ACS Publications. Most Trusted. Most Cited. Most Read
Identification of Manganese Superoxide Dismutase from Sphingobacterium sp. T2 as a Novel Bacterial Enzyme for Lignin Oxidation
My Activity

Figure 1Loading Img
    Articles

    Identification of Manganese Superoxide Dismutase from Sphingobacterium sp. T2 as a Novel Bacterial Enzyme for Lignin Oxidation
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
    *Tel.: 44-2476-573018. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2015, 10, 10, 2286–2294
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acschembio.5b00298
    Published July 21, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl–Cα and Cα–Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.5b00298.

    • Figures S1–S31 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 100 publications.

    1. Xiaolu Li Zhangyang Xu Austin Gluth Wei-Jun Qian Bin Yang . Proteomic Approaches for Advancing the Understanding and Application of Oleaginous Bacteria for Bioconversion of Lignin to Lipids. 2021, 61-96. https://doi.org/10.1021/bk-2021-1377.ch004
    2. Zhen Wei, Rachael C. Wilkinson, Goran M. M. Rashid, David Brown, Vilmos Fülöp, Timothy D. H. Bugg. Characterization of Thiamine Diphosphate-Dependent 4-Hydroxybenzoylformate Decarboxylase Enzymes from Rhodococcus jostii RHA1 and Pseudomonas fluorescens Pf-5 Involved in Degradation of Aryl C2 Lignin Degradation Fragments. Biochemistry 2019, 58 (52) , 5281-5293. https://doi.org/10.1021/acs.biochem.9b00177
    3. Megan V. Doble, Amanda G. Jarvis, Andrew C. C. Ward, Jonathan D. Colburn, Jan P. Götze, Michael Bühl, Paul C. J. Kamer. Artificial Metalloenzymes as Catalysts for Oxidative Lignin Degradation. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 15100-15107. https://doi.org/10.1021/acssuschemeng.8b03568
    4. Goran M. M. Rashid, Xiaoyang Zhang, Rachael C. Wilkinson, Vilmos Fülöp, Betty Cottyn, Stéphanie Baumberger, Timothy D. H. Bugg. Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical. ACS Chemical Biology 2018, 13 (10) , 2920-2929. https://doi.org/10.1021/acschembio.8b00557
    5. Christopher S. Lancefield, Goran M. M. Rashid, Florent Bouxin, Agata Wasak, Wei-Chien Tu, Jason Hallett, Sharif Zein, Jaime Rodríguez, S. David Jackson, Nicholas J. Westwood, and Timothy D. H. Bugg . Investigation of the Chemocatalytic and Biocatalytic Valorization of a Range of Different Lignin Preparations: The Importance of β-O-4 Content. ACS Sustainable Chemistry & Engineering 2016, 4 (12) , 6921-6930. https://doi.org/10.1021/acssuschemeng.6b01855
    6. Qing Zhou, Annabel Fransen, Han de Winde. Lignin-Degrading Enzymes and the Potential of Pseudomonas putida as a Cell Factory for Lignin Degradation and Valorization. Microorganisms 2025, 13 (4) , 935. https://doi.org/10.3390/microorganisms13040935
    7. Xinyi Jiang, Zheng Peng, Haili Liu, Linpei Zhang, Juan Zhang. Assembly of a lignocellulose-degrading synthetic community from the strong-flavor Daqu by a stepwise method. Food Research International 2025, 205 , 115986. https://doi.org/10.1016/j.foodres.2025.115986
    8. Timothy D.H. Bugg. Microbial Lignin Deconstruction Strategies. 2025, 246-256. https://doi.org/10.1016/B978-0-443-15742-4.00057-0
    9. Victoria Sodré, Timothy D. H. Bugg. Sustainable production of aromatic chemicals from lignin using enzymes and engineered microbes. Chemical Communications 2024, 60 (97) , 14360-14375. https://doi.org/10.1039/D4CC05064A
    10. Mingzhu Zhang, Dongfeng Guo, Haiqing Wang, Guanglong Wu, Yaqi Shi, Tianfei Zheng, Jinlong Zhou, Eryong Zhao, Xiaolei Wu, Xingjiang Li. Evaluation of microbial and organic metabolite characteristics in fermented tobacco from different grades by comprehensive microbiomes and chemometrics analysis. Industrial Crops and Products 2024, 222 , 119706. https://doi.org/10.1016/j.indcrop.2024.119706
    11. Jinming Gu, Qing Qiu, Yue Yu, Xuejian Sun, Kejian Tian, Menghan Chang, Yibing Wang, Fenglin Zhang, Hongliang Huo. Bacterial transformation of lignin: key enzymes and high-value products. Biotechnology for Biofuels and Bioproducts 2024, 17 (1) https://doi.org/10.1186/s13068-023-02447-4
    12. Mingzhu Zhang, Dongfeng Guo, Haiqing Wang, Guanglong Wu, Yaqi Shi, Jinlong Zhou, Tianfei Zheng, Eryong Zhao, Xiaolei Wu, Xingjiang Li. Comparative profiling of microbial communities and volatile organic compounds in fermented wrapper, binder, and filler cigar tobaccos. Chemical and Biological Technologies in Agriculture 2024, 11 (1) https://doi.org/10.1186/s40538-024-00582-0
    13. Shaktheeshwari Silvaraju, Qi-hui Zhang, Sandra Kittelmann, Nalini Puniamoorthy. Genetics, age, and diet influence gut bacterial communities and performance of black soldier fly larvae (Hermetia illucens). Animal Microbiome 2024, 6 (1) https://doi.org/10.1186/s42523-024-00340-5
    14. Xiaodan Li, Tongguo Gao, Yaru Zhang, Xinran Yu, Quan Wang, Shuna Li, Shuxiang Wang, Lijie Gao, Hongya Li. Genomic characterization and proteomic analysis of Bacillus amyloliquefaciens in response to lignin. International Journal of Biological Macromolecules 2024, 281 , 136611. https://doi.org/10.1016/j.ijbiomac.2024.136611
    15. Swati Chandrawanshi, Anandkumar Jayapal. Microbial depolymerization of Kraft lignin for production of Vanillic acid by indigenous ligninolytic strains. Journal of the Indian Chemical Society 2024, 101 (11) , 101438. https://doi.org/10.1016/j.jics.2024.101438
    16. Chad T. Palumbo, Erik T. Ouellette, Jie Zhu, Yuriy Román-Leshkov, Shannon S. Stahl, Gregg T. Beckham. Accessing monomers from lignin through carbon–carbon bond cleavage. Nature Reviews Chemistry 2024, 8 (11) , 799-816. https://doi.org/10.1038/s41570-024-00652-9
    17. Degyi Yangzom, Shuqin Ma, Xuyang Lu. Quantitative and Qualitative Relationships between Phospholipid Fatty Acid Analysis Biomarkers and Lignin in Soil from the Tibetan Plateau (China) under Laboratory Incubation Conditions. Agronomy 2024, 14 (9) , 1980. https://doi.org/10.3390/agronomy14091980
    18. Timothy D.H. Bugg, Victoria Sodré, Awatif Alruwaili, Goran M.M. Rashid. Enzymatic and Microbial Bioconversion of Lignin to Renewable Chemicals. 2024, 203-230. https://doi.org/10.1002/9783527839865.ch8
    19. Jiyu Chen, Lu Lin, Qichao Tu, Qiannan Peng, Xiaopeng Wang, Congying Liang, Jiayin Zhou, Xiaoli Yu. Metagenomic‐based discovery and comparison of the lignin degrading potential of microbiomes in aquatic and terrestrial ecosystems via the LCdb database. Molecular Ecology Resources 2024, 24 (5) https://doi.org/10.1111/1755-0998.13950
    20. Reza Sharafi, Gholamreza Salehi Jouzani, Ebrahim Karimi, Hosein Ghanavati, Mojegan Kowsari. Integrating bioprocess and metagenomics studies to enhance humic acid production from rice straw. World Journal of Microbiology and Biotechnology 2024, 40 (6) https://doi.org/10.1007/s11274-024-03959-3
    21. Timothy D. H. Bugg. The chemical logic of enzymatic lignin degradation. Chemical Communications 2024, 60 (7) , 804-814. https://doi.org/10.1039/D3CC05298B
    22. Qiuying Han, Wenxue Che, Hui Zhao, Jiahui Ye, Wenxuan Zeng, Yufeng Luo, Xinzhu Bai, Muqiu Zhao, Yunfeng Shi. Effects of Aquaculture and Thalassia testudinum on Sediment Organic Carbon in Xincun Bay, Hainan Island. Water 2024, 16 (2) , 338. https://doi.org/10.3390/w16020338
    23. Xin Zhao, Zhiyan Chen, Yunping Xu, Xiaohui Zhai, Xiuqing Song, Hualin Xu, Xiaoxia Lü, Xinxin Li. Linkages between organic carbon composition and microbial community structure in two contrasting subtropical mangrove sediments in southern China. Regional Studies in Marine Science 2023, 66 , 103159. https://doi.org/10.1016/j.rsma.2023.103159
    24. Tursunay Mamtimin, Huawen Han, Aman Khan, Pengya Feng, Qing Zhang, Xiaobiao Ma, Yitian Fang, Pu Liu, Saurabh Kulshrestha, Toshiro Shigaki, Xiangkai Li. Gut microbiome of mealworms (Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets. Microbiome 2023, 11 (1) https://doi.org/10.1186/s40168-023-01550-w
    25. Lu Yang, Jiaxing Wei, Wei Feng. Co-immobilization of galactose oxidase, catalase, and Mn-superoxide dismutase for efficient conversion of 5-hydroxymethylfurfural to 2,5-diformylfuran in water. Colloids and Surfaces B: Biointerfaces 2023, 231 , 113541. https://doi.org/10.1016/j.colsurfb.2023.113541
    26. Anne Grethe Hamre, Rim Al-Sadawi, Kirsti Merete Johannesen, Bastien Bisarro, Åsmund Røhr Kjendseth, Hanna-Kirsti S. Leiros, Morten Sørlie. Initial characterization of an iron superoxide dismutase from Thermobifida fusca. JBIC Journal of Biological Inorganic Chemistry 2023, 28 (7) , 689-698. https://doi.org/10.1007/s00775-023-02019-9
    27. Qiannan Peng, Lu Lin, Qichao Tu, Xiaopeng Wang, Yueyue Zhou, Jiyu Chen, Nianzhi Jiao, Jizhong Zhou, , Shi Huang. Unraveling the roles of coastal bacterial consortia in degradation of various lignocellulosic substrates. mSystems 2023, https://doi.org/10.1128/msystems.01283-22
    28. Ayixon Sánchez-Reyes, Itzel Gaytán, Julián Pulido-García, Manuel Burelo, Martín Vargas-Suárez, M. Javier Cruz-Gómez, Herminia Loza-Tavera. Genetic basis for the biodegradation of a polyether-polyurethane-acrylic copolymer by a landfill microbial community inferred by metagenomic deconvolution analysis. Science of The Total Environment 2023, 881 , 163367. https://doi.org/10.1016/j.scitotenv.2023.163367
    29. Irina Sharapova. The Study of Potentially Lignocellulolytic Actinobacteria Pseudonocardia sp. AI2. Indian Journal of Microbiology 2023, 63 (2) , 190-196. https://doi.org/10.1007/s12088-023-01069-6
    30. Eric G. Kariuki, Caleb Kibet, Juan C. Paredes, Gerald Mboowa, Oscar Mwaura, John Njogu, Daniel Masiga, Timothy D. H. Bugg, Chrysantus M. Tanga. Metatranscriptomic analysis of the gut microbiome of black soldier fly larvae reared on lignocellulose-rich fiber diets unveils key lignocellulolytic enzymes. Frontiers in Microbiology 2023, 14 https://doi.org/10.3389/fmicb.2023.1120224
    31. Dijana Grgas, Matea Rukavina, Drago Bešlo, Tea Štefanac, Vlado Crnek, Tanja Šikić, Mirna Habuda-Stanić, Tibela Landeka Dragičević. The Bacterial Degradation of Lignin—A Review. Water 2023, 15 (7) , 1272. https://doi.org/10.3390/w15071272
    32. Chun Chang, Haoran Wu, Shiqiang Zhao, Xiaoling Zhao, Qiulin Ma, Pan Li, Guizhuan Xu. Chemical conversion of lignocellulosic biomass into platform chemicals for fuels and polymers. 2023, 1-91. https://doi.org/10.1016/bs.aibe.2023.02.003
    33. Fatimah Azizah Riyadi, Nadia Farhana Azman, Fazrena Nadia Md Akhir, Nor’azizi Othman, Hirofumi Hara. Identification and characterization of lignin depolymerization enzymes in Bacillus subtilis strain S11Y isolated from a tropical environment in Malaysia. The Journal of General and Applied Microbiology 2023, 69 (5) , 278-286. https://doi.org/10.2323/jgam.2023.08.003
    34. Jianyang Li, Chunming Dong, Biswarup Sen, Qiliang Lai, Linfeng Gong, Guangyi Wang, Zongze Shao. Lignin-oxidizing and xylan-hydrolyzing Vibrio involved in the mineralization of plant detritus in the continental slope. Science of The Total Environment 2023, 854 , 158714. https://doi.org/10.1016/j.scitotenv.2022.158714
    35. Jianyang Li, Chunming Dong, Qiliang Lai, Guangyi Wang, Zongze Shao, . Frequent Occurrence and Metabolic Versatility of Marinifilaceae Bacteria as Key Players in Organic Matter Mineralization in Global Deep Seas. mSystems 2022, 7 (6) https://doi.org/10.1128/msystems.00864-22
    36. Zengyou Wu, Kun Peng, Yin Zhang, Mei Wang, Cheng Yong, Ling Chen, Ping Qu, Hongying Huang, Enhui Sun, Mingzhu Pan. Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio 2022, 16 , 100445. https://doi.org/10.1016/j.mtbio.2022.100445
    37. Lu Lin. Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. Biotechnology for Biofuels and Bioproducts 2022, 15 (1) https://doi.org/10.1186/s13068-022-02113-1
    38. Puspendu Sardar, Vladimír Šustr, Alica Chroňáková, František Lorenc. Metatranscriptomic holobiont analysis of carbohydrate-active enzymes in the millipede Telodeinopus aoutii (Diplopoda, Spirostreptida). Frontiers in Ecology and Evolution 2022, 10 https://doi.org/10.3389/fevo.2022.931986
    39. Vinko Zadjelovic, Gabriel Erni-Cassola, Theo Obrador-Viel, Daniel Lester, Yvette Eley, Matthew I. Gibson, Cristina Dorador, Peter N. Golyshin, Stuart Black, Elizabeth M.H. Wellington, Joseph A. Christie-Oleza. A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax. Journal of Hazardous Materials 2022, 436 , 129278. https://doi.org/10.1016/j.jhazmat.2022.129278
    40. Danielle B. Carvalho, Douglas A. Paixão, Gabriela F. Persinoti, Junio Cota, Sarita C. Rabelo, Adriana Grandis, Amanda P. Souza, Marcos Buckeridge, Roberto Ruller, Leticia M. Zanphorlin, Fabio M. Squina, Joao P. L. F. Cairo, Ednildo A. Machado. Degradation of Sugarcane Bagasse by Cockroach Consortium Bacteria. BioEnergy Research 2022, 15 (2) , 1144-1156. https://doi.org/10.1007/s12155-021-10363-4
    41. Huimin Zhong, Jiayan Zhou, Fan Wang, Wenqing Wu, Mohamed Abdelrahman, Xiang Li. Whole-Genome Sequencing Reveals Lignin-Degrading Capacity of a Ligninolytic Bacterium (Bacillus cereus) from Buffalo (Bubalus bubalis) Rumen. Genes 2022, 13 (5) , 842. https://doi.org/10.3390/genes13050842
    42. Daochen Zhu, Majjid A. Qaria, Bin Zhu, Jianzhong Sun, Bin Yang. Extremophiles and extremozymes in lignin bioprocessing. Renewable and Sustainable Energy Reviews 2022, 157 , 112069. https://doi.org/10.1016/j.rser.2021.112069
    43. Lindsey M. Hartfiel, Abby Schaefer, Adina C. Howe, Michelle L. Soupir. Denitrifying bioreactor microbiome: Understanding pollution swapping and potential for improved performance. Journal of Environmental Quality 2022, 51 (1) , 1-18. https://doi.org/10.1002/jeq2.20302
    44. Sanjay Sahay. Deconstruction of lignocelluloses: potential biological approaches. 2022, 207-232. https://doi.org/10.1016/B978-0-12-822810-4.00010-5
    45. Adarsh Kumar, Ajay Kumar Singh, Muhammad Bilal, Sonal Prasad, K.R. Talluri Rameshwari, Ram Chandra. Paper and pulp mill wastewater: characterization, microbial-mediated degradation, and challenges. 2022, 371-387. https://doi.org/10.1016/B978-0-323-85835-9.00011-8
    46. Jitendra Kumar Saini. Recent developments in cellulolytic enzymes for ethanol production. 2022, 195-215. https://doi.org/10.1016/B978-0-323-88427-3.00003-9
    47. Jianyang Li, Chunming Dong, Biswarup Sen, Qiliang Lai, Linfeng Gong, Guangyi Wang, Zongze Shao. Lignin-Oxidizing Vibrios Involved in the Mineralization of Plant Detritus in the Continental Slope. SSRN Electronic Journal 2022, 50 https://doi.org/10.2139/ssrn.4159588
    48. Mandeep Dixit, Guddu Kumar Gupta, Zeba Usmani, Minaxi Sharma, Pratyoosh Shukla. Enhanced bioremediation of pulp effluents through improved enzymatic treatment strategies: A greener approach. Renewable and Sustainable Energy Reviews 2021, 152 , 111664. https://doi.org/10.1016/j.rser.2021.111664
    49. Timothy D.H. Bugg, James J. Williamson, Fabrizio Alberti. Microbial hosts for metabolic engineering of lignin bioconversion to renewable chemicals. Renewable and Sustainable Energy Reviews 2021, 152 , 111674. https://doi.org/10.1016/j.rser.2021.111674
    50. Sivasamy Sethupathy, Gabriel Murillo Morales, Yixuan Li, Yongli Wang, Jianxiong Jiang, Jianzhong Sun, Daochen Zhu. Harnessing microbial wealth for lignocellulose biomass valorization through secretomics: a review. Biotechnology for Biofuels 2021, 14 (1) https://doi.org/10.1186/s13068-021-02006-9
    51. Nitiya Thongbunrod, Pawinee Chaiprasert. Efficacy and Metagenomic Analysis of the Stabilized Anaerobic Lignocellulolytic Microbial Consortium from Bubalus bubalis Rumen with Rice Straw Enrichment for Methane Production. BioEnergy Research 2021, 14 (3) , 870-890. https://doi.org/10.1007/s12155-020-10167-y
    52. Worakan Chetawan, Kanyarat Saritpongteeraka, Arkom Palamanit, Sumate Chaiprapat. Practical approaches for retrofitting plug flow digester and process control to maximize hydrolysis and methane yield from piggery waste. Journal of Environmental Chemical Engineering 2021, 9 (4) , 105620. https://doi.org/10.1016/j.jece.2021.105620
    53. Stefanos Stravoravdis, J. Reuben Shipway, Barry Goodell. How Do Shipworms Eat Wood? Screening Shipworm Gill Symbiont Genomes for Lignin-Modifying Enzymes. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.665001
    54. Balaji Venkatesagowda, Robert F.H. Dekker. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups. Enzyme and Microbial Technology 2021, 147 , 109780. https://doi.org/10.1016/j.enzmictec.2021.109780
    55. Goran M. M. Rashid, Timothy D. H. Bugg. Enhanced biocatalytic degradation of lignin using combinations of lignin-degrading enzymes and accessory enzymes. Catalysis Science & Technology 2021, 11 (10) , 3568-3577. https://doi.org/10.1039/D1CY00431J
    56. Nicola C. Oates, Amira Abood, Alexandra M. Schirmacher, Anna M. Alessi, Susannah M. Bird, Joseph P. Bennett, Daniel R. Leadbeater, Yi Li, Adam A. Dowle, Sarah Liu, Vitaliy I. Tymokhin, John Ralph, Simon J. McQueen-Mason, Neil C. Bruce. A multi-omics approach to lignocellulolytic enzyme discovery reveals a new ligninase activity from Parascedosporium putredinis NO1. Proceedings of the National Academy of Sciences 2021, 118 (18) https://doi.org/10.1073/pnas.2008888118
    57. Lanfang Cao, Lu Lin, Haiyan Sui, Heng Wang, Zhichao Zhang, Nianzhi Jiao, Jizhong Zhou. Efficient extracellular laccase secretion via bio-designed secretory apparatuses to enhance bacterial utilization of recalcitrant lignin. Green Chemistry 2021, 23 (5) , 2079-2094. https://doi.org/10.1039/D0GC04084C
    58. Madan Kumar, Raj Morya, Asmita Gupta, Vivek Kumar, I. S. Thakur. Bacterial-Mediated Depolymerization and Degradation of Lignin. 2021, 83-103. https://doi.org/10.1007/978-981-15-7493-1_4
    59. Ajay Kumar Chauhan, Swapna Kumar Srivastava, Sonam Singh. Lignin Depolymerization Strategy and Role of Ionic Liquids. 2021, 157-173. https://doi.org/10.1007/978-981-16-1888-8_8
    60. Vinko Zadjelovic, Gabriel Erni-Cassola, Daniel Lester, Yvette Eley, Matthew Gibson, Cristina Dorador, Peter Golyshin, Stuart Black, Elizabeth Wellington, Joseph Christie-Oleza. A Mechanistic Understanding of Polyethylene Biodegradation by the Marine Bacterium Alcanivorax. SSRN Electronic Journal 2021, 64 https://doi.org/10.2139/ssrn.3979990
    61. Laura Díaz-García, Timothy D. H. Bugg, Diego Javier Jiménez. Exploring the Lignin Catabolism Potential of Soil-Derived Lignocellulolytic Microbial Consortia by a Gene-Centric Metagenomic Approach. Microbial Ecology 2020, 80 (4) , 885-896. https://doi.org/10.1007/s00248-020-01546-1
    62. Robson Tramontina, Lívia Beatriz Brenelli, Victoria Sodré, João Paulo Franco Cairo, Beatriz Medeiros Travália, Viviane Yoshimi Egawa, Rosana Goldbeck, Fabio Marcio Squina. Enzymatic removal of inhibitory compounds from lignocellulosic hydrolysates for biomass to bioproducts applications. World Journal of Microbiology and Biotechnology 2020, 36 (11) https://doi.org/10.1007/s11274-020-02942-y
    63. Edward M. Spence, Heather T. Scott, Louison Dumond, Leonides Calvo-Bado, Sabrina di Monaco, James J. Williamson, Gabriela F. Persinoti, Fabio M. Squina, Timothy D. H. Bugg, . The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and Agrobacterium Species Is an Alternative Pathway for Degradation of Protocatechuic Acid and Lignin Fragments. Applied and Environmental Microbiology 2020, 86 (19) https://doi.org/10.1128/AEM.01561-20
    64. Rachael C. Wilkinson, Rahman Rahman Pour, Shirin Jamshidi, Vilmos Fülöp, Timothy D.H. Bugg. Extracellular alpha/beta-hydrolase from Paenibacillus species shares structural and functional homology to tobacco salicylic acid binding protein 2. Journal of Structural Biology 2020, 210 (3) , 107496. https://doi.org/10.1016/j.jsb.2020.107496
    65. Rommel Santiago Granja-Travez, Gabriela Felix Persinoti, Fabio M. Squina, Timothy D. H. Bugg. Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism. Applied Microbiology and Biotechnology 2020, 104 (8) , 3305-3320. https://doi.org/10.1007/s00253-019-10318-y
    66. Timothy D.H. Bugg, James J. Williamson, Goran M.M. Rashid. Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Current Opinion in Chemical Biology 2020, 55 , 26-33. https://doi.org/10.1016/j.cbpa.2019.11.007
    67. Robson Tramontina, Lívia Beatriz Brenelli, Amanda Sousa, Rafael Alves, Ana Maria Zetty Arenas, Viviane Marcos Nascimento, Sarita Cândida Rabelo, Sindélia Freitas, Roberto Ruller, Fabio Marcio Squina. Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms. Enzyme and Microbial Technology 2020, 135 , 109490. https://doi.org/10.1016/j.enzmictec.2019.109490
    68. Jou C. Chan, Michael Paice, Xiao Zhang. Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem 2020, 12 (2) , 401-425. https://doi.org/10.1002/cctc.201901480
    69. Kamlesh Kumar Yadav, Prabhakargouda Basanagouda Patil, Hosur Hanumegowda Kumaraswamy, Brijendra Kumar Kashyap. Ligninolytic Microbes and Their Role in Effluent Management of Pulp and Paper Industry. 2020, 309-350. https://doi.org/10.1007/978-981-33-4347-4_13
    70. Johan Larsbrink, Lauren Sara McKee. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. 2020, 63-98. https://doi.org/10.1016/bs.aambs.2019.11.001
    71. Prakram Singh Chauhan. Role of various bacterial enzymes in complete depolymerization of lignin: A review. Biocatalysis and Agricultural Biotechnology 2020, 23 , 101498. https://doi.org/10.1016/j.bcab.2020.101498
    72. Xiaolu Li, Yucai He, Libing Zhang, Zhangyang Xu, Haoxi Ben, Matthew J. Gaffrey, Yongfu Yang, Shihui Yang, Joshua S. Yuan, Wei-Jun Qian, Bin Yang. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnology for Biofuels 2019, 12 (1) https://doi.org/10.1186/s13068-019-1395-x
    73. Saikat Dutta, Jeonghun Kim, Pin‐Hsun Hsieh, Yu‐Shen Hsu, Yusuf Valentino Kaneti, Fa‐Kuen Shieh, Yusuke Yamauchi, Kevin C.‐W. Wu. Nanoarchitectonics of Biofunctionalized Metal–Organic Frameworks with Biological Macromolecules and Living Cells. Small Methods 2019, 3 (11) https://doi.org/10.1002/smtd.201900213
    74. Rubén López-Mondéjar, Camelia Algora, Petr Baldrian. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnology Advances 2019, 37 (6) , 107374. https://doi.org/10.1016/j.biotechadv.2019.03.013
    75. Kulkarni S. Neelkant, Kumar Shankar, S. K. Jayalakshmi, Kuruba Sreeramulu. Optimization of conditions for the production of lignocellulolytic enzymes by Sphingobacterium sp. ksn-11 utilizing agro-wastes under submerged condition. Preparative Biochemistry & Biotechnology 2019, 49 (9) , 927-934. https://doi.org/10.1080/10826068.2019.1643735
    76. Siseon Lee, Minsik Kang, Jung-Hoon Bae, Jung-Hoon Sohn, Bong Hyun Sung. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Frontiers in Bioengineering and Biotechnology 2019, 7 https://doi.org/10.3389/fbioe.2019.00209
    77. Balaji Venkatesagowda. Enzymatic demethylation of lignin for potential biobased polymer applications. Fungal Biology Reviews 2019, 33 (3-4) , 190-224. https://doi.org/10.1016/j.fbr.2019.06.002
    78. Lu Lin, Xiaopeng Wang, Lanfang Cao, Meiying Xu. Lignin catabolic pathways reveal unique characteristics of dye‐decolorizing peroxidases in Pseudomonas putida. Environmental Microbiology 2019, 21 (5) , 1847-1863. https://doi.org/10.1111/1462-2920.14593
    79. Roland C Wilhelm, Rahul Singh, Lindsay D Eltis, William W Mohn. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. The ISME Journal 2019, 13 (2) , 413-429. https://doi.org/10.1038/s41396-018-0279-6
    80. Michael Machas, Gavin Kurgan, Amit K Jha, Andrew Flores, Aidan Schneider, Sean Coyle, Arul M Varman, Xuan Wang, David R Nielsen. Emerging tools, enabling technologies, and future opportunities for the bioproduction of aromatic chemicals. Journal of Chemical Technology & Biotechnology 2019, 94 (1) , 38-52. https://doi.org/10.1002/jctb.5762
    81. Bastien Bissaro, Anikó Várnai, Åsmund K. Røhr, Vincent G. H. Eijsink. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiology and Molecular Biology Reviews 2018, 82 (4) https://doi.org/10.1128/MMBR.00029-18
    82. Madan Kumar, Sandhya Verma, Rajesh Kumar Gazara, Manish Kumar, Ashok Pandey, Praveen Kumar Verma, Indu Shekhar Thakur. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. Biotechnology for Biofuels 2018, 11 (1) https://doi.org/10.1186/s13068-018-1148-2
    83. Chenxian Yang, Fangfang Yue, Yanlong Cui, Yuanmei Xu, Yuanyuan Shan, Bianfang Liu, Yuan Zhou, Xin Lü. Biodegradation of lignin by Pseudomonas sp. Q18 and the characterization of a novel bacterial DyP-type peroxidase. Journal of Industrial Microbiology and Biotechnology 2018, 45 (10) , 913-927. https://doi.org/10.1007/s10295-018-2064-y
    84. Erik R. Zinser. The microbial contribution to reactive oxygen species dynamics in marine ecosystems. Environmental Microbiology Reports 2018, 10 (4) , 412-427. https://doi.org/10.1111/1758-2229.12626
    85. Ricardo Abejón, Heriberto Pérez-Acebo, Leonardo Clavijo. Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes 2018, 6 (8) , 98. https://doi.org/10.3390/pr6080098
    86. Rommel Santiago Granja‐Travez, Rachael C. Wilkinson, Gabriela Felix Persinoti, Fabio M. Squina, Vilmos Fülöp, Timothy D. H. Bugg. Structural and functional characterisation of multi‐copper oxidase CueO from lignin‐degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. The FEBS Journal 2018, 285 (9) , 1684-1700. https://doi.org/10.1111/febs.14437
    87. M. Patchaye, B. Sundarkrishnan, S. Tamilselvan, N. Sakthivel. Microbial Management of Organic Waste in Agroecosystem. 2018, 45-73. https://doi.org/10.1007/978-981-10-7146-1_3
    88. C.‐X. Yang, T. Wang, L.‐N. Gao, H.‐J. Yin, X. Lü. Isolation, identification and characterization of lignin‐degrading bacteria from Qinling, China. Journal of Applied Microbiology 2017, 123 (6) , 1447-1460. https://doi.org/10.1111/jam.13562
    89. Gustavo Pagotto Borin, Camila Cristina Sanchez, Eliane Silva de Santana, Guilherme Keppe Zanini, Renato Augusto Corrêa dos Santos, Angélica de Oliveira Pontes, Aline Tieppo de Souza, Roberta Maria Menegaldo Tavares Soa Dal’Mas, Diego Mauricio Riaño-Pachón, Gustavo Henrique Goldman, Juliana Velasco de Castro Oliveira. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 2017, 18 (1) https://doi.org/10.1186/s12864-017-3857-5
    90. Robson Tramontina, João Paulo L. Franco Cairo, Marcelo V. Liberato, Fernanda Mandelli, Amanda Sousa, Samantha Santos, Sarita Cândida Rabelo, Bruna Campos, Jaciane Ienczak, Roberto Ruller, André R. L. Damásio, Fabio Marcio Squina. The Coptotermes gestroi aldo–keto reductase: a multipurpose enzyme for biorefinery applications. Biotechnology for Biofuels 2017, 10 (1) https://doi.org/10.1186/s13068-016-0688-6
    91. Daochen Zhu, Peipei Zhang, Changxiao Xie, Weimin Zhang, Jianzhong Sun, Wei-Jun Qian, Bin Yang. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnology for Biofuels 2017, 10 (1) https://doi.org/10.1186/s13068-017-0735-y
    92. Grzegorz Janusz, Anna Pawlik, Justyna Sulej, Urszula Świderska-Burek, Anna Jarosz-Wilkołazka, Andrzej Paszczyński. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews 2017, 41 (6) , 941-962. https://doi.org/10.1093/femsre/fux049
    93. G.M.M. Rashid, M.J. Durán-Peña, R. Rahmanpour, D. Sapsford, T.D.H. Bugg. Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. Journal of Applied Microbiology 2017, 123 (1) , 159-171. https://doi.org/10.1111/jam.13470
    94. Daniel L Gall, John Ralph, Timothy J Donohue, Daniel R Noguera. Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Current Opinion in Biotechnology 2017, 45 , 120-126. https://doi.org/10.1016/j.copbio.2017.02.015
    95. Luciana Principal Antunes, Layla Farage Martins, Roberta Verciano Pereira, Andrew Maltez Thomas, Deibs Barbosa, Leandro Nascimento Lemos, Gianluca Major Machado Silva, Livia Maria Silva Moura, George Willian Condomitti Epamino, Luciano Antonio Digiampietri, Karen Cristina Lombardi, Patricia Locosque Ramos, Ronaldo Bento Quaggio, Julio Cezar Franco de Oliveira, Renata Castiglioni Pascon, João Batista da Cruz, Aline Maria da Silva, João Carlos Setubal. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep38915
    96. Rashmi Priyadarshinee, Anuj Kumar, Tamal Mandal, Dalia Dasguptamandal. Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights. Environmental Science and Pollution Research 2016, 23 (23) , 23349-23368. https://doi.org/10.1007/s11356-016-7633-x
    97. João P. L. Franco Cairo, Marcelo F. Carazzolle, Flávia C. Leonardo, Luciana S. Mofatto, Lívia B. Brenelli, Thiago A. Gonçalves, Cristiane A. Uchima, Romênia R. Domingues, Thabata M. Alvarez, Robson Tramontina, Ramon O. Vidal, Fernando F. Costa, Ana M. Costa-Leonardo, Adriana F. Paes Leme, Gonçalo A. G. Pereira, Fabio M. Squina. Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi. Frontiers in Microbiology 2016, 7 https://doi.org/10.3389/fmicb.2016.01518
    98. Gonzalo de Gonzalo, Dana I. Colpa, Mohamed H.M. Habib, Marco W. Fraaije. Bacterial enzymes involved in lignin degradation. Journal of Biotechnology 2016, 236 , 110-119. https://doi.org/10.1016/j.jbiotec.2016.08.011
    99. Costyl N. Njiojob, Joseph J. Bozell, Brian K. Long, Thomas Elder, Rebecca E. Key, William T. Hartwig. Enantioselective Syntheses of Lignin Models: An Efficient Synthesis of β‐O‐4 Dimers and Trimers by Using the Evans Chiral Auxiliary. Chemistry – A European Journal 2016, 22 (35) , 12506-12517. https://doi.org/10.1002/chem.201601592
    100. Timothy D. H. Bugg, Rahman Rahmanpour, Goran M. M. Rashid. Bacterial Enzymes for Lignin Oxidation and Conversion to Renewable Chemicals. 2016, 131-146. https://doi.org/10.1007/978-981-10-1965-4_5

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2015, 10, 10, 2286–2294
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acschembio.5b00298
    Published July 21, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2532

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.