ACS Publications. Most Trusted. Most Cited. Most Read
Scaling-Relation-Based Analysis of Bifunctional Catalysis: The Case for Homogeneous Bimetallic Alloys
My Activity
    Research Article

    Scaling-Relation-Based Analysis of Bifunctional Catalysis: The Case for Homogeneous Bimetallic Alloys
    Click to copy article linkArticle link copied!

    View Author Information
    Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
    SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
    § SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
    *E-mail for M.A.: [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Catalysis

    Cite this: ACS Catal. 2017, 7, 6, 3960–3967
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.7b00482
    Published April 14, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present a generic analysis of the implications of energetic scaling relations on the possibilities for bifunctional gains at homogeneous bimetallic alloy catalysts. Such catalysts exhibit a large number of interface sites, where second-order reaction steps can involve intermediates adsorbed at different active sites. Using different types of model reaction schemes, we show that such site-coupling reaction steps can provide bifunctional gains that allow for a bimetallic catalyst composed of two individually poor catalyst materials to approach the activity of the optimal monomaterial catalyst. However, bifunctional gains cannot result in activities higher than the activity peak of the monomaterial volcano curve as long as both sites obey similar scaling relations, as is generally the case for bimetallic catalysts. These scaling-relation-imposed limitations could be overcome by combining different classes of materials such as metals and oxides.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.7b00482.

    • CatMAP scripts used to generate the figures (ZIP)

    • Normalization of rate constants, results for Scheme 1 at T = 300 K, a more detailed reaction model for CO methanation, dependence of relative bifunctional gain on choice of descriptor points, global optimization, and single-site kinetic model of an interface site obeying a more favorable BEP relation (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 78 publications.

    1. Ruixia Sun, Fukai Xie, Qiang Zhang, Ying-Ji Sun, Wen Dai. Ferric Nitrate as a Bifunctional Catalyst for Dehydration and Oxidative Cleavage-Esterification of Tertiary Alcohols. The Journal of Organic Chemistry 2025, 90 (6) , 2214-2229. https://doi.org/10.1021/acs.joc.4c02592
    2. George Yan, Salman A. Khan, Dionisios G. Vlachos. Charge Transfer Drives Hydrogen Adsorption, Spillover, and Hydroxylation at the Pt/γ-Al2O3 Interface. ACS Catalysis 2024, 14 (18) , 13579-13590. https://doi.org/10.1021/acscatal.4c03485
    3. Niusha Shakibi Nia, Christoph Griesser, Thomas Mairegger, Eva-Maria Wernig, Johannes Bernardi, Engelbert Portenkirchner, Simon Penner, Julia Kunze-Liebhäuser. Titanium Oxycarbide as Platinum-Free Electrocatalyst for Ethanol Oxidation. ACS Catalysis 2024, 14 (1) , 324-329. https://doi.org/10.1021/acscatal.3c04097
    4. Nathanael C. Ramos, Marc Manyé Ibáñez, Rupali Mittal, Michael J. Janik, Adam Holewinski. Combining Renewable Electricity and Renewable Carbon: Understanding Reaction Mechanisms of Biomass-Derived Furanic Compounds for Design of Catalytic Nanomaterials. Accounts of Chemical Research 2023, 56 (19) , 2631-2641. https://doi.org/10.1021/acs.accounts.3c00368
    5. Jianfu Chen, Menglei Jia, Yu Mao, P. Hu, Haifeng Wang. Diffusion Coupling Kinetics in Multisite Catalysis: A Microkinetic Framework. ACS Catalysis 2023, 13 (5) , 2937-2947. https://doi.org/10.1021/acscatal.2c06026
    6. Narges Manavi, Bin Liu. Mitigating Coke Formations for Dry Reforming of Methane on Dual-Site Catalysts: A Microkinetic Modeling Study. The Journal of Physical Chemistry C 2023, 127 (5) , 2274-2284. https://doi.org/10.1021/acs.jpcc.2c06788
    7. Martin Deimel, Hector Prats, Michael Seibt, Karsten Reuter, Mie Andersen. Selectivity Trends and Role of Adsorbate–Adsorbate Interactions in CO Hydrogenation on Rhodium Catalysts. ACS Catalysis 2022, 12 (13) , 7907-7917. https://doi.org/10.1021/acscatal.2c02353
    8. Henrik H. Kristoffersen, Jan Rossmeisl. Local Order in AgAuCuPdPt High-Entropy Alloy Surfaces. The Journal of Physical Chemistry C 2022, 126 (15) , 6782-6790. https://doi.org/10.1021/acs.jpcc.2c00478
    9. Yao Yang, Cheyenne R. Peltier, Rui Zeng, Roberto Schimmenti, Qihao Li, Xin Huang, Zhifei Yan, Georgia Potsi, Ryan Selhorst, Xinyao Lu, Weixuan Xu, Mariel Tader, Alexander V. Soudackov, Hanguang Zhang, Mihail Krumov, Ellen Murray, Pengtao Xu, Jeremy Hitt, Linxi Xu, Hsin-Yu Ko, Brian G. Ernst, Colin Bundschu, Aileen Luo, Danielle Markovich, Meixue Hu, Cheng He, Hongsen Wang, Jiye Fang, Robert A. DiStasio, Jr., Lena F. Kourkoutis, Andrej Singer, Kevin J. T. Noonan, Li Xiao, Lin Zhuang, Bryan S. Pivovar, Piotr Zelenay, Enrique Herrero, Juan M. Feliu, Jin Suntivich, Emmanuel P. Giannelis, Sharon Hammes-Schiffer, Tomás Arias, Manos Mavrikakis, Thomas E. Mallouk, Joel D. Brock, David A. Muller, Francis J. DiSalvo, Geoffrey W. Coates, Héctor D. Abruña. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews 2022, 122 (6) , 6117-6321. https://doi.org/10.1021/acs.chemrev.1c00331
    10. Zhuangzhuang Lai, Jianfu Chen, Menglei Jia, Peijun Hu, Haifeng Wang. Universal Skeleton Feature of the Three-Dimensional Volcano Surface and the Thermodynamic Rule in Locating the Catalyst in Heterogeneous Catalysis. ACS Catalysis 2022, 12 (1) , 247-258. https://doi.org/10.1021/acscatal.1c04567
    11. Geun Ho Gu, Juhyung Lim, Chengzhang Wan, Tao Cheng, Heting Pu, Sungwon Kim, Juhwan Noh, Changhyeok Choi, Juhwan Kim, William A. Goddard, III, Xiangfeng Duan, Yousung Jung. Autobifunctional Mechanism of Jagged Pt Nanowires for Hydrogen Evolution Kinetics via End-to-End Simulation. Journal of the American Chemical Society 2021, 143 (14) , 5355-5363. https://doi.org/10.1021/jacs.0c11261
    12. Benjamin W. J. Chen, Lang Xu, Manos Mavrikakis. Computational Methods in Heterogeneous Catalysis. Chemical Reviews 2021, 121 (2) , 1007-1048. https://doi.org/10.1021/acs.chemrev.0c01060
    13. Thomas J. P. Hersbach, Chunmiao Ye, Amanda C. Garcia, Marc T. M. Koper. Tailoring the Electrocatalytic Activity and Selectivity of Pt(111) through Cathodic Corrosion. ACS Catalysis 2020, 10 (24) , 15104-15113. https://doi.org/10.1021/acscatal.0c04016
    14. Sung Sakong, David Mahlberg, Tanglaw Roman, Mengru Li, Mohnish Pandey, Axel Groß. Influence of Local Inhomogeneities and the Electrochemical Environment on the Oxygen Reduction Reaction on Pt-Based Electrodes: A DFT Study. The Journal of Physical Chemistry C 2020, 124 (50) , 27604-27613. https://doi.org/10.1021/acs.jpcc.0c09548
    15. Martin Deimel, Karsten Reuter, Mie Andersen. Active Site Representation in First-Principles Microkinetic Models: Data-Enhanced Computational Screening for Improved Methanation Catalysts. ACS Catalysis 2020, 10 (22) , 13729-13736. https://doi.org/10.1021/acscatal.0c04045
    16. Manish Shetty, Amber Walton, Sallye R. Gathmann, M. Alexander Ardagh, Joshua Gopeesingh, Joaquin Resasco, Turan Birol, Qi Zhang, Michael Tsapatsis, Dionisios G. Vlachos, Phillip Christopher, C. Daniel Frisbie, Omar A. Abdelrahman, Paul J. Dauenhauer. The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ACS Catalysis 2020, 10 (21) , 12666-12695. https://doi.org/10.1021/acscatal.0c03336
    17. Qiang Fu, Fan Wu, Bingxue Wang, Yuxiang Bu, Claudia Draxl. Spatial Confinement as an Effective Strategy for Improving the Catalytic Selectivity in Acetylene Hydrogenation. ACS Applied Materials & Interfaces 2020, 12 (35) , 39352-39361. https://doi.org/10.1021/acsami.0c12437
    18. Yueqiang Cao, Jonathan Guerrero-Sańchez, Ilkeun Lee, Xinggui Zhou, Noboru Takeuchi, Francisco Zaera. Kinetic Study of the Hydrogenation of Unsaturated Aldehydes Promoted by CuPtx/SBA-15 Single-Atom Alloy (SAA) Catalysts. ACS Catalysis 2020, 10 (5) , 3431-3443. https://doi.org/10.1021/acscatal.9b05407
    19. Yalan Wang, Ling Xiao, Yanying Qi, Jia Yang, Yi-An Zhu, De Chen. Insight into Size- and Metal-Dependent Activity and the Mechanism for Steam Methane Re-forming in Nanocatalysis. The Journal of Physical Chemistry C 2020, 124 (4) , 2501-2512. https://doi.org/10.1021/acs.jpcc.9b10190
    20. Hongbo Wu, Jonathan E. Sutton, Wei Guo, Dionisios G. Vlachos. Volcano Curves for in Silico Prediction of Mono- and Bifunctional Catalysts: Application to Ammonia Decomposition. The Journal of Physical Chemistry C 2019, 123 (44) , 27097-27104. https://doi.org/10.1021/acs.jpcc.9b08662
    21. Mikkel Jørgensen, Henrik Grönbeck. Perspectives on Computational Catalysis for Metal Nanoparticles. ACS Catalysis 2019, 9 (10) , 8872-8881. https://doi.org/10.1021/acscatal.9b02228
    22. Haoran He, Anish Dasgupta, Robert M. Rioux, Randall J. Meyer, Michael J. Janik. Competitive Hydrogenation between Linear Alkenes and Aromatics on Close-Packed Late Transition Metal Surfaces. The Journal of Physical Chemistry C 2019, 123 (13) , 8370-8378. https://doi.org/10.1021/acs.jpcc.8b09564
    23. Jian-Fu Chen, Yu Mao, Hai-Feng Wang, P. Hu. A Simple Method To Locate the Optimal Adsorption Energy for the Best Catalysts Directly. ACS Catalysis 2019, 9 (3) , 2633-2638. https://doi.org/10.1021/acscatal.8b04896
    24. Christian Kunkel, Christoph Schober, Johannes T. Margraf, Karsten Reuter, Harald Oberhofer. Finding the Right Bricks for Molecular Legos: A Data Mining Approach to Organic Semiconductor Design. Chemistry of Materials 2019, 31 (3) , 969-978. https://doi.org/10.1021/acs.chemmater.8b04436
    25. Ara Cho, Jeonghyun Ko, Byung-Kook Kim, Jeong Woo Han. Electrocatalysts with Increased Activity for Coelectrolysis of Steam and Carbon Dioxide in Solid Oxide Electrolyzer Cells. ACS Catalysis 2019, 9 (2) , 967-976. https://doi.org/10.1021/acscatal.8b02679
    26. Matthew T. Darby, Michail Stamatakis, Angelos Michaelides, E. Charles. H. Sykes. Lonely Atoms with Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom Alloys. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5636-5646. https://doi.org/10.1021/acs.jpclett.8b01888
    27. Insoo Ro, Joaquin Resasco, Phillip Christopher. Approaches for Understanding and Controlling Interfacial Effects in Oxide-Supported Metal Catalysts. ACS Catalysis 2018, 8 (8) , 7368-7387. https://doi.org/10.1021/acscatal.8b02071
    28. Gaurav Kumar, Eranda Nikolla, Suljo Linic, J. Will Medlin, Michael J. Janik. Multicomponent Catalysts: Limitations and Prospects. ACS Catalysis 2018, 8 (4) , 3202-3208. https://doi.org/10.1021/acscatal.8b00145
    29. Terry Z. H. Gani and Heather J. Kulik . Understanding and Breaking Scaling Relations in Single-Site Catalysis: Methane to Methanol Conversion by FeIV═O. ACS Catalysis 2018, 8 (2) , 975-986. https://doi.org/10.1021/acscatal.7b03597
    30. Randall J. Meyer, Qiang Zhang, Anna Kryczka, Carolina Gomez, and Ruzica Todorovic . Perturbation of Reactivity with Geometry: How Far Can We Go?. ACS Catalysis 2018, 8 (1) , 566-570. https://doi.org/10.1021/acscatal.7b03228
    31. Daniel V. Esposito . Membrane-Coated Electrocatalysts—An Alternative Approach To Achieving Stable and Tunable Electrocatalysis. ACS Catalysis 2018, 8 (1) , 457-465. https://doi.org/10.1021/acscatal.7b03374
    32. Shaodan Xu, Jia Du, Huanxuan Li, and Junhong Tang . Copolymeric Schiff Base Cu: A Platform for Active and Recyclable Catalyst in Aerobic Oxidations. Industrial & Engineering Chemistry Research 2017, 56 (51) , 15030-15037. https://doi.org/10.1021/acs.iecr.7b04501
    33. Chuhong Lin, Bryan C.S. Lee, Uzma Anjum, Asmee M. Prabhu, Neeru Chaudhary, Rong Xu, Tej S. Choksi. Harnessing physics-inspired machine learning to design nanocluster catalysts for dehydrogenating liquid organic hydrogen carriers. Applied Catalysis B: Environment and Energy 2025, 371 , 125192. https://doi.org/10.1016/j.apcatb.2025.125192
    34. Vladimir P. Zhdanov. Elementary Steps of Catalytic Reactions Occurring on Metallic Alloy Nanoparticles. ChemPhysChem 2025, 26 (1) https://doi.org/10.1002/cphc.202400521
    35. Lei Wang, Xuyan Zhou, Zihan Luo, Sida Liu, Shengying Yue, Yan Chen, Yilun Liu. Review of External Field Effects on Electrocatalysis: Machine Learning Guided Design. Advanced Functional Materials 2024, 34 (49) https://doi.org/10.1002/adfm.202408870
    36. Kaisar Ahmad, Aasif Asharafbhai Dabbawala, Kyriaki Polychronopoulou, Dalaver Anjum, Marko Gacesa, Maguy Abi Jaoude. Kinetic Insights into Methanol Synthesis from CO 2 Hydrogenation at Atmospheric Pressure over Intermetallic Pd 2 Ga Catalyst. Global Challenges 2024, 8 (10) https://doi.org/10.1002/gch2.202400159
    37. Vladimir P. Zhdanov. Basics of the reaction kinetics on metallic alloys. Physical Review E 2024, 110 (3) https://doi.org/10.1103/PhysRevE.110.034804
    38. Yuming Su, Xue Wang, Yuanxiang Ye, Yibo Xie, Yujing Xu, Yibin Jiang, Cheng Wang. Automation and machine learning augmented by large language models in a catalysis study. Chemical Science 2024, 15 (31) , 12200-12233. https://doi.org/10.1039/D3SC07012C
    39. Selin Bac, Zhenzhuo Lan, Shaama Mallikarjun Sharada. Transition Structures, Reaction Paths, and Kinetics: Methods and Applications in Catalysis. 2024, 496-518. https://doi.org/10.1016/B978-0-12-821978-2.00006-4
    40. Gaobo Chang, Cheng Huang, Huiling Zheng, Yuancheng He, Dan Zhao, Zhong Li, Hanqing Zhao. Synergistically catalytic regulation of surface chemistry on coal based needle coke by bimetallic interface for enhanced Li/Na storage. Carbon 2024, 218 , 118762. https://doi.org/10.1016/j.carbon.2023.118762
    41. Honglin Wang, Jing Li, Hongwei Zhu. Ultimate structures in catalysis: Single atoms, subnano-clusters, and electrons. Science China Materials 2023, 66 (12) , 4521-4541. https://doi.org/10.1007/s40843-023-2678-5
    42. Xue Zhang, Zhuo Wang, Adam Mukhtar Lawan, Jiahong Wang, Chang‐Yu Hsieh, Chenru Duan, Cheng Heng Pang, Paul. K. Chu, Xue‐Feng Yu, Haitao Zhao. Data‐driven structural descriptor for predicting platinum‐based alloys as oxygen reduction electrocatalysts. InfoMat 2023, 5 (6) https://doi.org/10.1002/inf2.12406
    43. Sidra Anis Farooqi, Ahmad Salam Farooqi, Shamaila Sajjad, Chenglin Yan, Ayodele Bamidele Victor. Electrochemical reduction of carbon dioxide into valuable chemicals: a review. Environmental Chemistry Letters 2023, 21 (3) , 1515-1553. https://doi.org/10.1007/s10311-023-01565-7
    44. Zhuangzhuang Lai, Haifeng Wang. General rules of active zone on the three-dimensional volcano surface enables rapid location of efficient catalyst. Journal of Catalysis 2023, 417 , 453-461. https://doi.org/10.1016/j.jcat.2022.12.034
    45. Gaobo Chang, Cheng Huang, Huiling Zheng, Yuancheng He, Dan Zhao, Zhong Li, Hanqing Zhao. Synergistically Catalytic Regulation of Surface Chemistry on Coal Based Needle Coke by Bimetallic Interface for Enhanced Li/Na Storage. 2023https://doi.org/10.2139/ssrn.4499335
    46. Gaobo Chang, Cheng Huang, Huiling Zheng, Yuancheng He, Dan Zhao, Zhong Li, Hanqing Zhao. Synergistically Catalytic Regulation of Surface Chemistry on Coal Based Needle Coke by Bimetallic Interface for Enhanced Li/Na Storage. 2023https://doi.org/10.2139/ssrn.4587974
    47. Gaobo Chang, Cheng Huang, Huiling Zheng, Yuancheng He, Dan Zhao, Zhong Li, Hanqing Zhao. Synergistically Catalytic Regulation of Surface Chemistry on Coal Based Needle Coke by Bimetallic Interface for Enhanced Li/Na Storage. 2023https://doi.org/10.2139/ssrn.4618524
    48. Libo Sun, Vikas Reddu, Xin Wang. Multi-atom cluster catalysts for efficient electrocatalysis. Chemical Society Reviews 2022, 51 (21) , 8923-8956. https://doi.org/10.1039/D2CS00233G
    49. Vi Thuy Thi Phan, Toan Minh Pham, Hau Quoc Pham, Tai Thien Huynh, Thi Hong Tham Nguyen, Van Thi Thanh Ho. Low‐dose Ir‐doped TiO 2 supported Pt‐Co bimetallic nanoparticles: A highly active and CO‐tolerant electrocatalyst towards methanol oxidation reaction. International Journal of Energy Research 2022, 46 (13) , 19221-19232. https://doi.org/10.1002/er.8582
    50. Diwakar Kashyap, Hanan Teller, Palaniappan Subramanian, Petr Bělský, Medhanie Gebremedhin Gebru, Itay Pitussi, Radhey Shyam Yadav, Haya Kornweitz, Alex Schechter. Sn-based atokite alloy nanocatalyst for high-power dimethyl ether fueled low-temperature polymer electrolyte fuel cell. Journal of Power Sources 2022, 544 , 231882. https://doi.org/10.1016/j.jpowsour.2022.231882
    51. Fangfang Chang, Chenguang Wang, Xueli Wu, Yongpeng Liu, Juncai Wei, Zhengyu Bai, Lin Yang. Strained Lattice Gold-Copper Alloy Nanoparticles for Efficient Carbon Dioxide Electroreduction. Materials 2022, 15 (14) , 5064. https://doi.org/10.3390/ma15145064
    52. Estela Ruiz-López, Jesús Gandara-Loe, Francisco Baena-Moreno, Tomas Ramirez Reina, José Antonio Odriozola. Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects. Renewable and Sustainable Energy Reviews 2022, 161 , 112329. https://doi.org/10.1016/j.rser.2022.112329
    53. Guobin Wen, Bohua Ren, Yun Zheng, Matthew Li, Catherine Silva, Shuqin Song, Zhen Zhang, Haozhen Dou, Lei Zhao, Dan Luo, Aiping Yu, Zhongwei Chen. Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials 2022, 12 (3) https://doi.org/10.1002/aenm.202103289
    54. Xiaobin Liao, Ruihu Lu, Lixue Xia, Qian Liu, Huan Wang, Kristin Zhao, Zhaoyang Wang, Yan Zhao. Density Functional Theory for Electrocatalysis. ENERGY & ENVIRONMENTAL MATERIALS 2022, 5 (1) , 157-185. https://doi.org/10.1002/eem2.12204
    55. Narges Manavi, Bin Liu. Mitigating Coke Formations for Dry Reforming of Methane on Dual-Site Catalysts: A Microkinetic Modeling Study. SSRN Electronic Journal 2022, 3 https://doi.org/10.2139/ssrn.4162689
    56. Gregory Zakem, Insoo Ro, Jordan Finzel, Phillip Christopher. Support functionalization as an approach for modifying activation entropies of catalytic reactions on atomically dispersed metal sites. Journal of Catalysis 2021, 404 , 883-896. https://doi.org/10.1016/j.jcat.2021.07.030
    57. Adam Baz, Sean T. Dix, Adam Holewinski, Suljo Linic. Microkinetic modeling in electrocatalysis: Applications, limitations, and recommendations for reliable mechanistic insights. Journal of Catalysis 2021, 404 , 864-872. https://doi.org/10.1016/j.jcat.2021.08.043
    58. Daniel Lach, Uladzislau Zhdan, Adam Smolinski, Jaroslaw Polanski. Functional and Material Properties in Nanocatalyst Design: A Data Handling and Sharing Problem. International Journal of Molecular Sciences 2021, 22 (10) , 5176. https://doi.org/10.3390/ijms22105176
    59. Xin Li, Zongkui Kou, John Wang. Manipulating Interfaces of Electrocatalysts Down to Atomic Scales: Fundamentals, Strategies, and Electrocatalytic Applications. Small Methods 2021, 5 (2) https://doi.org/10.1002/smtd.202001010
    60. Yufen Chen, Lluís Soler, Chenyang Xie, Xavier Vendrell, Jarosław Serafin, Daniel Crespo, Jordi Llorca. A straightforward method to prepare supported Au clusters by mechanochemistry and its application in photocatalysis. Applied Materials Today 2020, 21 , 100873. https://doi.org/10.1016/j.apmt.2020.100873
    61. Andrea Auer, Mie Andersen, Eva-Maria Wernig, Nicolas G. Hörmann, Nico Buller, Karsten Reuter, Julia Kunze-Liebhäuser. Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte. Nature Catalysis 2020, 3 (10) , 797-803. https://doi.org/10.1038/s41929-020-00505-w
    62. Karun K. Rao, Quan K. Do, Khoa Pham, Debtanu Maiti, Lars C. Grabow. Extendable Machine Learning Model for the Stability of Single Atom Alloys. Topics in Catalysis 2020, 63 (7-8) , 728-741. https://doi.org/10.1007/s11244-020-01267-2
    63. Chen Chen, Xiaorong Zhu, Xiaojian Wen, Yangyang Zhou, Ling Zhou, Hao Li, Li Tao, Qiling Li, Shiqian Du, Tingting Liu, Dafeng Yan, Chao Xie, Yuqin Zou, Yanyong Wang, Ru Chen, Jia Huo, Yafei Li, Jun Cheng, Hui Su, Xu Zhao, Weiren Cheng, Qinghua Liu, Hongzhen Lin, Jun Luo, Jun Chen, Mingdong Dong, Kai Cheng, Conggang Li, Shuangyin Wang. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry 2020, 12 (8) , 717-724. https://doi.org/10.1038/s41557-020-0481-9
    64. Adam Baz, Adam Holewinski. Understanding the interplay of bifunctional and electronic effects: Microkinetic modeling of the CO electro-oxidation reaction. Journal of Catalysis 2020, 384 , 1-13. https://doi.org/10.1016/j.jcat.2020.02.003
    65. Lei Fan, Chuan Xia, Fangqi Yang, Jun Wang, Haotian Wang, Yingying Lu. Strategies in catalysts and electrolyzer design for electrochemical CO 2 reduction toward C 2+ products. Science Advances 2020, 6 (8) https://doi.org/10.1126/sciadv.aay3111
    66. Karsten Reuter, Horia Metiu. A Decade of Computational Surface Catalysis. 2020, 1309-1319. https://doi.org/10.1007/978-3-319-44680-6_1
    67. Jun Zhou, Yue Zhang, Song Li, Jing Chen. Ni/NiO Nanocomposites with Rich Oxygen Vacancies as High-Performance Catalysts for Nitrophenol Hydrogenation. Catalysts 2019, 9 (11) , 944. https://doi.org/10.3390/catal9110944
    68. Anish Dasgupta, Robert M. Rioux. Intermetallics in catalysis: An exciting subset of multimetallic catalysts. Catalysis Today 2019, 330 , 2-15. https://doi.org/10.1016/j.cattod.2018.05.048
    69. Carla P. Gomes, Junwen Bai, Yexiang Xue, Johan Björck, Brendan Rappazzo, Sebastian Ament, Richard Bernstein, Shufeng Kong, Santosh K. Suram, R. Bruce van Dover, John M. Gregoire. CRYSTAL: a multi-agent AI system for automated mapping of materials’ crystal structures. MRS Communications 2019, 9 (2) , 600-608. https://doi.org/10.1557/mrc.2019.50
    70. Hui Shi. Valorization of Biomass‐derived Small Oxygenates: Kinetics, Mechanisms and Site Requirements of H 2 ‐involved Hydrogenation and Deoxygenation Pathways over Heterogeneous Catalysts. ChemCatChem 2019, 11 (7) , 1824-1877. https://doi.org/10.1002/cctc.201801828
    71. Manuel J. S. Farias, Juan M. Feliu. Determination of Specific Electrocatalytic Sites in the Oxidation of Small Molecules on Crystalline Metal Surfaces. Topics in Current Chemistry 2019, 377 (1) https://doi.org/10.1007/s41061-018-0228-x
    72. Jennifer N. Jocz, Andrew J. Medford, Carsten Sievers. Thermodynamic Limitations of the Catalyst Design Space for Methanol Production from Methane. ChemCatChem 2019, 11 (1) , 593-600. https://doi.org/10.1002/cctc.201801438
    73. Bryan R. Goldsmith, Jacques Esterhuizen, Jin‐Xun Liu, Christopher J. Bartel, Christopher Sutton. Machine learning for heterogeneous catalyst design and discovery. AIChE Journal 2018, 64 (7) , 2311-2323. https://doi.org/10.1002/aic.16198
    74. Brian M. Murphy, Bingjun Xu. Foundational techniques for catalyst design in the upgrading of biomass-derived multifunctional molecules. Progress in Energy and Combustion Science 2018, 67 , 1-30. https://doi.org/10.1016/j.pecs.2018.01.003
    75. Ali Hussain Motagamwala, Madelyn R. Ball, James A. Dumesic. Microkinetic Analysis and Scaling Relations for Catalyst Design. Annual Review of Chemical and Biomolecular Engineering 2018, 9 (1) , 413-450. https://doi.org/10.1146/annurev-chembioeng-060817-084103
    76. Mikkel Jørgensen, Henrik Grönbeck. The Site‐Assembly Determines Catalytic Activity of Nanoparticles. Angewandte Chemie 2018, 130 (18) , 5180-5183. https://doi.org/10.1002/ange.201802113
    77. Mikkel Jørgensen, Henrik Grönbeck. The Site‐Assembly Determines Catalytic Activity of Nanoparticles. Angewandte Chemie International Edition 2018, 57 (18) , 5086-5089. https://doi.org/10.1002/anie.201802113
    78. Zhen Yao, Karsten Reuter. First‐Principles Computational Screening of Dopants to Improve the Deacon Process over RuO 2. ChemCatChem 2018, 10 (2) , 465-469. https://doi.org/10.1002/cctc.201701313
    79. Karsten Reuter, Horia Metiu. A Decade of Computational Surface Catalysis. 2018, 1-11. https://doi.org/10.1007/978-3-319-50257-1_1-1
    80. D-J. Chen, Y.Y.J. Tong. The Bifunctional Electrocatalysis of Carbon Monoxide Oxidation Reaction. 2018, 881-897. https://doi.org/10.1016/B978-0-12-409547-2.13317-7
    81. Keith J. Stevenson, Kristina Tschulik. A materials driven approach for understanding single entity nano impact electrochemistry. Current Opinion in Electrochemistry 2017, 6 (1) , 38-45. https://doi.org/10.1016/j.coelec.2017.07.009

    ACS Catalysis

    Cite this: ACS Catal. 2017, 7, 6, 3960–3967
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.7b00482
    Published April 14, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    3254

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.