E. L. Cussler. Integrated Ammonia Synthesis and Separation. ACS Sustainable Chemistry & Engineering 2019, 7 (23) , 18785-18792. https://doi.org/10.1021/acssuschemeng.9b03050
    19. Kevin H. R. Rouwenhorst, Hyun-Ha Kim, Leon Lefferts. Vibrationally Excited Activation of N2 in Plasma-Enhanced Catalytic Ammonia Synthesis: A Kinetic Analysis. ACS Sustainable Chemistry & Engineering 2019, 7 (20) , 17515-17522. https://doi.org/10.1021/acssuschemeng.9b04997
    20. Pawel Strak, Konrad Sakowski, Pawel Kempisty, Izabella Grzegory, Stanislaw Krukowski. Catalytic Synthesis of Nitric Monoxide at the AlN(0001) Surface: Ab Initio Analysis. The Journal of Physical Chemistry C 2019, 123 (17) , 10893-10906. https://doi.org/10.1021/acs.jpcc.8b12472
    21. Bingyu Lin, Lan Heng, Biyun Fang, Haiyun Yin, Jun Ni, Xiuyun Wang, Jianxin Lin, Lilong Jiang. Ammonia Synthesis Activity of Alumina-Supported Ruthenium Catalyst Enhanced by Alumina Phase Transformation. ACS Catalysis 2019, 9 (3) , 1635-1644. https://doi.org/10.1021/acscatal.8b03554
    22. Dong Jiang, Zeyu Zhao, Shenglong Mu, Haijun Qian, Jianhua Tong. Facile and Massive Aluminothermic Synthesis of Mayenite Electrides from Cost-Effective Oxide and Metal Precursors. Inorganic Chemistry 2019, 58 (1) , 960-967. https://doi.org/10.1021/acs.inorgchem.8b03116
    23. Masashi Hattori, Taiyo Mori, Tomohiro Arai, Yasunori Inoue, Masato Sasase, Tomofumi Tada, Masaaki Kitano, Toshiharu Yokoyama, Michikazu Hara, Hideo Hosono. Enhanced Catalytic Ammonia Synthesis with Transformed BaO. ACS Catalysis 2018, 8 (12) , 10977-10984. https://doi.org/10.1021/acscatal.8b02839
    24. Yuta Ogura, Kotoko Tsujimaru, Katsutoshi Sato, Shin-ichiro Miyahara, Takaaki Toriyama, Tomokazu Yamamoto, Syo Matsumura, Katsutoshi Nagaoka. Ru/La0.5Pr0.5O1.75 Catalyst for Low-Temperature Ammonia Synthesis. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 17258-17266. https://doi.org/10.1021/acssuschemeng.8b04683
    25. Pawel Strak, Konrad Sakowski, Pawel Kempisty, Izabella Grzegory, Stanislaw Krukowski. Adsorption of N2 and H2 at AlN(0001) Surface: Ab Initio Assessment of the Initial Stage of Ammonia Catalytic Synthesis. The Journal of Physical Chemistry C 2018, 122 (35) , 20301-20311. https://doi.org/10.1021/acs.jpcc.8b05009
    26. Ricardo B. Ferreira, Brian J. Cook, Brian J. Knight, Vincent J. Catalano, Ricardo García-Serres, Leslie J. Murray. Catalytic Silylation of Dinitrogen by a Family of Triiron Complexes. ACS Catalysis 2018, 8 (8) , 7208-7212. https://doi.org/10.1021/acscatal.8b02021
    27. Tatsuya Suzuki, Keisuke Fujimoto, Yoshiyuki Takemoto, Yuko Wasada-Tsutsui, Tomohiro Ozawa, Tomohiko Inomata, Michael D. Fryzuk, Hideki Masuda. Efficient Catalytic Conversion of Dinitrogen to N(SiMe3)3 Using a Homogeneous Mononuclear Cobalt Complex. ACS Catalysis 2018, 8 (4) , 3011-3015. https://doi.org/10.1021/acscatal.7b04351
    28. Fumihiko Kosaka, Takehisa Nakamura, Akio Oikawa, and Junichiro Otomo . Electrochemical Acceleration of Ammonia Synthesis on Fe-Based Alkali-Promoted Electrocatalyst with Proton Conducting Solid Electrolyte. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10439-10446. https://doi.org/10.1021/acssuschemeng.7b02469
    29. Hitoshi Abe, Yasuhiro Niwa, Masaaki Kitano, Yasunori Inoue, Masato Sasase, Takuya Nakao, Tomofumi Tada, Toshiharu Yokoyama, Michikazu Hara, and Hideo Hosono . Anchoring Bond between Ru and N Atoms of Ru/Ca2NH Catalyst: Crucial for the High Ammonia Synthesis Activity. The Journal of Physical Chemistry C 2017, 121 (38) , 20900-20904. https://doi.org/10.1021/acs.jpcc.7b07268
    30. Michikazu Hara, Masaaki Kitano, and Hideo Hosono . Ru-Loaded C12A7:e– Electride as a Catalyst for Ammonia Synthesis. ACS Catalysis 2017, 7 (4) , 2313-2324. https://doi.org/10.1021/acscatal.6b03357
    31. Jin-Jian Pan, Jia Huang, Yuan-Hang Qin, Zhen Chen, Li Yang, Cun-Wen Wang, Xingmao Jiang. Deep eutectic solvent-assisted synthesis of oxygen vacancy-rich BaTiO3 as a support for Ru catalyst in ammonia synthesis at atmospheric pressure. International Journal of Hydrogen Energy 2024, 70 , 241-250. https://doi.org/10.1016/j.ijhydene.2024.05.176
    32. Eva Castillejos, Enrique García‐Bordejé. Innovative Approaches to Sustainable Ammonia Synthesis under Mild Conditions. ChemCatChem 2024, 13 https://doi.org/10.1002/cctc.202301603
    33. Shungo Zen, Nozomi Takeuchi, Yoshiyuki Teramoto. Ammonia synthesis using atmospheric pressure fluidized bed plasma. Journal of Physics D: Applied Physics 2024, 57 (11) , 115203. https://doi.org/10.1088/1361-6463/ad144b
    34. Abhishek Banerjee, Bishwajit Paul, Vijaykumar S. Marakatti. Bioinspired Catalysis with Biomimetic Clusters. 2024, 39-60. https://doi.org/10.2174/9789815136869124010005
    35. Satoshi Kamiguchi, Kiyotaka Asakura, Tamaki Shibayama, Tomoko Yokaichiya, Tatsushi Ikeda, Akira Nakayama, Ken-ichi Shimizu, Zhaomin Hou. Catalytic ammonia synthesis on HY-zeolite-supported angstrom-size molybdenum cluster. Chemical Science 2024, 15 (8) , 2914-2922. https://doi.org/10.1039/D3SC05447K
    36. G. J. Irvine, Ronald I. Smith, M. O. Jones, J. T. S. Irvine. Order–disorder and ionic conductivity in calcium nitride-hydride. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40025-2
    37. Wojciech Patkowski, Magdalena Zybert, Hubert Ronduda, Wioletta Raróg-Pilecka. Lanthanide Oxides in Ammonia Synthesis Catalysts: A Comprehensive Review. Catalysts 2023, 13 (12) , 1464. https://doi.org/10.3390/catal13121464
    38. Hendrik P. Rodenburg, Alexander Mutschke, Lappawat Ngamwongwan, Valerio Gulino, Vasileios Kyriakou, Nathalie Kunkel, Nongnuch Artrith, Peter Ngene. Mixed hydride-electronic conductivity in Rb2CaH4 and Cs2CaH4. Solid State Ionics 2023, 403 , 116384. https://doi.org/10.1016/j.ssi.2023.116384
    39. Zhimin Song, Lang Qin, Yan Liu, Yongzhi Zhong, Qing Guo, Zhigang Geng, Jie Zeng. Efficient Electroreduction of Nitrate to Ammonia with CuPd Nanoalloy Catalysts. ChemSusChem 2023, 16 (22) https://doi.org/10.1002/cssc.202300202
    40. Akira Oda, Risa Ichihashi, Yuta Yamamoto, Kyoichi Sawabe, Atsushi Satsuma. Self-organized defect-rich RuMO x epitaxial layers (M = Mn, Fe, Co, Ni, Cu) for catalytic applications. Journal of Materials Chemistry A 2023, 11 (44) , 23854-23866. https://doi.org/10.1039/D3TA05078E
    41. Javier Arroyo-Caire, Manuel Antonio Diaz-Perez, Mayra Anabel Lara-Angulo, Juan Carlos Serrano-Ruiz. A Conceptual Approach for the Design of New Catalysts for Ammonia Synthesis: A Metal—Support Interactions Review. Nanomaterials 2023, 13 (22) , 2914. https://doi.org/10.3390/nano13222914
    42. E. A. Permyakov, V. M. Kogan. Catalytic conversion of isoelectronic CO and N2 molecules in the presence of hydrogen. Russian Chemical Reviews 2023, 92 (10) , RCR5094. https://doi.org/10.59761/RCR5094
    43. Yasushi Sekine. Low temperature ammonia synthesis by surface protonics over metal supported catalysts. Faraday Discussions 2023, 243 , 179-197. https://doi.org/10.1039/D2FD00146B
    44. Gavin J. Irvine, John T. S. Irvine. Ionic conductivity and disorder in calcium and barium nitrogen hydrogen phases. Faraday Discussions 2023, 243 , 38-54. https://doi.org/10.1039/D2FD00178K
    45. Mostafa El-Shafie, Shinji Kambara. Recent advances in ammonia synthesis technologies: Toward future zero carbon emissions. International Journal of Hydrogen Energy 2023, 48 (30) , 11237-11273. https://doi.org/10.1016/j.ijhydene.2022.09.061
    46. Charlotte Croisé, Khaled Alabd, Sophie Tencé, Etienne Gaudin, Antoine Villesuzanne, Xavier Courtois, Nicolas Bion, Fabien Can. Influence of the Rare Earth ( R ) Element in Ru‐supported R ScSi Electride‐like Intermetallic Catalysts for Ammonia Synthesis at Low Pressure: Insight into NH 3 Formation Mechanism. ChemCatChem 2023, 15 (3) https://doi.org/10.1002/cctc.202201172
    47. Chuanfeng Zhang, Siyu Shi, Biyun Fang, Jun Ni, Jianxin Lin, Xiuyun Wang, Bingyu Lin, Lilong Jiang. Zirconia prepared from UIO-66 as a support of Ru catalyst for ammonia synthesis. Chinese Chemical Letters 2023, 34 (1) , 107237. https://doi.org/10.1016/j.cclet.2022.02.042
    48. Ang Cao, Vanessa J. Bukas, Vahid Shadravan, Zhenbin Wang, Hao Li, Jakob Kibsgaard, Ib Chorkendorff, Jens K. Nørskov. A spin promotion effect in catalytic ammonia synthesis. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30034-y
    49. Ke Huang, Richard M. Crooks. Enhanced electrocatalytic activity of Cu-modified, high-index single Pt NPs for formic acid oxidation. Chemical Science 2022, 13 (42) , 12479-12490. https://doi.org/10.1039/D2SC03433F
    50. Shangcong Sun, Qiuqiao Jiang, Dongyue Zhao, Tiantian Cao, Hao Sha, Chuankun Zhang, Haitao Song, Zhijian Da. Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production. Renewable and Sustainable Energy Reviews 2022, 169 , 112918. https://doi.org/10.1016/j.rser.2022.112918
    51. Masayasu Nishi, Shih-Yuan Chen, Hiroyuki Tateno, Takehisa Mochizuki, Hideyuki Takagi, Tetsuya Nanba. A super-growth carbon nanotubes-supported, Cs-promoted Ru catalyst for 0.1–8 MPaG ammonia synthesis. Journal of Catalysis 2022, 413 , 623-635. https://doi.org/10.1016/j.jcat.2022.07.015
    52. Jingshu Wang, Xiya Guan, Haibo Li, Suyuan Zeng, Rui Li, Qingxia Yao, Hongyan Chen, Yao Zheng, Konggang Qu. Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy 2022, 100 , 107467. https://doi.org/10.1016/j.nanoen.2022.107467
    53. Pascal Koschwitz, Daria Bellotti, Cheng Liang, Bernd Epple. Steady state process simulations of a novel containerized power to ammonia concept. International Journal of Hydrogen Energy 2022, 47 (60) , 25322-25334. https://doi.org/10.1016/j.ijhydene.2022.05.288
    54. Victor N. Sagel, Kevin H.R. Rouwenhorst, Jimmy A. Faria. Green ammonia enables sustainable energy production in small island developing states: A case study on the island of Curaçao. Renewable and Sustainable Energy Reviews 2022, 161 , 112381. https://doi.org/10.1016/j.rser.2022.112381
    55. Kiya OGASAWARA, Masaaki KITANO, Hideo HOSONO. Ammonia Decomposition Mediated by Anion Vacancy at the Interface between CaNH with a Rock Salt Structure and Ni Nanoparticle. Nihon Kessho Gakkaishi 2022, 64 (2) , 160-164. https://doi.org/10.5940/jcrsj.64.160
    56. Manoj Ravi, Joshua W. Makepeace. Lithium–nitrogen–hydrogen systems for ammonia synthesis: exploring a more efficient pathway using lithium nitride–hydride. Chemical Communications 2022, 58 (41) , 6076-6079. https://doi.org/10.1039/D2CC01345B
    57. Xuanbei Peng, Xiaochuan Chen, Yanliang Zhou, Fuxiang Sun, Tianhua Zhang, Lirong Zheng, Lilong Jiang, Xiuyun Wang. Size-dependent activity of supported Ru catalysts for ammonia synthesis at mild conditions. Journal of Catalysis 2022, 408 , 98-108. https://doi.org/10.1016/j.jcat.2022.02.024
    58. Sanil E. Sivan, Ki Hyuk Kang, Seung Ju Han, Odongo Francis Ngome Okello, Si-Young Choi, Veeranmaril Sudheeshkumar, Robert W.J. Scott, Ho-Jeong Chae, Sunyoung Park, U-Hwang Lee. Facile MOF-derived one-pot synthetic approach toward Ru single atoms, nanoclusters, and nanoparticles dispersed on CeO2 supports for enhanced ammonia synthesis. Journal of Catalysis 2022, 408 , 316-328. https://doi.org/10.1016/j.jcat.2022.03.019
    59. Qianru Wang, Yeqin Guan, Jianping Guo, Ping Chen. Hydrides mediate nitrogen fixation. Cell Reports Physical Science 2022, 3 (3) , 100779. https://doi.org/10.1016/j.xcrp.2022.100779
    60. Hideo Hosono. Electron Transfer from Support/Promotor to Metal Catalyst: Requirements for Effective Support. Catalysis Letters 2022, 152 (2) , 307-314. https://doi.org/10.1007/s10562-021-03648-y
    61. Alexey A. Dyachenko, Alexey V. Lukoyanov, Vladimir I. Anisimov, Artem R. Oganov. Electride properties of ternary silicide and germanide of La and Ce. Physical Review B 2022, 105 (8) https://doi.org/10.1103/PhysRevB.105.085146
    62. Manoj Ravi, Joshua W. Makepeace. Facilitating green ammonia manufacture under milder conditions: what do heterogeneous catalyst formulations have to offer?. Chemical Science 2022, 13 (4) , 890-908. https://doi.org/10.1039/D1SC04734E
    63. Takaya Ogawa. Ammonia as a carrier of renewable energy: Recent progress of ammonia synthesis by homogeneous catalysts, heterogeneous catalysts, and electrochemical method. 2022, 265-291. https://doi.org/10.1016/B978-0-323-85403-0.00010-4
    64. Canan Karakaya, Jake Huang, Christopher Cadigan, Adam Welch, Jonathan Kintner, Joseph Beach, Huayang Zhu, Ryan O’Hayre, Robert J. Kee. Development, characterization, and modeling of a high-performance Ru/B2CA catalyst for ammonia synthesis. Chemical Engineering Science 2022, 247 , 116902. https://doi.org/10.1016/j.ces.2021.116902
    65. Mami Osozawa, Ayane Hori, Kosuke Fukai, Tetsuo Honma, Kazumasa Oshima, Shigeo Satokawa. Improvement in ammonia synthesis activity on ruthenium catalyst using ceria support modified a large amount of cesium promoter. International Journal of Hydrogen Energy 2022, 47 (4) , 2433-2441. https://doi.org/10.1016/j.ijhydene.2021.10.204
    66. Yao Zheng, Jingshu Wang, Xiya Guan, Haibo Li, Suyuan Zeng, Rui Li, Qingxia Yao, Hongyan Chen, Konggang Qu. Robust Ru-N Metal-Support Interaction to Promote Self-Powered H2 Production Assisted by Hydrazine Oxidation. SSRN Electronic Journal 2022, 16 https://doi.org/10.2139/ssrn.4069759
    67. Fei Chang, Wenbo Gao, Jianping Guo, Ping Chen. Emerging Materials and Methods toward Ammonia‐Based Energy Storage and Conversion. Advanced Materials 2021, 33 (50) https://doi.org/10.1002/adma.202005721
    68. Qianru Wang, Jianping Guo, Ping Chen. The impact of alkali and alkaline earth metals on green ammonia synthesis. Chem 2021, 7 (12) , 3203-3220. https://doi.org/10.1016/j.chempr.2021.08.021
    69. Kazuyo Matsubae. Importance of Ensuring Sustainable Fertilizer Resource Management. Material Cycles and Waste Management Research 2021, 32 (6) , 445-452. https://doi.org/10.3985/mcwmr.32.445
    70. Dan Xu, Ruiyi Li, Guangli Wang, Haiyan Zhu, Zaijun Li. Electrochemical detection of carbendazim in strawberry based on a ruthenium–graphene quantum dot hybrid with a three-dimensional network structure and Schottky heterojunction. New Journal of Chemistry 2021, 45 (45) , 21308-21314. https://doi.org/10.1039/D1NJ04602K
    71. Shin-ichiro Miyahara, Katsutoshi Sato, Yukiko Kawano, Kazuya Imamura, Yuta Ogura, Kotoko Tsujimaru, Katsutoshi Nagaoka. Ammonia synthesis over lanthanoid oxide–supported ruthenium catalysts. Catalysis Today 2021, 376 , 36-40. https://doi.org/10.1016/j.cattod.2020.08.031
    72. Joshua W. Makepeace, Jake M. Brittain, Alisha Sukhwani Manghnani, Claire A. Murray, Thomas J. Wood, William I. F. David. Compositional flexibility in Li–N–H materials: implications for ammonia catalysis and hydrogen storage. Physical Chemistry Chemical Physics 2021, 23 (28) , 15091-15100. https://doi.org/10.1039/D1CP02440J
    73. Yudai Hisai, Quanbao Ma, Thomas Qureishy, Takeshi Watanabe, Takuma Higo, Truls Norby, Yasushi Sekine. Enhanced activity of catalysts on substrates with surface protonic current in an electrical field – a review. Chemical Communications 2021, 57 (47) , 5737-5749. https://doi.org/10.1039/D1CC01551F
    74. Xiangrong Zi, Jin Wan, Xiaohui Yang, Wu Tian, Huijuan Zhang, Yu Wang. Vacancy-rich 1T-MoS2 monolayer confined to MoO3 matrix: An interface-engineered hybrid for efficiently electrocatalytic conversion of nitrogen to ammonia. Applied Catalysis B: Environmental 2021, 286 , 119870. https://doi.org/10.1016/j.apcatb.2020.119870
    75. Jimmy A. Faria. Renaissance of ammonia synthesis for sustainable production of energy and fertilizers. Current Opinion in Green and Sustainable Chemistry 2021, 29 , 100466. https://doi.org/10.1016/j.cogsc.2021.100466
    76. Kevin H.R. Rouwenhorst, Aloijsius G.J. Van der Ham, Leon Lefferts. Beyond Haber-Bosch: The renaissance of the Claude process. International Journal of Hydrogen Energy 2021, 46 (41) , 21566-21579. https://doi.org/10.1016/j.ijhydene.2021.04.014
    77. Sisi Liu, Mengfan Wang, Haoqing Ji, Xiaowei Shen, Chenglin Yan, Tao Qian. Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. National Science Review 2021, 8 (5) https://doi.org/10.1093/nsr/nwaa136
    78. Yoshiaki Tanabe, Yoshiaki Nishibayashi. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chemical Society Reviews 2021, 50 (8) , 5201-5242. https://doi.org/10.1039/D0CS01341B
    79. Shuai Zhang, Sandra Elizabeth Saji, Zongyou Yin, Hongbo Zhang, Yaping Du, Chun‐Hua Yan. Rare‐Earth Incorporated Alloy Catalysts: Synthesis, Properties, and Applications. Advanced Materials 2021, 33 (16) https://doi.org/10.1002/adma.202005988
    80. Wei Li, Shuang Wang, Jinping Li. Effect of rare earth elements (La, Y, Pr) in multi-element composite perovskite oxide supports for ammonia synthesis. Journal of Rare Earths 2021, 39 (4) , 427-433. https://doi.org/10.1016/j.jre.2020.06.006
    81. Yu Cao, Ayaka Saito, Yoji Kobayashi, Hiroki Ubukata, Ya Tang, Hiroshi Kageyama. Vanadium Hydride as an Ammonia Synthesis Catalyst. ChemCatChem 2021, 13 (1) , 191-195. https://doi.org/10.1002/cctc.202001084
    82. John Humphreys, Rong Lan, Shanwen Tao. Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Advanced Energy and Sustainability Research 2021, 2 (1) https://doi.org/10.1002/aesr.202000043
    83. K.H.R. Rouwenhorst, P.M. Krzywda, N.E. Benes, G. Mul, L. Lefferts. Ammonia Production Technologies. 2021, 41-83. https://doi.org/10.1016/B978-0-12-820560-0.00004-7
    84. Vijaykumar S. Marakatti, Eric M. Gaigneaux. Recent Advances in Heterogeneous Catalysis for Ammonia Synthesis. ChemCatChem 2020, 12 (23) , 5838-5857. https://doi.org/10.1002/cctc.202001141
    85. Kevin H. R. Rouwenhorst, Leon Lefferts. Feasibility Study of Plasma-Catalytic Ammonia Synthesis for Energy Storage Applications. Catalysts 2020, 10 (9) , 999. https://doi.org/10.3390/catal10090999
    86. Binxiang Cai, Huazhang Liu, Wenfeng Han. Solution Combustion Synthesis of Fe2O3-Based Catalyst for Ammonia Synthesis. Catalysts 2020, 10 (9) , 1027. https://doi.org/10.3390/catal10091027
    87. Kevin H. R. Rouwenhorst, Piotr M. Krzywda, Nieck E. Benes, Guido Mul, Leon Lefferts. Ammonia, 4. Green Ammonia Production. 2020, 1-20. https://doi.org/10.1002/14356007.w02_w02
    88. Run Shi, Xuerui Zhang, Geoffrey I. N. Waterhouse, Yunxuan Zhao, Tierui Zhang. The Journey toward Low Temperature, Low Pressure Catalytic Nitrogen Fixation. Advanced Energy Materials 2020, 10 (19) https://doi.org/10.1002/aenm.202000659
    89. Cai Chen, Yiwen Chen, Arshid M. Ali, Wenjia Luo, Jie Wen, Lianhong Zhang, Hui Zhang. Bimetallic Ru‐Fe Nanoparticles Supported on Carbon Nanotubes for Ammonia Decomposition and Synthesis. Chemical Engineering & Technology 2020, 43 (4) , 719-730. https://doi.org/10.1002/ceat.201900508
    90. Maksim Kulichenko, Nikita Fedik, Dmitry Steglenko, Ruslan M. Minyaev, Vladimir I. Minkin, Alexander I. Boldyrev. Periodic F-defects on the MgO surface as potential single-defect catalysts with non-linear optical properties. Chemical Physics 2020, 532 , 110680. https://doi.org/10.1016/j.chemphys.2020.110680
    91. Yuyuan Wu, Chunyan Li, Biyun Fang, Xiuyun Wang, Jun Ni, Bingyu Lin, Jianxin Lin, Lilong Jiang. Enhanced ammonia synthesis performance of ceria-supported Ru catalysts via introduction of titanium. Chemical Communications 2020, 56 (7) , 1141-1144. https://doi.org/10.1039/C9CC07385J
    92. Yoshiyuki Teramoto, Hyun-Ha Kim. Effect of vibrationally excited N 2 ( v ) on atomic nitrogen generation using two consecutive pulse corona discharges under atmospheric pressure N 2. Journal of Physics D: Applied Physics 2019, 52 (49) , 494003. https://doi.org/10.1088/1361-6463/ab3f83
    93. Teng He, Hujun Cao, Ping Chen. Complex Hydrides for Energy Storage, Conversion, and Utilization. Advanced Materials 2019, 31 (50) https://doi.org/10.1002/adma.201902757
    94. Kazuya Imamura, Shin-ichiro Miyahara, Yukiko Kawano, Katsutoshi Sato, Yuta Nakasaka, Katsutoshi Nagaoka. Kinetics of ammonia synthesis over Ru/Pr2O3. Journal of the Taiwan Institute of Chemical Engineers 2019, 105 , 50-56. https://doi.org/10.1016/j.jtice.2019.10.006
    95. Maki Torimoto, Kota Murakami, Yasushi Sekine. Low-Temperature Heterogeneous Catalytic Reaction by Surface Protonics. Bulletin of the Chemical Society of Japan 2019, 92 (10) , 1785-1792. https://doi.org/10.1246/bcsj.20190194
    96. Kevin H.R. Rouwenhorst, Aloijsius G.J. Van der Ham, Guido Mul, Sascha R.A. Kersten. Islanded ammonia power systems: Technology review & conceptual process design. Renewable and Sustainable Energy Reviews 2019, 114 , 109339. https://doi.org/10.1016/j.rser.2019.109339
    97. Younes Abghoui, Sigtryggur Bjarki Sigtryggsson, Egill Skúlason. Biomimetic Nitrogen Fixation Catalyzed by Transition Metal Sulfide Surfaces in an Electrolytic Cell. ChemSusChem 2019, 12 (18) , 4265-4273. https://doi.org/10.1002/cssc.201901429
    98. Shungo Zen, Tetsuya Abe, Yoshiyuki Teramoto. Atmospheric Pressure Nonthermal Plasma Synthesis of Magnesium Nitride as a Safe Ammonia Carrier. Plasma Chemistry and Plasma Processing 2019, 39 (5) , 1203-1210. https://doi.org/10.1007/s11090-019-10002-z
    99. Qianru Wang, Jianping Guo, Ping Chen. Recent progress towards mild-condition ammonia synthesis. Journal of Energy Chemistry 2019, 36 , 25-36. https://doi.org/10.1016/j.jechem.2019.01.027
    100. Kota Murakami, Yuta Tanaka, Sasuga Hayashi, Ryuya Sakai, Yudai Hisai, Yuta Mizutani, Atsushi Ishikawa, Takuma Higo, Shuhei Ogo, Jeong Gil Seo, Hideaki Tsuneki, Hiromi Nakai, Yasushi Sekine. Governing factors of supports of ammonia synthesis in an electric field found using density functional theory. The Journal of Chemical Physics 2019, 151 (6) https://doi.org/10.1063/1.5111920
    Load all citations